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Abstract
Fish living in the João Dias creek (southern Brazil) have to deal with trace-metal contamination in the long-term basis, 
as this aquatic environment has been historically impacted by copper mining activities. In order to survive in this harsh 
environment, the local biota had to develop adaptations related to pollution tolerance. The aim of this study was to test if 
biochemical mechanisms related to osmoregulation were among these adaptations, using translocation experiments. Water 
ionic and trace-metal compositions were measured in a nonmetal impacted site (NMIS) and in a metal impacted site (MIS) 
of this creek. Also, whole-body metal accumulation, ion concentration and branchial enzyme activity (Na,K-ATPase and 
carbonic anhydrase) were evaluated in Hyphessobrycon luetkenii. In both NMIS and MIS, fish were collected and imme-
diately stored, kept caged or translocated from sites. The result shows that waterborne Cu was 3.4-fold higher at the MIS. 
Accordingly, animals that had contact with this site showed elevated whole-body Cu levels. Moreover, both translocated 
groups showed elevated Na,K-ATPase activity. Additionally, fish translocated from the NMIS to the MIS showed lower 
carbonic anhydrase activity. These findings indicate that H. luetkenii chronically or acutely exposed to naturally elevated 
waterborne Cu showed a rapid Cu bioaccumulation but was unable to readily excrete it. Moreover, classic Cu osmoregulatory 
toxicity related to Na,K-ATPase inhibition was not observed. Conversely, impacts in ammonia excretion related to carbonic 
anhydrase inhibition may have occurred.

Trace-metals are one of the most frequent pollutants released 
into natural areas (IPCC 2014; Zebral et al. 2019a). Some of 
these elements are essential components for life due to their 
redox ability, such as cooper ions  (Cu+2). Indeed, this metal 
is used to form cuproenzymes, molecules involved in sev-
eral biological functions acting as enzymes, transporters and 
signaling transducers (Wood et al. 2011; Zhao et al. 2014). 
Cu is an essential element for life but can be toxic at elevated 
concentrations (Zebral et al. 2020). In several freshwater ani-
mals, including fish, this metal has been reported to inhibit 

key enzymes such as Na/K-ATPase (Laurén and McDonald 
1987) and carbonic anhydrase (Zimmer et al. 2012) leading 
to disfunction in ionic regulation (Grosell et al. 2002; Gro-
sell 2011). Indeed, pollution is now considered as one of the 
greatest challenges that humans and other animals have to 
face (IPCC 2014; Zebral et al. 2019a).

The Na/K-ATPase is abundant in epithelial tissues, where 
this enzyme is used for the maintenance of intracellular ionic 
gradients used for absorption or excretion of compounds 
and for cellular homeostasis maintenance (McCormick 
et al. 2009). At the gills of freshwater fish, this enzyme can 
be majorly found in specialized cells responsible for ion 
uptake, the chloride cells (McCormick et al. 2009). Within 
this organ, Na/K-ATPase is responsible for the reduction of 
the intracellular concentration of  Na+, producing the gra-
dient used for the entry of this ion through sodium chan-
nels (McCormick et al. 2009). On the other hand, the car-
bonic anhydrase is a ubiquitous enzyme responsible for 
catalyzing the reversible hydration of  CO2 to form  H+ and 
 HCO3

− (Zebral et al. 2019a). This reaction is important to 
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many biochemical processes, such as acid–base regulation, 
ammonia excretion and ionic and osmotic regulation (Zebral 
et al. 2019a).

In order to adapt and survive in metal-contaminated 
environments, aquatic fauna has to develop physiological 
mechanisms associated with adjustments in metal uptake, 
storage and excretion, leading to reduced sensitivity to these 
elements (Depledge and Rainbow 1990; Whitehead et al. 
2011; Romero et al. 2012; Uren Webster et al. 2013; Ham-
ilton et al. 2016). Within this context, field experiments of 
reciprocal translocation are elegant strategies to elucidate 
such physiological mechanisms (Larsen et al. 2011). For 
example, the fish Fundulus heteroclitus locally adapted to 
different levels of chemical contamination showed divergent 
physiological patterns among populations. These patterns 
were related with the negative impacts caused by long-term 
exposure to contaminants such as polychlorinated biphenyls, 
dioxins, polycyclic aromatic hydrocarbons, trace-metals and 
pesticides (Whitehead et al. 2011).

