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Abstract
Amide herbicides have been widely applied in agriculture and found to be widespread and affect nontarget organisms in 
the environment. To better understand the biotoxicity mechanisms and determine the toxicity to the nontarget organisms 
for the hazard and risk assessment, five QSAR models were developed for the biotoxicity prediction of amide herbicides 
toward five aquatic and terrestrial organisms (including algae, daphnia, fish, earthworm and avian species), based on toxicity 
concentration and quantitative molecular descriptors. The results showed that the developed models complied with OECD 
principles for QSAR validation and presented excellent performances in predictive ability. In combination, the investigated 
QSAR relationship led to the toxicity mechanisms that eleven electrical descriptors (EHOMO, ELUMO, αxx, αyy, αzz, μ, qN−, 
Qxx, Qyy, qH+, and q−), four thermodynamic descriptors (Cv, Sθ, Hθ, and ZPVE), and one steric descriptor (Vm) were strongly 
associated with the biotoxicity of amide herbicides. Electrical descriptors showed the greatest impacts on the toxicity of 
amide herbicides, followed by thermodynamic and steric descriptors.

Introduction

Amide herbicides constitute the second largest proportion 
of the herbicides used in agriculture (Ding et al. 2011). 
Amide herbicides are a group of chemicals than can spe-
cifically interfere with biosynthesis of fatty acids, proteins 
and membrane, inhibit α- amylase and protease activities of 
germinating seeds, and suppress photosynthesis as inhibi-
tors and uncoupling agents of electron chain transport in 
these plants (Qin et al. 2007; Robin et al. 2017). However, 
only a small amount of the applied herbicides reaches the 
target plants while an overwhelmingly larger portion is intro-
duced into the environment (Cui et al. 2012) that adversely 

affect nontarget species, such as algae (Zhao et al. 2017), fish 
(Nassar et al. 2021), and earthworm (Li et al. 2021). These 
organisms occupy different trophic levels which constitute 
a significant part of the food web. Ecotoxicological risk 
assessment of such compounds is traditionally performed 
using standardized tests (e.g., according to OECD and ISO 
guidelines) which focus on biotoxicity toward some sensitive 
organisms. However, current methodologies for biotoxicity 
testing are expensive, time-consuming, laborious and poorly 
reproducible (Pavan and Worth 2008).

Quantitative Structure Activity relationship (QSAR) is an 
effective and low-cost alternative technology of biotoxicity 
testing that can accurately determine biotoxicity by devel-
oping mathematical models to establish the quantitative 
relationship between molecular structure and biotoxicity of 
chemicals (Kishor et al. 2019), which can also provide scien-
tific insights into biotoxicity mechanisms of these chemicals 
(Pandey et al. 2020). Several studies have employed QSAR 
approach to investigate the quantitative structure activity 
relationship and predict the biotoxicity of pollutants such 
as natural medicine (Hamadache et al. 2016), herbicides 
(Gough and Hall 1999; Zakarya et al. 1996), food additive 
(Valerio et al. 2007), cosmetics (Hamadache et al. 2016), 
agriculture (Yang et  al. 2020) and metal nanomaterials 
(Sizochenko and Leszczynski 2016). According to OECD 
Requirements and Guidelines (Netzeva et al. 2005), a valid 
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and effective QSAR model conforms to the following char-
acteristics: (1) a defined endpoint, (2) an unambiguous algo-
rithm, (3) a defined domain of applicability, (4) appropriate 
measures of goodness-of-fit, robustness and predictability, 
(5) a mechanistic interpretation if possible. The QSAR mod-
els that complied with OECD principles for QSAR valida-
tion can be effectively applied into the ecotoxicological risk 
assessment of these compounds for management and pol-
lution control.

In the present study, we assembled the toxicity concentra-
tions of amide herbicides from Pubchem and Pesticide Prop-
erties Database. A series of electrical, thermodynamic, steric 
and hydrophobic molecular descriptors including EHOMO, 
ELUMO, αxx, αyy, αzz, μ, qN−, Qxx, Qyy, Qzz, qH+, q−, Vm, Eth, 
Cv, Sθ, Et, Hθ, Gθ, and ZPVE were calculated by density-
functional theory calculation in EPIWEB4.1 and ORCA 
software. Five QSAR models toward algae, daphnia, fish, 
earthworm and avian species were respectively developed 
using a combination of Multiple Linear Regression (MLR) 
and Principal Component Analysis (PCA). The quantitative 
relationship between chemical structure and biotoxicity was 
then investigated. The main aim of this study were: (1) to 
develop valid and effective biotoxicity QSAR models of 
amide herbicides to different organisms; (2) to establish the 
quantitative relationship between structure and biotoxicity 
of amide herbicides; (3) to identify the effects of different 
molecular descriptors on the toxicity of amide herbicides. 
The results of this study provide an effective and low-cost 
measure for accurate biotoxicity determination of amide her-
bicides and give new insights that will helps to understand 
the biotoxicity mechanisms.

