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Abstract
Imidacloprid (IMI) is an insecticide used worldwide, a neonicotinoid that could cause toxicity in non-target organisms. 
Zebrafish (Danio rerio) is a model organism widely used in different fields of research such as behavioral studies, biochemi-
cal parameters as well as neurotoxicity research. Here, we investigate whether the exposure to three concentrations (0.15, 
15, and 45 μg/L) of IMI for 96 h alters responses in zebrafish. Oxidative stress parameters and acetylcholinesterase activity 
(AChE) as well as the behavioral responses of locomotion were measured. IMI exposure decreased distance traveled in fish 
exposed to the 45 μg/L. In the exploratory activity, time spent and transitions to the top area of the water column decreased 
in fish exposed to all concentrations of IMI. In addition, exposures to 45 and 15 μg/L of IMI decreased episodes of erratic 
movement in the zebrafish. Exposures to IMI at a concentration of 45 μg/L decreased the time spent in erratic movements 
and increased the time spent with no movement (i.e., “freezing”). Glutathione S-transferase (GST) activity was increased 
in the brain of zebrafish exposed for 96 h to concentrations of 0.15 and 45 μg/L. Brain AChE activity was reduced and the 
levels of carbonyl protein (CP) increased in brain of zebrafish at concentrations of 15 and 45 μg/L. Lipid peroxidation meas-
ured by TBARS and, also non-protein thiols (NPSH) did not show any variation in the brain of zebrafish exposed to IMI. 
Changes in the activity of cholinergic neurotransmitters in the brain tissues of zebrafish indicate IMI toxicity. Exposures 
of fish over 96 h to IMI at a nominal concentration of 45 μg/L caused more extensive sublethal responses in zebrafish, but 
this concentration is well above those expected in the aquatic environment. Studies are warranted to evaluate the effects on 
behavior and biomarker responses in fish exposed over longer periods to IMI at environmentally relevant concentrations.

Introduction

Neonicotinoid insecticides include one of the most important 
classes of synthetic pesticides used in agricultural practices, 
representing around 25% of total insecticide sales worldwide 
(Casida 2011; Bass et al. 2015). These pesticides are used to 
protect crops from insects with piercing-sucking mouthparts, 
and are also used as seed treatments to reduce damage from 
invertebrates in the soil (Godfray et al. 2014; Wintermantel 
et al. 2020). The extensive use of neonicotinoid pesticides 
in agriculture is a global problem, since it can cause impacts 
in non-target organisms like fish and birds (Blacquière et al. 
2012; Husak et al. 2014; Simon-Delso et al. 2015; Soydan 
et al. 2017). IMI (1-(6-chloro-3-pyridylmethyl)-N-nitroi-
madazolidin-2-ylide neamine) is a common neonicotinoid 
utilized for controlling sucking insects in farming, as well 
as leafhopper, aphids, thrips on rice, vegetables, and other 
crops (Tomizawa and Casida 2005; Liu et al. 2005). Fur-
thermore, IMI is a potential surface-water contaminant since 
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IMI and its transformation products enter water bodies in 
runoff, spray drift or accidental spills (Jemec et al. 2007; 
Jeschke et al. 2011). In insects, neonicotinoids, including 
IMI acts as an agonist of the nicotinic acetylcholine receptor 
(nAChR). The mode of action also includes the opening of 
cation channels as, such as voltage-gated calcium channels. 
The opening of channels induced by binding of neonicoti-
noids to nAChRs leads to insecticidal activity. The neonico-
tinoids action in non-target organisms may frequently impair 
the central nervous system (CNS) homeostasis (Tomizawa 
and Casida 2011; Simon-Delso et al. 2015). A range of bio-
markers have been used in toxicological studies to monitor 
for the negative effects of pesticides on non-target aquatic 
organisms as fish. The measurement of Acetylcholinester-
ase (AChE) activity is an example of a neuronal marker. 
AChE is an enzyme responsible for the hydrolysis of the 
acetylcholine neurotransmitter (ACh) in cholinergic syn-
apses. However, inhibition of this enzyme may be linked to 
the mechanisms of action of pesticides (Topal et al. 2017; 
Cheghib et al. 2020). Furthermore, oxidative stress param-
eters are also used as biomarkers of chemical stress, which is 
considered as one of the key mechanisms involved in adverse 
effects caused by pesticides (Pearson and Patel 2016; Wang 
et al. 2018; Vieira et al. 2018). Prolonged oxidative dam-
age is detrimental to biological systems and can contribute 
to lipid, DNA, protein damage and even cell death. When 
animals are exposed over the long-term, these sublethal 
changes can trigger pathophysiological responses, includ-
ing respiratory, renal, endocrine, and reproductive disorders 
(Jabłońska-Trypuć 2017; Cheghib et al. 2020). Tišler et al. 
(2009) reported that the 96 h-LC50 of Danio rerio exposed 
to IMI was 241 mg/L, which is several orders of magni-
tude above the Canadian water quality guideline for IMI 
of 0.23 μg/L. However, fish in the natural environment are 
potentially chronically exposed to lower concentrations of 
IMI and its transformation products (Anderson et al. 2015). 
Therefore, it is important to understand the sublethal effects 
on fish species exposed to environmentally relevant con-
centrations of IMI. Concerning the model test organism in 
the present study, the zebrafish is a widely used fish spe-
cies for studies in genetics, pharmacology, and toxicological 
research, with a genome that has about 70% similarity with 
the human genome (Howe et al., 2013; Fontana et al., 2018) 
and an evolutionarily conserved neurotransmitter system 
(Gonçalves et al., 2020a).