The sub-basin of João Dias creek, a tributary of the 
Camaquã River located at Camaquã municipality (Caça-
pava do Sul city, southern Brazil), was directly impacted 
by Cu mining activity for more than a century (1870–1996) 
(Laybauer 1998) and even though the extraction has been 
discontinued for almost two decades, elevated levels of Cu 
can still be found in water and sediments from this area 
(Laybauer 1998; Ronchi and Lobato 2000; Bidone et al. 
2001; Abril et al. 2018). To give an example, a recent study 
reported Cu waterborne levels corresponding to 8.5 µg/L 
in the region. Interestingly, the same study also showed 
that a non-impacted portion of this creek, located upstream 
the mining area, had Cu concentrations corresponding to 
4.3 µg/L (Abril et al. 2018). In face of the presented facts, 
it is clear that the João Dias creek is an interesting envi-
ronment to perform studies related to chronic exposure of 
aquatic organisms to naturally elevated levels of Cu. This 
kind of study is majorly needed, taking into consideration 
that most of the studies on the toxic effects of this metal were 
conducted under laboratory conditions and throughout acute 
exposure periods (Zebral et al. 2018). As a result of that, our 
knowledge related to Cu chronic effects on biochemical and 
physiological parameters is still limited, especially in wild 
fish populations (Whitehead et al. 2011; Uren Webster et al. 
2013; Hamilton et al. 2016; Abril et al. 2018; Zebral et al. 
2018; Anni et al. 2019a; Anni et al. 2019b; Zebral et al. 
2019b; Zebral et al. 2021).

Despite the chronic contamination of João Dias creek, 
36 fish species can still be found at the region, represent-
ing around 50% of all fish species reported for Camaquã 
river basin (Konrad and Paloski 2000). Among them, the 
lambari Hyphessobrycon luetkenii is a small fish that can be 
found at Rio Grande do Sul water basins (southern Brazil), 
at coastal rivers of Rio de Janeiro (southeastern Brazil), and 

at Paraguay and Uruguay rivers. At Rio Grande do Sul, this 
species can be found at the Patos Lagoon system and at the 
drainage basin of the following rivers: Camaquã, Uruguay, 
Negro, Paraguay, Tramandaí, Mampituba (Weiss 2013) and 
Guaíba (Konrad and Paloski 2000). H. luetkenii is known 
to form localized populations that usually swims in small 
groups of two to five individuals (Lima et al. 2008). These 
small (7 cm) animals are omnivorous freshwater fish, with 
a diet composed of small invertebrates, detritus and algae 
(Graciolli et al. 2003). Unfortunately, studies describing H. 
luetkenii life history are still scarce, but it is known that this 
fish species are fast growing animals, with parceled spawn-
ing of adhesive eggs. It is also interesting to comment that H. 
luetkenii is not migratory and completes its full reproductive 
cycle in localized environments (Giora et al. 2000; Lima 
et al. 2008).

The objective of this work was to search for physiological 
adaptations involved in osmoregulation in wild populations 
of the fish H. luetkenii living in the pollution portion of João 
Dias creek. Additionally, acute physiological adjustments 
were also evaluated, using translocation experiments. Physi-
ological parameters evaluated were whole-body metal (Cd, 
Cu, Fe, Mn, Pb and Zn) and major ions (Mg, Na, K and 
Ca) concentrations and the activity of branchial enzymes 
involved in ionic regulation (Na/K-ATPase and carbonic 
anhydrase). To achieve our goal, fish living in a nonmetal 
impacted site (NMIS) and in a metal impacted site (MIS) of 
João Dias creek were collected for analysis. Also, fish col-
lected at the NMIS were kept caged at the collection site or 
translocated and kept caged at the MIS and vice versa. Fol-
lowing 96 h of experiment, fish were collected for analysis. 
Our hypothesis was that animals chronically exposed to Cu 
contamination would show elevated Cu bioaccumulation 
and unimpacted levels of branchial enzymes and major ions, 
suggesting the presence of physiological adjustments at the 
populational level. On the other hand, it was hypothesized 
that animals translocated from the NMIS to the MIS would 
show clear signs of physiological impacts, such as inhibition 
in Na/K-ATPase and carbonic anhydrase and reduced levels 
of major ions.