Materials and Methods

Biological Toxicity of Amide Herbicides

Amide herbicides are hazardous to the ecological environ-
ment. There is an extensive database on the effects of amide 
herbicides on ecosystems. Amide herbicides are thought to 
inhibit the growth, reproduction and development of many 
terrestrial and aquatic organisms (Coleman et al. 2000; 
Lunghini et al. 2020). In this study, acute toxicity results 
(50% effective concentration (EC50), lethal concentration or 
dose (LC50 or LD50)) of amide herbicides on five organ-
isms (algae, daphnia, fish, earthworm and avian species) 
were searched and collected as many as possible from online 
database or other references based on OECD guidelines. For 
instance, growth inhibition for algae, immobilization inhibi-
tion for daphnia, and mortalities and abnormalities appear-
ance/behavior for fish, earthworm, and avian species. In this 
study, amide herbicides with higher toxicity that have been 
studied extensively in previous literatures were selected and 

collected as much as possible from PubChem and Pesticide 
Properties Database. Finally, the minimum value of toxic-
ity data of 27 amide herbicides was collected. The name, 
chemical formula, CAS number and molecular weight of 
these amide herbicides are shown in Table 1.

Quantification of Molecular Structure

In order to characterize the molecular structure of these 
amide herbicides, twenty-one molecular descriptors 
were calculated to quantify these structures. The molec-
ular descriptors involve one hydrophobic parameters 
(Octanol–Water Partition Coefficient, logkow), twelve elec-
tronic parameters (EHOMO, ELUMO, αxx, αyy, αzz, qN−, qH+, 
q−,μ, Qxx, Qyy, and Qzz), seven thermodynamic parameters 
(Eth, Et, Cv, Sθ, Gθ, Hθ, and ZPVE) and one steric param-
eters (Vm). The symbols and definitions of these molecular 
descriptors are shown as Table 2. The molecular descrip-
tors were quantified as follows: Firstly, the molecular struc-
ture of each amide herbicide was initially constructed using 
ChemDraw 19.0 and then optimized by Chem3D software. 
Secondly, LogKow of amide herbicides was calculated by 
EPIWEB4.1. Lastly, the rest of the molecular descrip-
tors were calculated with the optimized structure at the 
B3LYP/6-311G++ (d, p) level using the density-functional 
theory (DFT) calculation by ORCA software, as described 
by Micera and Garribba (Giovanni and Eugenio 2011).

QSAR Model Development

MLR and PCA modeling methods were performed to 
develop QSAR models for biotoxicity prediction using 
SPSS26, Eviews7 and StataMP software, as described by 
Fadilah and Toropova (Fadilah et al. 2018; Toropova et al. 
2015). MLR was employed to describe the quantitative lin-
ear correlations between the molecular descriptors and the 
biotoxicity. PCA was used to eliminate multicollinearity 
between the individual molecular descriptors during mod-
eling. In this study, the collected toxicity data were catego-
rized into five groups (algae, daphnia, fish, earthworm and 
avian species) and then the QSAR models were developed, 
respectively. The specific modeling steps were as follows:

Firstly, in the MLR analysis, Ordinary Least Squares 
Method (OLS) was applied to identify the most important 
descriptors contributing to the toxicity. F-tests and T tests 
were employed to eliminate insignificant descriptors in the 
OLS analysis. If F-tests and T tests can not pass, the regres-
sion equation recheck is necessary. According to the stepwise 
regression results, an initial QSAR model was developed. The 
statistical quality of QSAR model was evaluated by fitting 
coefficient (R2) and root-mean-square error (RMSE). R2 and 
RMSE are defined as Eqs. (1–2). Higher R2 and lower RMSE 
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are considered to be one of the necessary conditions for QSAR 
model to meet the OECD standard (Pandey et al. 2020).

(1)R2
=

SSR

SST
= 1 −

SSE

SST where SSR is sum of squares due to regression, SSE is sum 
of squares due to error, SST is sum of squares total, ŷi is the 
predicted value of the test set, and yi is the experimental 
value of the test set.

(2)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2

Table 1   The molecular structure information of amide herbicides

No. Chemical name Chemical formula Molecular  
formula

CAS Molecular weight

1 Acetamide N,N-diallyl-2-chloroacetamide C8H12ClNO 93-71-0 173.64
2 Amicarbazone 4-amino-N-tert-butyl-4,5-dihydro-3-isopropyl-5-oxo-1H-1,2,4-

triazole-1-carboxamide
C10H19N5O2 129909-90-6 241.29

3 beflubutamid (RS)-N-benzyl-2-[ (α,α,α,4-tetrafluoro-m-tolyl)oxy]butyramide C18H17F4NO2 113614-08-7 355.30
4 butanamide (RS)-2-bromo-3,3-dimethyl-N- (1-methyl-1-phenylethyl)butyra-

mide
C15H22BrNO 74712-19-9 312.24

5 cafenstrole N,N-diethyl-3- (mesitylsulfonyl)-1H-1,2,4-triazole-1-carboxam-
ide

C16H22N4O3S 125306-83-4 350.40

6 dimethenamid-P (S)-2-chloro-N- (2,4-dimethyl-3-thienyl)-N- (2-methoxy-1-meth-
ylethyl)acetamide