For instance, exposures of zebrafish to the herbicide, 
glyphosate increased the distance traveled and mean swim-
ming speed, and caused impairment in memory (Bridi et al., 
2017). In addition, propiconazole decreased the number of 
crossings, entries, and time spent in the top part of the water 
column, and so the time spent in the bottom area of the tank 
increased (Valadas et al. 2019). Although the behavioral rep-
ertoire in zebrafish has been described (Kalueff et al., 2013), 

it is not clear how neurobehavioral responses are associated 
with toxicological mechanisms. Therefore, the hypothesis 
of the present study is that exposures of zebrafish to IMI at 
environmentally relevant concentrations can disrupt behav-
ior and induce sublethal biochemical responses in brain tis-
sue, such as indicators of damage to lipids (thiobarbituric 
acid reactive substances) and proteins (carbonyl proteins) 
from oxidative stress, changes to the levels of antioxidant 
systems (i.e., glutathione-S- transferase and NPSH) and 
changes in the activity of cholinergic neurotransmitters (i.e., 
acetylcholinesterase).

Materials and Methods

Animals

Adult zebrafish (4–5 months-old) of shortfin wild-type (SF) 
were acquired from local commercial suppliers (Hobby 
Aquários, RS, Brazil). The proportion used for the experi-
ments was 50:50 (male: female). Fish were maintained 
with a maximum density of one fish per liter in a 20 L tank 
(27 ± 1 °C), and the animals were acclimatized for 15 days 
in 40 L aquariums before the experiments. The water was 
kept under mechanical, biological, and chemical filtration, 
and de-chlorinated with AquaSafe ™ (Tetra, VA, USA). Illu-
mination was provided by a photoperiod cycle, 14 h/10 h, 
light/dark, respectively, using fluorescent light tubes. Fish 
were fed three times daily with Alcon BASIC ™ flake fish 
food (Alcon, Brazil). This experiment fully adhered to the 
National Institute of Health Guide for Care and Use of Labo-
ratory and the protocols were approved by the Ethics Com-
mission on Animal Use of the Federal University of Santa 
Maria (Process Number: 1777051118).