Materials and Methods

Fish Translocation Experiment

The present work was performed in two areas of the João 
Dias creek located at Minas do Camaquã, southern Brazil. 
These areas were composed by a NMIS located at 7 km 
upstream the place where the mining activity occurred 
(30°53′47''S–53°25′28''W) and a historically MIS located 
within the mining area (30°52′55''S–53°27′11''W). An aer-
ial photograph showing the collection points can be found 
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in Fig. 1, and photos of each site can be found in the sup-
plementary material (Fig. 1a). At each site, 30 individu-
als divided among male and female fish (mean total body 
length = 4.32 cm) were caught using a fish trap and were 
divided into six groups. The first two groups were composed 
by animals collected at each site and immediately anesthe-
tized with benzocaine, quickly rinsed in MilliQ water, eutha-
nized by spine cord sectioning and stored in liquid nitrogen 
for the analysis of whole-body metal concentrations. Addi-
tionally, another group of animals were collected and eutha-
nized as stated above but had their gills dissected and stored 
in liquid nitrogen for enzyme activity determination (Na/K-
ATPase and carbonic anhydrase). The animals immediately 
collected at the NMIS and at the MIS were designated as 
control (C; n = 5 for Cu body burden and enzyme analysis) 
and polluted (P; n = 5 for Cu body burden and enzyme analy-
sis), respectively.

The other experimental groups were composed by ani-
mals collected and kept caged at the NMIS (CCC; n = 5 
for Cu body burden and enzyme analysis), collected and 
kept caged at the MIS (CCP; n = 5 for Cu body burden 
and enzyme analysis), collected at the NMIS and translo-
cated to MIS (CP; n = 5 for Cu body burden and enzyme 
analysis) and animals collected at the MIS and translocated 
to the NMIS (PC; n = 5 for Cu body burden and enzyme 
analysis). Fish translocation was performed immediately fol-
lowing collection and animals were transported in buckets 
filled with local water continuously aerated with mobile air 
pumps. At the final destination, animals were acclimated to 
the new conditions by the addition of small volumes of water 
from the translocation experiment to the bucket. Following 
an hour, animals were transferred to the containment cages. 
Fish from CCC, CP, CCP and PC groups were kept caged for 

96 h. This is the most traditional experimental period used 
in acute ecotoxicological experiments, therefore, using it 
allows direct comparisons with previous and future studies. 
Additionally, longer experimental periods could implicate 
in the intensification of possible cofounding factors related 
with caging the animals, such as different patterns of food 
availability and less water renew inside some of the cages 
resulting from mesh clogging with algae and detritus.

Following this period, animals were anesthetized with 
benzocaine, quickly rinsed in MilliQ water, humanely 
euthanized by spine cord sectioning and stored in liquid  N2 
for determination of whole-body metal concentrations and 
enzyme analysis. Cages had a total volume of 5L and were 
surrounded by holes blocked with a fine mesh, in order to 
allow water flow. Cages were anchored with local stones 
using ropes. Considering the total volume of the cages and 
fish mean weight, it is possible to state that animals were 
stocked at < 0.1 g fish/L. It is important to state that no fish 
mortality was observed, in any of the experimental groups.

Environmental Parameters

Water quality parameters, including dissolved  O2, pH and 
temperature, were daily monitored during fish collection 
and during translocation experiments. Also, water samples 
were collected, acidified (final concentration: 1%) with 65% 
 HNO3 (Suprapur) and kept at 4 °C until analysis. In these 
water samples, we determined the levels of total carbon con-
centrations (Total Organic Carbon analyzer; 5050A, Shi-
madzu, Japan), Mg, Na, K, Ca (flame photometer, model 
B262, Micronal, São Paulo, Brazil), Fe, Cd, Cu, Pb, Mn 
and Zn (HR-CS GF AAS; model Control-A 700; Analy-
tik Jena, Germany). Standard curves were made by serially 

Fig. 1  Aerial photograph 
showing the sites where the 
freshwater fish Hyphessobrycon 
luetkenii was collected. The 
blue circle is indicating the pre-
cise location of the unimpacted 
site (NMIS) and the red circle 
is indicating the precise loca-
tion of the metal impacted site 
(MIS). This aerial photograph 
was obtained using the software 
Google Earth Pro 7.3
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dilutions of 1000 mg/L certified stock solutions (Multi-Ele-
ment Standards  Certipur®, Merck, Darmstadt, Germany). 
Methodological procedures were performed accordingly 
to Marques et al. (2019), additionally, LOD and LOQ are 
shown in supplementary material (Table A1). Metal recov-
ery ranged from 92.6 to 102.8%. All reagents were of high-
purity grade. Water used for preparing reagents and refer-
ence solutions was deionized and further purified using a 
Milli-Q system (Millipore Corp., Bedford, USA).