C12H18ClNO2S 163515-14-8 275.80

7 Diphenamid N,N-dimethyl-2,2-diphenylacetamide C12H18ClNO2S 957-51-7 239.31
8 Fentrazamide 4- (2-chlorophenyl)-N-cyclohexyl-N-ethyl-4,5-dihydro-5-oxo-

1H-tetrazole-1-carboxamide
C16H20ClN5O2 158237-07-1 349.81

9 Flucarbazone 4,5-dihydro-3-methoxy-4-methyl-5-oxo-N-{[2- (trifluorometh-
oxy)phenyl]sulfonyl}-1H-1,2,4-triazole-1-carboxamide

C12H11F3N4O6S 145026-88-6 396.30

10 Flupoxam 1-[4-chloro-α- (2,2,3,3,3-pentafluoropropoxy)-m-tolyl]-5-phe-
nyl-1H-1,2,4-triazole-3-carboxamide

C19H14ClF5N4O2 119126-15-7 460.80

11 Fomesafen 5-[ (2-chloro-α,α,α-trifluoro-p-tolyl)oxy]-N-mesyl-2-nitrobenza-
mide

C15H10ClF3N2O6S 72178-02-0 438.80

12 Huangcaoling N-mesyl-N-methyl-2-[ (phosphonomethyl)amino]acetamide C5H13N2O6PS 98565-18-5 190.00
13 Isoxaben N-[3- (1-ethyl-1-methylpropyl)isoxazol-5-yl]-2,6-dimethoxyben-

zamide
C18H24N2O4 82558-50-7 332.40

14 Napropamide (RS)-N,N-diethyl-2- (1-naphthyloxy)propionamide C17H21NO2 15299-99-7 271.35
15 Napropamide-M (R)-N,N-diethyl-2- (1-naphthyloxy)propionamide C17H21NO2 41643-35-0 271.35
16 Naptalam N-1-naphthylphthalamic acid C18H13NO3 132-66-1 291.30
17 Pethoxamid 2-chloro-N- (2-ethoxyethyl)-N- (2-methyl-1-phenylprop-1-enyl)

acetamide
C16H22ClNO2 106700-29-2 295.80

18 Propyzamide 3,5-dichloro-N- (1,1-dimethylprop-2-ynyl)benzamide C12H11Cl2NO 23950-58-5 256.12
19 Quinonamid 2,2-dichloro-N- (3-chloro-1,4-naphthoquinon-2-yl)acetamide C12H6Cl3NO3 27541-88-4 318.50
20 Saflufenacil N′-{2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4- (trifluoro-

methyl)pyrimidin-1 (2H)-yl]-4-fluorobenzoyl}-N-isopropyl-N-
methylsulfamide

C17H17ClF4N4O5S 372137-35-4 500.90

21 Tebutam N-benzyl-N-isopropylpivalamide C15H23NO 35256-85-0 233.35
22 Alachlor 2-chloro-N- (2,6-diethylphenyl)-N- (methoxymethyl)acetamide C14H20ClNO2 15972-60-8 269.77
23 Acetochlor 2-chloro-N- (ethoxymethyl)-N- (2-ethyl-6-methylphenyl)aceta-

mide
C14H20ClNO2 194992-44-4 265.30

24 Metolachlor 2-chloro-N- (2-ethyl-6-methylphenyl)-N- (1-methoxypropan-
2-yl)acetamide

C15H22ClNO2 51218-45-2 283.79

25 Pretilachlor 2-chloro-N- (2,6-diethylphenyl)-N- (2-propoxyethyl)acetamide C17H26ClNO2 51218-49-6 311.80
26 Butachlor N- (butoxymethyl)-2-chloro-N- (2,6-diethylphenyl)acetamide C17H26ClNO2 23184-66-9 311.80
27 Propanil N- (3,4-dichlorophenyl)propanamide C9H9Cl2NO 709-98-8 218.08
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Then, PCA was performed on the significant molecular 
descriptors in the MLS analysis to extract principal com-
ponents of variables and eliminate multicollinearity. In this 
work, variance inflation factors (VIF) are defined as Eq. (3), 
which are adopted to evaluate the collinearity of descriptors 
in the model. If VIF > 10, the regression equation is unstable 
and recheck is necessary. MLR analysis was then used again 
on the extracted principal components of descriptors in the 
PCA, and a new regression equation was built and a QSAR 
model with eliminated multicollinearity was developed.

where R2 is fitting coefficient of the regression equation.
Lastly, double cross-validation (internal validation and 

external validation) was conducted on the developed QSAR 
models for reliable estimation of prediction errors. In this 
study, leave-one-out method was used for internal validation 
and external validation to evaluate the reliability and accu-
racy of the models, as described by Baumann and Baumann 
(Désirée and Knut 2014). Internal stability of the developed 
models was evaluated by leave-one-out cross-validation 
coefficient (Q2

LOO). The models’ performance in predictions 
was evaluated by external validation correlation coefficient 
(Q2

EXT). Q2
LOO and Q2

EXT are defined as Eq. (4–5).