Preparation and Administration of the IMI

IMI was purchased from Sigma-Aldrich (St. Louis, MO, 
USA) and the solution was prepared in ultrapure water. 
Exposure to IMI was performed at nominal concentrations 
of 0.15 μg/L, 15 μg/L, and 45 μg/L. The lowest nominal 
concentration was chosen to be within the same order of 
magnitude of the concentrations of IMI detected in a large 
Brazilian freshwater reservoir of 0.05 μg/L (Amaral et al., 
2020) and in a large river on the Brazil-Argentina border of 
0.07 μg/L (Gonçalves et al.2020b). We also considered the 
IMI concentrations previously used in toxicological studies 
with zebrafish by Crosby et al. (2015).

Water Analysis

Water samples were collected at the beginning, middle, 
and at the end of the experimental period in a CorningTM 
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polypropylene Falcon tube (50 mL). All measurements were 
made in triplicate for each group (control) and IMI exposure. 
The water samples were processed in the laboratory for pes-
ticide residue analysis (Laboratório de Análises de Resíduos 
de Pesticidas, LARP, UFSM). Solid-phase extraction (SPE) 
was applied for sample preparation prior to analysis by ultra-
high performance liquid chromatography tandem mass spec-
trometry (UHPLC-MS/MS) based on the analytical methods 
described by Donato et al. (2015). On the same day that the 
samples arrived at the laboratory, 40 mL volumes of the 
samples were adjusted to pH 2.5 and were pre-concentrated 
with  Oasis® HLB (200 mg; 3 mL) SPE cartridges purchased 
from Waters (Milford, MA, USA). After the samples had 
passed under vacuum through the cartridges, 3  mL of 
ultrapure water was added to wash the cartridge and 1 mL 
of acetonitrile with 1% (v/v) acetic acid was used to concen-
trate IMI for subsequent analysis elution. The final extract 
was diluted 1:1 (v/v) with ultrapure water and analyzed by 
UHPLC-MS/MS. The mobile phase (A) was water/methanol 
(98:2 v/v) and B (methanol), both containing 0.1% of formic 
acid (v/v) and ammonium formate 5 mmol/L. The chroma-
tographic gradient program started at 5% of solvent B (held 
0.25 min), then increased linearly to reach 100% solvent 
B in 7.75 min. The selected flow rate was 0.225 mL  min−1 
and the injection volume was 10 μL. The MS/MS was oper-
ated using electrospray ionization and IMI was quantified by 
selected reaction monitoring (SRM). The selected ion transi-
tions were 256 > 175 and 256 > 209 m/z for sition, used for 
quantification and identification, respectively. The MS/MS 
parameters for analyses were: source temperature, 150 °C; 
desolvation temperature, 500 °C; desolvation gas (nitrogen) 
flow, 400 L/h; cone gas (nitrogen) flow, 80 L/h; capillary 
voltage 2.0 kV and collision gas (argon) flow, 0.15 mL/min. 
The limit of quantification was 0.01 µg/L for IMI.

Experimental Design

After the acclimation period, each fish was weighed 
(0.3–0.4 g) in order to ensure that the density in the expo-
sure tanks was approximately 1,590 g of fish per liter 
of water. Twelve fish were transferred to 20 L tanks for 

exposure (in duplicate). Four groups were tested: control, 
IMI (0.15 μg/L), IMI (15 μg/L), and IMI (45 μg/L). Fish 
were exposed to IMI on the first day and remained in the 
tank for 96 h. After the exposure period, behavioral tests 
were performed, and then animals were anesthetized in 
the water at 4 °C and euthanized by the cervical section.