Whole‑Body Metal Concentration

Whole-body metal determination was performed accord-
ing to Marques et al. (2019) with minor modifications. Fish 
were weighed before and after drying in an oven at 60 °C 
and were completely digested with  HNO3 (65%; Suprapur, 
Merck, Darmstadt, Germany). Mg, Na, K and Ca concentra-
tions were measured using a flame photometer (São Paulo, 
Brazil, Micronal, model B262). Metal (Fe, Cu, Cd, Zn, Pb 
and Mn) concentrations were determined using a high-
resolution atomic absorption spectrometer coupled with a 
graphite furnace (HR-CS GF AAS) (Germany, Analytik 
Jena, model Control-A 700). Spiked matrices and regu-
lar blank analysis were used as quality control and quality 
assurance for metal quantifications. Standard curves were 
made using standard solutions (Multi-Element Standards 
 Certipur®, Merck, Darmstadt, Germany). Additionally, cer-
tified reference material (Fish protein DORM-3, National 
Research Council Canada, Ottawa, Canada) was analyzed 
to confirm extraction efficiency. Standard reference material 
was prepared as described for tissue samples and were used 
for the calculation of metal recovery. This evaluation was 
performed similarly to Sahuquillo et al. (1999) and Qu et al. 
(2014a, 2014b). Metal recovery ranged from 91.1 to 106.4%. 
All procedures were performed in triplicate.

Enzyme Activities

Na/K-ATPase activity was measured in gill homogenates 
following procedures described by Bianchini and Wood 
(2003), with modifications. Tissue samples were homog-
enized in 0.5 mL of ice-cold buffer solution containing 
150 mM sucrose, 50 mM imidazole, 10 mM ethylenedi-
aminetetraacetic acid (EDTA) and 11.5 mM sodium deox-
ycholate. Homogenates were centrifuged at 4 °C, for 30 s, 
at 5,000 g and the supernatant was used as enzyme source. 
Two reaction mixtures were assayed: salt solution A 
(10.5 mM  MgCl2, 100 mM NaCl, 30 mM KCl and 50 mM 
imidazole, pH 7.5) and salt solution B (50 mM imidazole, 
10.5 mM  MgCl2, 130 mM NaCl and 1 mM ouabain; pH 
7.5). Reaction mixture A was made with 20 µL of sam-
ple homogenates and 200 µL of salt solution A. Reaction 
mixture B was made with 20 µL of sample homogenates 

and 200 µL of salt solution B. Enzyme assays were run in 
duplicate at 20 °C (room temperature) during 10 min. For 
reaction cessation, 0.2 mL of trichloroacetic acid (50%) 
was added to reaction medium. Inorganic phosphate (Pi) 
concentrations in the reaction solution were assessed by 
commercial reagent kit (Fosfato, Doles, Goiânia, Brazil), 
based on the colorimetric method described by Fiske and 
Subbarow (1925).

The enzyme activity corresponded to the difference in 
Pi concentration produced in the two reaction mixtures (A 
and B). The idea behind this method is that the activity 
of Na/K-ATPase is directly related with elevated levels 
of Pi only on reaction mixture A, because the ouabain 
present in reaction mixture B is a strong inhibitor of this 
enzyme. Therefore, reaction mixture A yields Pi back-
ground levels present in homogenates together with the Pi 
produced by Na/K-ATPase activity during the assay. On 
the other hand, reaction mixture B only yields Pi back-
ground levels already present in the homogenates. Analy-
ses were performed together with blank samples. Enzyme 
activity was normalized considering the protein content 
in sample homogenates, measured with Bradford reagent 
(Bio-Rad, Richmond, CA, USA). Total protein content 
was estimated using standard curves and blank analyses. 
Finally, enzyme activity was expressed as µmoles ADP/
mg protein/h. Absorbance for Na/K-ATPase and Bradford 
analysis was made using a microplate reader (ELx-800, 
Biotek, Winooski, VT, USA).