(3)VIF =
1

1 − R2

where PRESS is prediction error sum of squares, TSS is sum 
of squares of deviations of the experimental values, ŷi is the 
predicted value of the test set, yi is the experimental value 
of the test set,y

EXT
 is the mean of the experimental values 

of the test set.
According to the procedures described above, an effective 

and accurate QSAR model for biotoxicity prediction was 
finally established. The biological toxicity (Y) is described 
with the best combination of the most relevant descriptors 
used as independent variables (x1, x2…xn), as follows (6):

where a0 is the intercept and a1, a2…an, are the regression 
coefficients.

Biotoxicity Prediction Accuracy Verification 
of the Developed QASR Models

The predicted biotoxicities by QASR models and the meas-
ured biotoxicities of four amide herbicides (benzadox, 

(4)Q2

LOO
= 1 −

PRESS

TSS

(5)Q2

EXT
= 1

∑n
EXT

i=1

�

ŷi − yi
�2

∑n
EXT

i=1

�
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(6)Y = a
1
x
1
+ a

2
x
2
+ … + anxn + a

0

Table 2   Symbols and definition 
of the molecular descriptors

No Type of descriptors Descriptors Definition

1 Hydrophobic descriptors LogKow Water partition coefficient of octanol
1 Electronic descriptors EHOMO Energy of the highest unoccupied molecular orbital
2 ELUMO Energy of the lowest unoccupied molecular orbital
3 qN− Charge of the most negative nitrogen atom
4 qH+ Highest positive charge of hydrogen
5 q− Negative charge of the most negative atom
6 μ Dipole moment
7 αxx XX of Exact polarizability
8 αyy YY of Exact polarizability
9 αzz ZZ of Exact polarizability
10 Qxx XX of quadrupole moment
11 Qyy YY of quadrupole moment
12 Qzz ZZ of quadrupole moment
1 Thermodynamic descriptors Eth Sum of electronic and thermal Energies
2 Et Total energy
3 CV Heat at constant volume
4 Sθ Entropy
5 Gθ Sum of electronic and thermal Free Energies
6 Hθ Sum of electronic and thermal Enthalpies
7 ZPVE Zero-point vibrational energy
1 Steric descriptors Vm Van der Waals volume of molecule
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cyprazole, epronaz, and coconut diethanol amide CDEA), 
which were randomly selected, were compared to verify 
the accuracy of the developed QSAR models for biotoxic-
ity prediction. In order to predict the biotoxicities by the 
developed QSAR models, the four amide herbicides were 
performed to structural quantification as “Quantification of 
molecular structure”. Then, the biotoxicities of these amide 
herbicides were calculated and predicted based the quanti-
fied molecular structures and the quantitative relationship 
between molecular structure and biotoxicity in the devel-
oped models. In order to measure the biotoxicities of the 
four amide herbicides on algae, daphnia, fish, earthworm 
and avian species, biotoxicity tests were respectively carried 
out according to the following OECD guidelines: freshwa-
ter Alga and Cyanobacteria, Growth Inhibition Test (OECD 
201); Daphnia sp., Acute Immobilisation Test (OECD 202); 
Fish, Acute Toxicity Test (OECD 203); Earthworm, Acute 
Toxicity Tests (OECD 207); Acute Avian Oral Sequential 
Toxicity Test (OECD 223).

Results and Discussion

Toxicity of Amide Herbicides

As shown in Table 3, five groups (algae, daphnia, fish, 
earthworm, and avian species) of acute toxicity data 
were collected for QSAR model development. The tox-
icity for each organism species showed significant dif-
ferences among these amide herbicides. The EC50, LC50 
and LD50 concentrations of these amide herbicides were 
0.0036–149  mg/L, 0.058–500  mg/L, 0.36–170  mg/L, 
0.515–1000  mg/Kg and 180–30000  mg/Kg for algae, 
daphnia, fish, earthworm and avian species, respectively. 
The toxicity of amide herbicides followed in the order of 
algae > daphnia > earthworm > fish > avian species, as 
reflected by the change ranges and fold changes in EC50, 
LC50 and LD50 concentrations. The maximum and mini-
mum toxicity was separately observed in algae and avian 

Table 3   Toxicity of amide 
herbicides on algae, daphnia, 
fish, earthworm and avian 
species