Behavioral Measurements

Novel Tank Test

After the period of exposure to the pesticide, zebrafish 
were placed individually in a novel apparatus (25  cm 
length × 15  cm height × 11  cm width) as illustrated in 
Fig. 1, divided, into horizontal portions (bottom and top). 
The tank was filled with 2 L of control tank water and the 
swimming behavior was recorded using a webcam con-
nected to a laptop at a rate of 30 frames/s, and subse-
quently, the behavioral parameters were analyzed using 
automated video tracking system ANY-maze™ (Stoelting 
CO, USA). We used the novel tank test to analyze both 
locomotor and exploratory activity of zebrafish in a novel 
environment, which may reflect habituation to novelty 
stress (Rosemberg et al. 2011). Locomotor activity was 
measured by distance traveled (m) and angular velocity 
(◦/s). Fear/anxiety-related behaviors were determined by 
quantifying the number and duration (s) of stoppage of 
locomotory activity (i.e., “freezing”). The number and 
duration (s) of erratic movements also were verified. Ver-
tical exploration was assessed by the following endpoints: 
the number of entries and time spent (s) in the bottom 
area, latency (s) to enter the top, the number of entries 
and time spent (s) in the top area. The habituation profile 
was evaluated by assessing the number of entries and time 
spent (s) on top during the 6-min trial (Gerlai et al. 2000). 
All behavioral experiments were performed between 09:00 
am and 4:00 pm, according to Paredes et al. (2019) that 
confirm the extensive daily activity of zebrafish. During 
the exposure protocol, the animals were handled with all 
precautions to minimize stress,

Fig. 1  Schematic representation 
of the experimental protocol 
(behavior measurements) after 
zebrafish exposure to Imidaclo-
prid (IMI) for 96 h (0.15, 15 and 
45 µg/L)
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Biochemical Parameters

Tissue Preparation

After the behavioral assays, fish were anesthetized in ice 
water at 4 °C and subsequently euthanized by decapitation 
and the brain was dissected on ice and transferred to micro-
tubes for storage at − 80 °C. For each independent sample, 
two brains (one of each duplicate) were homogenized in 300 
μL of Tris-HCl 50 mM buffer, pH 7.4. Samples were cen-
trifuged (3000 × g for 10 min, − 4 °C) and the supernatant 
was removed for further testing. All tests were performed in 
duplicate and the biomarker analyses were conducted using 
a SpectraMax 96-well plate reader with UV–Vis detector 
purchased from Molecular Devices (San Jose, CA, USA).

Oxidative Damage to Biomolecules

The lipid redox status of the samples was estimated by thio-
barbituric reactive substance (TBARS) production (Draper 
and Hadley 1990) adapted by Nunes et al. (2017). Briefly, 
150 μL of 10% trichloroacetic acid (TCA) was added in 75 
μL of the homogenized brain (70−100 μg protein) and sub-
sequently centrifuged at 10,000 × g for 10 min. After 100 
μL of the supernatant was added to 100 μL of 0.67% thio-
barbituric acid (TBA, 4,6-dihydroxypyrimidine-2-thiol) and 
heated for 30 min at 100 °C. The determination of TBARS 
levels was performed with malondialdehyde (MDA) reaction 
at 532 nm. Data were expressed as nmol MDA/milligram 
protein and MDA was utilized as standard.

Carbonyl protein (CP) levels were determined using the 
method described elsewhere (Parvez and Raissudin 2005) 
adapted by Müller et al. (2017). A 200 µL subsample of 
protein was added to 10 mM 2,4-dinitrophenylhydrazine 
(DNPH) in 2 N hydrochloric acid. In a dark environment, 
samples were incubated for 1 h. Later, 0.15 mL of dena-
turing buffer (150 mM sodium phosphate buffer, pH 6.8 
containing sodium dodecyl sulfate (SDS) 3.0%), 0.5 mL of 
heptane (99.5%) and 0.5 mL of ethanol (99.8%) were added 
and kept under continuous agitation for 30 s, and finally cen-
trifuged for 15 min at 3000 × g. After isolation, the protein 
was washed twice by resuspension in ethanol/ethyl acetate 
(1:1) and resuspended in 0.25 ml of denaturing buffer. Data 
were calculated using the molar extinction coefficient of 
22,000 M/cm. Total carbonylation was expressed as nmol 
carbonyl/milligram protein.