Carbonic anhydrase activity was determined in gill 
homogenates using the delta pH method (Henry 1991) with 
modifications. This method is based in pH decrease follow-
ing  H+ release upon the catalytic hydration of  CO2. Reac-
tion mixtures contained 15 mM sucrose, 225 mM mannitol, 
10 mM phosphate and 10 mM Tris-Base (pH 8.5). Sample 
homogenates (10 µl) were added to 2 ml of reaction solu-
tion. The enzyme substrate (260 µl of MiliQ-water saturated 
with  CO2) was then added to the mixture to start the reac-
tion. Reaction mixture pH was measured every 5 s for up to 
30 s. Blank reactions were prepared by replacing the sam-
ple homogenate with the buffer solution (10 µl) used for 
sample homogenization. Sample and blank measurements 
were taken simultaneously. The slope of pH values with time 
was estimated by a linear regression model. The catalyzed 
reaction ratio was considered as being the regression slope 
obtained for each individual sample homogenate. In turn, 
the non-catalyzed reaction ratio was considered as being the 
regression slope obtained in the blank measurement. Data 
were normalized based on the total protein content in sam-
ple homogenates, measured with Bradford reagent (Bio-Rad, 
Richmond, CA, USA). Enzyme activity was expressed as 
enzyme units/mg protein. Carbonic anhydrase analysis was 
made using a microplate reader (ELx-800, Biotek, Win-
ooski, VT, USA).
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Data Presentation and Statistical Analysis

Data are shown as mean ± standard error. Endpoints were 
analyzed using Analysis of Variance (One-way ANOVA) 
followed by the Tukey post hoc test. Parametric assumptions 
were graphically verified by residuals analysis (data normal-
ity) and the by the Cochran C test (homogeneity of vari-
ances). The significance level adopted was 95% (α = 0.05). 
Analyses were performed using the software Statistica 12.0.

Ethics and Legal Statements

All experimental and laboratorial procedures performed in 
the present work were previously approved by the university 
ethics committee (CEUA; protocol # 23,116.001365/2015-
44) and by the Brazilian Ministry of the Environment 
(MMA; research license # 44,769-1).

Results

Environmental Parameters

Water pH (MIS: 5.02 ± 0.02; NMIS: 5.08 ± 0.06) and 
dissolved oxygen (NMIS: 7.07 ± 0.10  mg  O2/L; MIS: 
6.95 ± 0.11 mg  O2/L) showed no significant differences 
when the two sites were compared. Additionally, no sig-
nificant differences were observed when major cations con-
centrations (Ca, K, Na and Mg) were compared (Table 1). 
However, a significant difference between sites in water tem-
perature (MIS: 26.8 ± 0.37 °C; NMIS: 24.6 ± 0.39 °C) was 
observed, as well as in the Cu concentration. As expected, 
the MIS showed higher concentrations (~ twofold) in com-
parison to the NMIS (Table 1). Additionally, no other sig-
nificant differences among trace-metals (Cd, Fe, Mn, Pb and 
Zn) were found when the MIS and the NMIS were compared 
(Table 1).

Whole‑Body Metal and Major Cation Content

As expected, whole-body Cu content in P, CCP, CP and PC 
fish was elevated in comparison to C and CCC fish (Fig. 2). 
Conversely, no differences were observed for H. luetkenii 
Cd, Pb (Fig. 2), Fe, Mn and Zn (Fig. 3) whole-body con-
centrations among all experimental groups. In accordance, 
no differences were observed for whole-body content of Na, 
K, Ca and Mg among the experimental groups evaluated 
(Fig. 4).

Na/K‑ATPase and Carbonic Anhydrase Activities

No significant differences were observed in Na, K- ATPase 
branchial activity among non-translocated fish (C, CCC, P 

and CCP). Conversely, this enzyme activity was significantly 
elevated in translocated animals (CP and PC) in comparison 
to non-translocated fish (Fig. 5). Despite that, no differences 
were observed between CP and PC fish (Fig. 5). In the case 
of carbonic anhydrase activity, the only group that showed 
significant differences was the CP fish, as an enzymatic inhi-
bition was observed in these animals in comparison to all 
other groups (Fig. 6).