*  The data in bold are the maximum and minimum values for each organism; The endpoints of the EC50, 
LC50 and LD50 are growth inhibition for algae, immobilization inhibition for daphnia, mortalities and 
abnormalities appearance/behavior for fish, earthworm and avian species

Amide herbicides Compound EC50 (mg/L) LC50 (mg/L) LC50 (mg/Kg soil) LD50 (mg/Kg 
body weight)

Algae Daphnia Fish Earthworm Avian species

Allidochlor 10 – 2 – 180
Amicarbazone – 40.8 120 – 1965
Beflubutamid 69.2 1.64 1.86 366 2000
Bromobutide – – 10.0 – –
Cafenstrole – 500 1.2 – 2000
Dimethenamid-P 0.019 3.2 2.6 294.4 1068
Diphenamid – 0.058 97 – 30,000
Fentrazamide 0.068 112 122 750 5000
Flucarbazone – – – 484 1061
Flupoxam 0.17 330 170 1000 5000
Huangcaoling 1.4 1.3 0.87 500 2000
Isoxaben 3.4 14.3 6.6 282 2250
Napropamide 28.18 19 11.2 122.02 2000
Napropamide-M – 118.5 76.1 – 4640
Naptalam 149 23 2.2 316 1578
Pethoxamid 2.8 5.6 4.7 173 6578
Propyzamide – – 0.45 – 11,136
Quinonamid – 98.2 98.0 1000 2000
Saflufenacil 82 5.6 19 200 5000
Tebutam 0.966 10 1.8 386.8 1536
Alachlor 0.0036 8.3 0.36 105.5 928
Acetochlor 57.1 23.5 3.9 140 2000
Metolachlor 9.29 13 0.9 19.23 10,000
Pretilachlor 0.2 2.4 0.44 0.515 4640
Butachlor 0.11 2.39 5.4 734 196
Propanil 94 95 87 147 –
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species, with a EC50 or LD50 concentration of 0.0036 mg/L 
and 30,000 mg/kg. It can be seen from these results that a 
great diversity of amide herbicides with large differences 
in toxicity to a variety of organisms were included in the 
QSAR model development.

Structural Quantification Information of Amide 
Herbicides

The three-dimensional graphics of the involved amide 
herbicides are listed in Figure S1 of the supplementary 
material. In this study, molecular structure characteristics 
of amide herbicides were quantified and characterized by 
a series of molecular descriptors, including one hydropho-
bic parameter, twelve electronic parameters, seven ther-
modynamic parameters and one steric parameter. These 
molecular descriptors showed the structural information 
and properties of different aspects of amide herbicides. 
For example, EHOMO is an electronic descriptor directly 
related to the ionization potential, which characterizes the 
susceptibility of the molecule toward attack by electro-
philes (Sun et al. 2013). q is another electronic descriptor 
characterizing atomic charges, which are connected with 
the reactive centers activity of a chemical (Niu and Yu 
2004). Sθ is a thermodynamic descriptor that is a measure 
of resistance to thermal disturbance within a compound 
(Zhu et al. 2010). Cv and Hθ are thermodynamic descrip-
tors that reflect changes in heat and energy within a molec-
ular system (Xi et al. 2006).

In this study, 27 amide herbicides were collected from 
pervious references in PubChem and Pesticide Proper-
ties Database. As reflected by the molecular descriptors in 
Table S1–S3 of the supplementary material, the involved 
amide herbicides showed a large difference in hydrophobic, 
electronic, thermodynamic parameters and steric proper-
ties, indicating the molecular structure differs significantly 
among these amide herbicides compounds. For hydropho-
bic descriptor, LogKow varied from − 3.3600 to 6.5100, 
which indicated a great difference for the aqueous solu-
bility and hydrophobicity of these amide herbicides. The 
variation in electronical descriptors among these amide 
herbicides ranged from 1.3-fold to 26.8-fold for EHOMO 
and μ, respectively. For thermodynamic descriptors, Eth, 
Et, CV, Sθ, Gθ and Hθ were, respectively, − 3288.8321 to 
− 715.2634, 110.2390–268.5050, 44.2020–116.1480, 
115.5790–211.3120 and − 3288.8311 to − 715.2624. 
The steric descriptor Vm varied extensively, ranged from 
− 101.8673 to 3306.8850. Maximum and minimum values 
for these molecular descriptors occurred frequently in alli-
dochlor and saflufenacil. These results supported that amide 
herbicides with a wide variety of molecular properties were 
involved in this study.