Antioxidant Parameters

Glutathione S-transferase (GST) activity was measured 
according to the literature (Habig et al. 1974), using 1 mM 

1-chloro-2,4-dinitrobenzene (CDNB) in ethanol, 10 mM 
reduced glutathione (GSH), 20  mM potassium phos-
phate buffer (pH 6.5) and 10 μL of tissue homogenates 
(40–60 μg protein). Enzyme activity was measured using 
a molar extinction coefficient of 9.6 mM/cm. GST activ-
ity was determined according to the amount of enzyme 
required to catalyze the 1  mol CDNB conjugate with 
GSH/min at 25 °C. Results were expressed in micromol 
GS-DNB/min/milligram protein. For non-protein thiols 
quantification, we utilized an aliquot of supernatant (100 
μL) mixed with 100 μL of 10% TCA and later centrifuged 
(3000 × g for 10 min at 4 °C). Supernatants (60–80 μg 
protein) were mixed with 5,5’-dithio-bis[2-nitrobenzoic 
acid] DTNB (0.01 M dissolved in ethanol) and the intense 
yellow color developed was measured at 412 nm after 1 h 
(Ellman 1959). Results were expressed as nmol SH/mg 
of protein.

Acetylcholinesterase (AChE) Activity

AChE activity was measured as described previously (Ell-
man et al. 1961) with some modifications. Aliquots of super-
natants (10 µL) were pre-incubated at 30 °C for 2 min with 
0.1 M phosphate buffer, pH 7.5, and 1 mM DTNB. The reac-
tion was started by the addition of acetylthiocholine (1 mM). 
The AChE was measured at 412 nm and activity expressed 
as µmol of acetylthiocholine (ACh) hydrolyzed/mg protein/
min using the SpectraMax from Molecular Devices (San 
Jose, CA, USA).

Protein Quantification

Protein was determined using the Coomassie blue method 
and bovine serum albumin as standard (Bradford 1976). 
Samples were run in duplicate and the absorbance was meas-
ured at 595 nm. All biochemical analysis including total pro-
tein was made using SpectraMax from Molecular Devices 
(San Jose, CA, USA).

Statistical Analyses

The normality of data and homogeneity of variances were 
analyzed using Kolmogorov–Smirnov and Bartlett’s tests, 
respectively. Results were expressed as a means ± standard 
error of the mean (S.E.M.) and analyzed by one-way analysis 
of variance (ANOVA), followed by Tukey’s multiple com-
parison test whenever appropriate. Data were significant 
when p ≤ 0.05. The “n” number used was 12. For biochemi-
cal analyzes, “n” number was 12, a pool of 2 brains (one 
from each duplicate).
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Results

Measured Concentrations of IMI

As indicated in Table 1, the measured concentrations of IMI 
in exposure tanks were generally in good agreement with the 
nominal concentrations. The initial measured concentrations 
of IMI at the highest nominal concentration were about 80% 

lower than the nominal concentrations. The levels of IMI 
declined slightly over the 96 h exposure period (Table 1).

Behavioral Analysis

Exposure to IMI altered locomotion parameters. IMI 
exposure to 45  µg/L decreased the distance traveled 
when compared to the control and the other concentra-
tions  (F3.52 = 13.29, p < 0.0001; Fig.  2a). At all tested 
concentrations both transitions and time spent in the top 
area decreased as compared to the control  (F3.52 = 11.82, 
p < 0.0001;  F3.50 = 12.67, p < 0.0001, respectively; Fig. 2b) 
and no differences were observed among concentrations. 
Conversely, the absolute turn angle, maximum speed, and 
the latency to enter the top did not change. Zebrafish exposed 
to 45 µg/L of IMI showed a significant decrease in the epi-
sodes of erratic movements when compared to the control 
 (F3.52 = 10.62, p < 0.0001) (Fig. 3a). Both the duration of 
erratic movements  (F3.52 = 5.491, p = 0.0024) (Fig. 3b) and 
the freezing duration  (F3.52 = 10.62, p < 0.0001) (Fig. 3d) 
decreased in the animals exposed to 45 µg/L of IMI when 
compared to the control and lower concentrations.