Discussion

In agreement with the elevated levels of Cu found in the 
water samples, the whole-body content of this metal was 
significantly higher in P fish in comparison to C animals, 
indicating that chronic exposure to Cu under natural condi-
tions resulted in the bioaccumulation of this metal. Interest-
ingly, the same results have been reported by similar studies 
(Pyle et al. 2005; Couture and Pyle 2008; Uren Webster et al. 
2013). Additionally, a significant increase in whole-body Cu 
burden was also observed in CP fish, indicating that H. luet-
kenii, like other freshwater fishes (Grosell and Wood 2002; 
Grosell 2011; Eyckmans et al. 2012, Zebral et al. 2019c), can 
readily accumulate Cu following an acute exposure (96 h) 
to increased levels of this metal. Indeed, Cu tissue uptake 
and accumulation by fish is known to be a fast (Grosell and 
Wood 2002; Grosell 2011; Eyckmans et al. 2012). Despite 
the aforementioned results, animals translocated from the 
MIS to the NMIS did not have any reduction in whole-body 
Cu concentration. This was an unexpected result, consid-
ering that one could have hypothesized that translocation 

Table 1  Carbon (TOC), major cations (Na, K and Ca) and trace-met-
als (Mg, Cd, Cu, Fe, Mn, Pb and Zn) concentrations in water samples 
from the metal impacted site (MIP) and the nonmetal impacted site 
(NMIS) at the João Dias creek (Caçapava do Sul city, Rio Grande do 
Sul state, southern Brazil)

Data are expressed as mean ± standard error (n = 10). Different let-
ters indicate significant difference among conditions (T-test; P < 0.05; 
TOC = Total Organic Carbon)

Parameter MIS NMIS

TOC (mg/L) 4.02 ± 0.69a 9.09 ± 0.51b

Na (mg/L) 3.50 ± 0.72a 4.83 ± 0.31a

K (mg/L) 0.76 ± 0.09a 0.78 ± 0.14a

Ca (mg/L) 0.63 ± 0.09a 0.46 ± 0.07a

Mg (mg/L) 0.78 ± 0.01a 0.73 ± 0.04a

Cd (µg/L) 5.28 ± 0.63a 6.25 ± 0.38a

Cu (µg/L) 8.50 ± 0.76a 4.32 ± 0.68b

Fe (mg/L) 2.73 ± 0.18a 2.45 ± 0.36a

Mn (µg/L) 28.00 ± 4.80a 28.38 ± .3.31a

Pb (µg/L) 18.42 ± 1.91a 20.66 ± 1.57a

Zn (µg/L) 0.94 ± 0.  13a 1.17 ± 0.03a
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from a contaminated environment to a non-contaminated 
area would result in a clearance process. One possible expla-
nation to this apparent contradiction is that 96 h was not 
enough time for an efficient metal depuration. Further sup-
porting this idea, Subathra and Karuppasamy (2008) showed 
that the fish Mystus vittatus took 21 and 39 days to depurate 
the Cu bioaccumulated in gills and kidney, respectively, fol-
lowing exposure to 5.98 mg/L for 28 days. It was also possi-
ble to observe that none of the other trace-metals assessed in 
the water or in H. luetkenii whole-body were elevated in the 
MIS in comparison to the NMIS. This is a strong evidence 

showing that the water bodies impacted by the mining activ-
ity at Minas do Camaquã District are contaminated with Cu 
specifically, and not with trace-metals in general.

Moving forward, it is well known that the main mecha-
nism involved in Cu toxicity in freshwater fish is associated 
with inhibition of brachial Na/K-ATPase activity, resulting 
in ionic and osmoregulatory disturbances (Grosell and Wood 
2002; Grosell 2011). With that in mind, we expected that 
the elevated levels of whole-body Cu observed in P, CP, 
PC and CCP would be accompanied by reductions in the 
tissue content of major cations (Na, K and Ca) due to Na/K-
ATPase disruption. However, no significant differences were 
observed. For the case of P fish, this lack of disturbances 

Fig. 2  Whole-body Cd, Pb and Cu concentrations in the freshwater 
fish H. luetkenii collected at a nonmetal impacted site (C), kept caged 
at this site (CCC) or translocated to the metal impacted site (CP) for 
96  h. Also, fish were collected at the metal impacted site (P), kept 
caged in this site (CCP) or translocated to the nonmetal impacted 

site (PC fish) for 96 h. Data are expressed as mean ± standard error 
(n = 5). Different letters indicate significant differences among fish 
groups for the same parameter analyzed (ANOVA followed by Tukey 
test; P < 0.05)