QSAR Model Development and Accuracy in Toxicity 
Prediction

Table 4 provides the overall summary of the developed 
QSAR models for each set of organism groups. Based on the 
fitting coefficient (R2), root-mean-square error (RMSE) in 
the MLR and PCA analysis and the double cross-validation 
coefficients (Q2

LOO and Q2
EXT) in the model validation pro-

cedures, these QSAR models showed good robustness and 
prediction ability in the toxicity evaluation and prediction of 
amide herbicides. Less than 5% deviation between the model 
predicted biotoxicity values and the measured biotoxicity 
results was identified as accurate QSAR models. The QSAR 
model for earthworm was better than the other four models 
for algae, avian species, daphnia, and fish, as indicated by 
higher R2, Q2

LOO, Q2
EXT, and lower RMSE in QSAR model 

development.

QSAR Models for Aquatic Organisms

The developed QSAR models for three aquatic organisms 
(algae, daphnia and fish) are shown in Table 4. Accord-
ing to OECD Requirements and Guidelines, if R2 > 0.6, 
Q2

LOO > 0.6 and Q2
EXT > 0.5, the developed models are 

available, and if Q2
LOO > 0.9 and Q2

EXT > 0.9, the models 
are identified as excellent. Additionally, the closer R2 gets 
to 1, the better the fitting effects of the developed models. 
Our results supported that all the three models were stable 
(0.8869 < R2 < 0.9666) and robust (0.7201 < Q2

LOO < 0.8634) 
and showed good performance in the toxicity prediction of 
amide herbicides (0.5612 < Q2

EXT < 0.7676).
For predictive ability tests of the developed QSAR mod-

els, the model predicted EC50 or LC50 concentrations of the 
chosen four amide herbicides (benzadox, cyprazole, epronaz, 
and CDEA) on the three aquatic organisms (algae, daphnia 
and fish) was compared with the measured EC50 or LC50 
concentrations, as shown in Fig. 1. The results showed that 
the deviations of the model predicted EC50 or LC50 values 
and the measure EC50 or LC50 concentrations varied from 
0.7 to 3.5, from 1.0 to 4.9, and from 2.6 to 4.6, respectively, 
for algae, daphnia and fish, all of which were less than 5% 
deviation. It was supported that the measured EC50 or LC50 
concentrations and the model predicted EC50 or LC50 con-
centrations showed good agreements, indicating the accurate 
predictive ability of the developed QSAR models for aquatic 
organisms.

QSAR Models for Terrestrial Animals

As shown in Table 4, the QSAR models for two terres-
trial animals (earthworm and avian species) were devel-
oped, conforming to OECD Requirements and Guide-
lines (R2 > 0.6, Q2

LOO > 0.6 and Q2
EXT > 0.5) (Tropsha 
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2010). Comparatively, the QSAR model for earthworm 
showed more excellent performance, with high stabil-
ity (R2 = 0.9700), robustness (Q2

LOO = 0.9800), and 
external predictive ability (Q2

EXT = 0.9800). The QSAR 
model for avian species was stable (R2 = 0.8931), robust 
(Q2

LOO = 0.6821) and showed good predictive ability in 
toxicity (Q2

EXT = 0.6342).
For further accuracy validation in toxicity prediction of 

the developed models for terrestrial organisms, the model 
predicted LC50/LD50 concentrations and the measured LC50/
LD50 concentrations were compared, as indicated in Fig. 1. 
Our results indicated that the difference between the model 
predicted EC50 or LC50 values and the measured EC50 or 
LC50 results of all the chosen four amide herbicides (benza-
dox, cyprazole, epronaz, and CDEA) were lower than 5%. 
The deviations of the model predicted EC50 or LC50 values 
varied from 2.6 to 4.3 and from 1.9 to 4.6, respectively, for 
earthworm and avian species. The good consistency between 
the measured LC50/LD50 concentrations and model predicted 
LC50/LD50 concentrations supported the excellent predic-
tive potential of the developed two models for terrestrial 
organisms.

The Effects of the Molecular Descriptors 
on Biotoxicity

In this study, five validated mathematical QSAR models 
were established for the toxicity prediction of amide herbi-
cides. The molecular descriptors involved in these models 
can provide explanations and mechanisms of the toxicity 
caused by amide herbicides. It is possible to gain some 
insights into the interrelation of molecular structure and tox-
icity of amide herbicides through these molecular descrip-
tors, which could provide solid foundation for the toxicity 
prediction and risk assessment.

The Molecular Descriptors Involved in the Models

Our results showed that electrical, thermodynamic and steric 
descriptors were included in the developed QSAR models, 
which made statistically significant contributions to the 
toxicity of amide herbicides. From the QSAR models for 
aquatic organisms in Table 4, eleven molecular descriptors, 
including seven electrical parameters (axx, azz, Qxx, Qyy, qN−, 
EHOMO, and qH+), three thermodynamic parameters (Sθ, Cv, 
and Hθ), and one steric parameter (Vm), were associated with 
algal toxicity of amide herbicides. Eight molecular descrip-
tors, including six electrical parameters (μ, axx, ayy, azz, 
ELUMO and q−) and two thermodynamic parameters (ZPVE 
and Sθ), were related to daphnia toxicity of amide herbi-
cides. Six molecular descriptors, involving two electronic 
parameters (μ and azz), three thermodynamic parameters 
(Cv, Sθ, and ZPVE), and one steric parameter (Vm), were Ta
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Fig. 1   The predictive performance of the developed QSAR models 
as reflected by the measured and the model predicted EC50 or LC50 
values (mg/L or mg/Kg) of four amide herbicides on algae, daphnia,  

fish, earthworm and avian species. a Cyprazole, b benzadox, c 
epronaz, d CEDA, e the measured EC50 or LC50 values and the model 
predicted EC50 or LC50 values of four amide herbicides
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connected with fish toxicity of amide herbicides. However, 
no influence of hydrophobic parameter was found over the 
aquatic toxicity of amide herbicides. The thermodynamic 
descriptor Sθ and the electrical descriptor azz were observed 
to be important molecular parameters affecting the toxic-
ity of amide herbicides on all the three investigated aquatic 
organisms (daphnia, algae and fish), which respectively 
accounted for 11–37% and 5–16% of the weight in all the 
influencing molecular descriptors (Fig. 2).

There were differences in the molecular descriptors that 
associated to the toxicity of amide herbicides on differ-
ent terrestrial animals, compared with aquatic organisms 
(Table 4). From the molecular descriptors involved in the 
QSAR models for terrestrial animals, ten molecular descrip-
tors including seven electrical parameters (Qxx, Qyy, q−, 
qN−, ELUMO, ayy and azz), two thermodynamic parameters 
(ZPVE, Hθ) and one steric parameter (Vm) were observed 
to be associated with the earthworm toxicity of amide her-
bicides. Eight molecular descriptors, including five electri-
cal parameters (ELUMO, q−, qN−, Qxx and EHOMO) and three 
thermodynamic parameters (ZPVE, Sθ and Hθ), were rel-
evant to the toxicity of amide herbicides on avian species. 
Hθ, ZPVE, Qxx, qN−, q− and ELUMO were observed to be 
important molecular descriptors affecting both the toxicity 
of amide herbicides on both earthworm and avian species. 
As shown in Fig. 2, the thermodynamic descriptors Hθ and 
ZPVE accounted for 14–19% and 12% of the weight for 
all the influencing molecular descriptors. ZPVE was also 
observed to be an important factor influencing the aquatic 
toxicity of amide herbicides, which accounted for 24% and 
9% of the weight in all the influencing molecular descriptors, 
respectively, for daphnia and fish. Additionally, Sθ was found 
to affect the toxicity of terrestrial organisms (2% weight) as 
well as aquatic organisms.

The Underlying Mechanism of the Structure 
Descriptors Related to Biotoxicity

The molecular descriptors involved in the developed QSAR 
models demonstrate the mechanism underlying the toxic-
ity of amide herbicides. Previous studies have reported that 
physicochemical, electrical, thermodynamic and steric prop-
erties are important factors influencing toxicity for many 
chemicals (such as phenols, organic phosphorus, benzenes, 
chlorophenols, PCBs (Duchowicz et al. 2008; Zvinavashe 
et al. 2009), chlorophenols, organophosphorus pesticide and 
aldehyde (Hadanu et al. 2015). In our study, the obtained 
results also indicated that the associated descriptors with 
toxicity of amide herbicides were related to the electrical, 
thermodynamic and steric properties. Electrical and ther-
modynamic properties had a larger impact on the toxicity 
of amide herbicides than steric properties.

Our results supported that the toxicity of amide herbi-
cides was closely related to the molecular polarity of the 
herbicide molecules, as reflected by the sixteen electri-
cal, thermodynamic and steric descriptors involved in the 
QSAR models. The electrical molecular descriptors (axx, 
ayy, azz, qN−, q−, and μ) and the thermodynamic molecu-
lar descriptors (Cv and Sθ) characterize the polarizabil-
ity properties of molecule. axx, ayy, and azz indicate the 
weight of polarizability in x, y, and z directions (Yang 
et al. 2021). qN− represents the charge of the most elec-
tronegative atom in a compound (Qiu et al. 2013). q− is 
related to atomic charge that influencing the binding of 
chemicals to the active site as well as the ability to form 
hydrogen bonds with biological receptors and therefore 
potentially affecting their toxicity. μ characterizes the aver-
age charge separation in a molecular system (Walker et al. 
2002), which has negative contribution toward the toxicity 
as evidenced by the negative regression coefficient in the 
models of daphnia, fish and earthworm, which is consist-
ent with previous reports. Cv indicates the constant capac-
ity heat capacity of a chemical, which is directly propor-
tional to the molecular polarity and the toxicity (Zuriaga 
et al. 2019). Sθ is the standard entropy representing the 
disorder degree of molecular reaction system of a com-
pound which determines the difficulty of chemical reac-
tion and thus has an impact on biological toxicity. Gen-
erally, the higher the Sθ value, the greater the biological 
toxicity (Ding et al. 2009). Previous studies have reported 
that chemicals might be more toxic with the increase of 
molecular polarity (Zhang et al. 2011). The polarizability 
represents the ability of a compound molecule to deform 
under an applied electric field and affects the interaction 
of electrons between the compound and atoms or mol-
ecules at the reaction site (Su et al. 2010). The higher the 
polarizability of the compound molecule, the deformation 
of the compound molecule in the corresponding direction 
of three-dimensional space will be enhanced, resulting in 
the increase in molecular polarity and the enhancement of 
toxicity (Wang et al. 2005).