Fig. 3  Whole-body Fe, Mn and Zn concentrations in the freshwater 
fish H. luetkenii collected at a nonmetal impacted site (C), kept caged 
at this site (CCC) or translocated to the metal impacted site (CP) for 
96  h. Also, fish were collected at the metal impacted site (P), kept 
caged in this site (CCP) or translocated to the nonmetal impacted 
site (PC fish) for 96 h. Data are expressed as mean ± standard error 
(n = 5). Different letters indicate significant differences among fish 
groups for the same parameter analyzed (ANOVA followed by Tukey 
test; P < 0.05)

Fig. 4  Whole-body major cations (Na, K, Ca and Mg) content in 
the freshwater fish H. luetkenii collected at the nonmetal impacted 
site (C), kept caged at this site (CCC) or translocated to the metal 
impacted site (CP) for 96  h. Also, fish were collected at the metal 
impacted site (P), kept caged in this site (CCP) or translocated to 
the nonmetal impacted site (PC fish) for 96 h. Data are expressed as 
mean ± standard error (n = 5). Different letters indicate significant dif-
ferences among fish groups for the same parameter analyzed
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was also paralleled by unaltered branchial Na/K-ATPase 
and carbonic anhydrase activities. Altogether, these find-
ings indicate that H. luetkenii wild individuals chronically 
exposed to Cu were able to deal with the excess of this metal 
in its tissues, showing no disturbances in ionic content. This 
result may indicate that the H. luetkenii population living 
in the MIS has developed local adaptations to deal with 
Cu contamination. These adaptations could be related with 
the production of Na/K-ATPase and carbonic anhydrase 

isoforms that are less susceptible to Cu. Interestingly, as 
it can be observed in Fig. 1 (supplementary material), the 
populations of H. luetkenii living at the MIS and at the 
NMIS are separated by a dam catchment. This may result in 
reproductive isolation among them. Additionally, H. luet-
kenii are fast growing animals (Lima et al. 2008). Together, 
these two facts support the idea that animals living at the 
MIS have developed local adaptations at the populational 
level. Although extremely interesting, this point is still very 
hypothetical and further studies comparing genetic varia-
tions among populations living at the NMIS and in the MIS 
are still needed. There is no doubt that this is a prolific line 
of work and our future studies will be further assessing this 
matter.

For the case of Na/K-ATPase in translocated animals, an 
unexpected result was observed as both CP and PC fish had 
augmented levels of this enzyme in the gills. Despite that, 
one can hypothesize that the physiological basis for each of 
these outcomes are likely to be different. For example, Abril 
et al. (2018) showed in a companion paper that PC fish had 
a reduction in brachial Cu content, explaining the elevation 
in branchial Na/K-ATPase activity seen in the present study, 
as a reduction in the inhibition effect induced by this metal 
would also be expected. On the other hand, the induction of 
this enzyme in the gills of CP fish may indicate the activa-
tion of compensatory mechanisms to avoid osmoregulatory 
disturbances associated with higher Cu accumulation (Gro-
sell 2011), such as the diffusive loss of Na due to oxidative 
damage to the gills (Craig et al. 2007; Wang et al. 2015; 
Ransberry et al. 2016). In this case, the suggested compen-
satory mechanisms could be related with the intensification 
of the ionic gradient produced by Na/K-ATPase in the gills, 
the force that drives Na absorption in this tissue (McCor-
mick et al. 2009), counteracting any osmotic disturbances 
induced by Cu toxicity. It is interesting to comment that this 
was an unexpected result, considering that in most studies 
this enzyme was unaffected (Zimmer et al. 2012; Moyson 
et al. 2016; Canli et al. 2016) or was inhibited (Grosell and 
Wood 2002; Grosell 2011; Chowdhury et al. 2016) by Cu. 
It is important to remember that experimental animals were 
exposed to naturally elevated Cu levels together with a com-
plex mixture of other environmental cues. In this context, 
the slightly elevated water temperature observed at the MIS 
could also help to understand this unexpected elevation 
in Na/K-ATPase of CP fish, as this parameter is known to 
impact this enzyme activity (Schwarzbaum et al. 1992; Yang 
et al. 2018; Monroe et al. 2019; Vargas-Chacoff et al. 2020). 
Therefore, the results of the present study may indicate that 
under a real-case scenario, the physiological mechanisms 
related to Cu-induced osmoregulatory toxicity may actually 
be more complex than previously expected. Certainly, this 
is an exciting field to be further assessed in future studies.