The obtained results also indicated that the toxicity of 
amide herbicides was affected by the gain and loss of elec-
trons. Energy of highest occupied molecular orbit (EHOMO) 
and Energy of lowest unoccupied molecular orbit (ELUMO) 
are electrical parameters describing energy of molecular 
orbital of chemicals, which respectively reflect the elec-
tron supply and loss capacity of a compound (Zhang et al. 
2019). EHOMO and ELUMO relate with the sensitivity of 
compound molecules to external electrophilic/nucleophilic 
attack (Jiang et al. 2015). In this study, amide herbicides 
with larger energy of molecular orbital (higher EHOMO 
and ELUMO) produced higher toxicity to environmental 
organisms, which was consistent with previous discover-
ies (Clare 2004). The greater the EHOMO values of one 
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chemical, the stronger its loss of electrons and reducing 
power and the greater its binding affinity for receptors and 
thus the lower its biological toxicities (Sun et al. 2013). 
The higher the ELUMO value of one chemical, the stronger 
its gain of electrons and electrophilic ability and thus the 
greater its biological toxicity (Walker et al. 2002).

The results also showed that the toxicity of amide her-
bicides was associated with the electrostatic inductions 
across the herbicides molecules and the organisms. The 
electronic molecular descriptors (Qxx, Qyy, and qH+) relate 

to electrostatic inductions. Qxx and Qyy characterizes the 
non-spherical symmetry of three-dimensional charge dis-
tribution, which higher Qxx and Qyy are beneficial to form 
electrostatic inductions and thus increase the possibility 
of biological toxicity (Mhin et al. 2002). Our results indi-
cated that Qxx and Qyy has a majority impact on the tox-
icity of amide herbicides on both aquatic and terrestrial 
organisms, which was consistent with previous reports 
(Zhang et al. 2008). qH+ represents the maximum charge 
of hydrogen atoms in a compound which could influence 

Fig. 2   The effects of molecular 
descriptors (involved in the 
developed QSAR models) on 
the toxicity of amide herbicides 
on algae, daphnia, fish, earth-
worm and avian species
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the electrostatic attraction and thus affect the toxicity of 
chemicals (Niu and Yu 2004). Our results supported that 
the increase of qH+ had a positive influence in decreasing 
the algal toxicity of amide herbicides.

Molecular volume was observed to be another important 
factor affecting the toxicity of amide herbicides in this study. 
Vm is Van der Waals volume that expresses the volume of 
per unit compound molecule, which may influence the bio-
logical toxicity by affecting other properties of a chemical, 
such as water solubility (Liu et al. 2015). It is reported that 
there is a toxicity threshold Vm in every compound system. 
The toxicity of a compound molecule enhances with the 
increase of its Vm but declines when exceeding the toxicity 
threshold Vm of this compound (Nohair et al. 2009). Our 
results showed that as Vm of amide herbicides increased, the 
EC50 value of amide herbicides decreased and the toxicity 
enhanced.

The water partition coefficient of octanol parameters 
(LogKow) characterizes the hydrophilic and hydrophobic 
properties of a chemical and is consistent with its lipid 
solubility (Wu et al. 2020). LogKow is an important phys-
icochemical parameter affecting the biological toxicity of 
a chemical, which has been mentioned in many chemicals 
such as polycyclic aromatic hydrocarbons (PAHs), nitroben-
zene, dioxin and phenols (Bellifa and Mekelleche 2016; Ha 
et al. 2019). However, in this study, no significant effect was 
observed of LogKow on toxicity of amide herbicides. Other 
influencing factors such as the actual effective concentration 
of amide herbicides on the target sites in the organisms may 
also affect the biotoxicity, which has been verified in previ-
ous study (Qiu et al. 2013).

Conclusions

The developed QSAR models showed excellent performance 
in predicting the biotoxicity of amide herbicides, supporting 
as an alternative approach to expensive laboratory toxicity 
tests. The QSAR relationship between electrical, thermody-
namic, steric properties and toxicity can be easily interpreted 
with respect to potential mechanistic explanations of their 
effects on biotoxicity of amide herbicides. Strong associa-
tion of electrical descriptors with the biotoxicity suggested 
electrical descriptors as the best predictive parameters for 
the biotoxicity prediction of amide herbicides.
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