Fig. 5  Gill Na,K-ATPase activity in the freshwater fish H. luetkenii 
collected at the nonmetal impacted site (C), kept caged at this site 
(CCC) or translocated to the metal impacted site (CP) for 96 h. Also, 
fish were collected at the metal impacted site (P), kept caged in this 
site (CCP) or translocated to the nonmetal impacted site (PC fish) for 
96  h. Data are expressed as mean ± standard error (n = 5). Different 
letters indicate significant differences among fish groups for the same 
parameter analyzed

Fig. 6  Gill carbonic anhydrase activity in the freshwater fish H. luet-
kenii collected at the nonmetal impacted site (C), kept caged at this 
site (CCC) or translocated to the metal impacted site (CP) for 96 h. 
Also, fish were collected at the metal impacted site (P), kept caged in 
this site (CCP) or translocated to the nonmetal impacted site (PC fish) 
for 96 h. Data are expressed as mean ± standard error (n = 5). Differ-
ent letters indicate significant differences among fish groups for the 
same parameter analyzed
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For the case of carbonic anhydrase, a significant reduction 
in this enzyme activity was observed in the gills of CP fish. 
In fact, Cu is known to be potent inhibitor of this enzyme 
(Grosell 2011; Zebral et al. 2019a). The cytosolic form of 
carbonic anhydrase is responsible for the intracellular supply 
of  H+ to H-ATPase and Na/H-exchanger through hydration 
of intracellular  CO2, facilitating Na uptake (Weihrauch et al. 
2009; Wright and Wood 2009). Therefore, the inhibition of 
branchial carbonic anhydrase activity observed in CP fish 
could have led to disruption in  Na+ balance, but the whole-
body content of this cation was unaltered in these animals. 
This apparent contradiction can be explained by the fact 
that, as discussed above, CP animals showed an elevation in 
Na/K-ATPase branchial activity, counteracting any possible 
ionoregulatory disturbances. On the other hand, the apical 
membrane-bound form of carbonic anhydrase is responsible, 
together with H-ATPase and Na/H-exchanger, to induce the 
acidification of the apical gill boundary layer, allowing the 
unprotonated form of ammonia to be excreted by facilitated 
diffusion (Weihrauch et al. 2009; Wright and Wood 2009), 
therefore, it is unwise to neglect a hypothetical impact in the 
excretion of nitrogenous compounds in CP animals. As a 
matter of fact, many studies have already demonstrated that 
Cu-induced toxicity and mortality in fish may be attributed 
to an inhibition in ammonia excretion thought the gills (Gro-
sell et al. 2003, Grosell et al., 2004a; Blanchard and Gro-
sell 2006; Zimmer et al. 2012; Lim et al. 2015; Sinha et al. 
2016), although the mechanism related to this toxic effect 
is not yet clear (Zimmer et al. 2012). In this regard, there is 
a strong hypothesis attributing this Cu-dependent disrup-
tion in ammonia clearance to an inhibition in the activity of 
carbonic anhydrase in fish gills (Grosell, 2011). The results 
obtained in the present study strengthens this hypothesis. 
Actually, as far as we know, this is the first evidence of a 
Cu-dependent inhibition in fish carbonic anhydrase activity 
in a field study. It is worth noting that any of the biologi-
cal parameters assessed in the present study were different 
among C and CCC fish. Also, no significant differences were 
observed between P and CCP fish. These findings indicate 
that the significant effects observed in CP and PC fish can be 
attributed to animals’ translocation and not to the fact that 
fish were kept caged during the experimental period (96 h).

Conclusions

In conclusion, H. luetkenii chronically or acutely exposed 
to naturally elevated levels of Cu rapidly accumulated this 
metal, but was unable to readily excrete it when transferred 
to an uncontaminated environment. Moreover, classical Cu 
toxic effects related to ionic and osmotic disturbances, such 
as inhibition in Na/K-ATPase activity and reduced levels 
of major ions, were not observed. Despite that, a reduction 

in carbonic anhydrase activity was seen, indicating that 
the excretion of nitrogenous compounds may have been 
compromised. Finally, it is concluded that populations of 
H. luetkenii living in an environment chronically contami-
nated by Cu-developed biochemical mechanisms to sustain 
osmoregulation even in the face of elevated accumulation 
of this metal.
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