Table 1  Imidacloprid (IMI) quantification (µg/L−1) in the experi-
mental boxes. The measurements were made at the beginning (0 h), 
middle (48  h) and at the end of the exposure period (96  h). (n = 3) 
per group per period. Limit of detection (LOD) 0.006 µg  L−1; limit of 
quantification (LOQ) 0.020 µg  L−1

Nominal concentration Sampling time [Measured] % after 96 h

IMI 0.15 µgL−1 0 h 0.15 µgL−1 93.33%
96 h 0.14 µgL−1

IMI 15 µgL−1 0 h 14 µgL−1 85.35%
96 h 11.95 µgL−1

IMI 45 µgL−1 0 h 37.17 µgL−1 81.37%
96 h 35.89 µgL−1

Fig. 2  The influence of exposure to different concentrations (µg/L) 
of Imidacloprid (IMI) on responses in the novel tank in zebrafish. a 
locomotor parameters and (b) exploration parameters. The data were 

expressed as means ± S.E.M and analyzed by one–way ANOVA by 
Newman-Keuls multiple comparisons test. (****p < 0.0001, n = 12 
per group)
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Biochemical Analyses

IMI exposure altered oxidative parameters in the brain of 
zebrafish. Concentrations of 0.15 and 45 µg/L increased 
GST activity in relation to the control  (F3.20 = 1.216, 
p = 0.00012) (Fig. 4a). CP levels in brain tissue increased in 
zebrafish exposed to 15 and 45 μg/L IMI when compared to 
fish from the control treatment (F3.20 = 1.349, p < 0.0001), 
as shown in Fig. 4a. NPSH and TBARS levels in brain tis-
sue were not significantly different from controls (Fig. 4b). 
There was a decrease in the AChE activity in the brains of 
zebrafish exposed to IMI at concentrations of 15 and 45 μg/L 
when compared to the control (F3.22 = 1.266, p < 0.0001), 
as shown in Fig. 5.

Discussion

Although the use of IMI is restricted in the European 
Union, in Brazil it is one of the most widely used insec-
ticides currently sold (IBAMA, 2020). In addition, it has 
been found in surface water from Brazilian rivers and res-
ervoirs (Sposito et al., 2018; Acayaba et al., 2020; Amaral 
et al., 2020; Marins et al., 2020; Severo et al., 2020). IMI 

could affect fish physiology and biochemical parameters 
at environmentally relevant concentrations in the low 
µg/L range (Bartlett et al. 2019; Cheghib et al., 2020). 
In the present study, we observed effects from exposure 
to IMI on the behavioral profile of zebrafish at the lowest 
nominal concentration of 0.15 µg/L, as well as biochemi-
cal effects in brain tissue of zebrafish at higher nominal 
concentrations of 15 and 45 μg/L. At these higher con-
centrations, we observed an increase in oxidative dam-
age to proteins (i.e., elevated carbonyl protein) although 
lipid damage (i.e., elevated TBARS) was not observed. 
The changes in behavior could be related to the reduc-
tion in brain AChE activity. These fish showed impaired 
locomotion in behavior parameters that could be related 
to the brain AChE reduction. Animals showed impaired 
locomotion and “freezing” behavior in the bottom area of 
the tank, with decreased erratic movements when exposed 
to the highest IMI concentration of 45 µg/L. Some authors 
consider that after pesticide exposure, persisting effects 
on neurobehavioral function in zebrafish can be registered 
(Crosby et al. 2015; Castro et al. 2018). In the context, the 
observed hyperlocomotion could be a symptom of IMI tox-
icity. Our results are in agreement with previous findings, 
where fish exposed to IMI spend more time at the bottom 

Fig. 3  Aversive behaviors triggered by different concentrations (µg/L) 
of Imidacloprid (IMI) in zebrafish. The defensive reactions (freez-
ing and erratic movements). The scores obtained per group were 
depicted as representative heat maps (a, b) episodes and number of 

erratic movements, respectively (c, d) episodes and time of freezing, 
respectively. The data were expressed as means ± S.E.M and analyzed 
by one–way ANOVA by Newman-Keuls multiple comparisons test. 
(****p < 0.0001, n = 12 per group)
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of an aquarium and showed also reduced vertical swim-
ming activity (Champagne et al. 2010). Schmidel et al. 
(2014) observed that exposure to the herbicide, atrazine 

at 1,000 µg/L impaired the behavior of zebrafish and also 
these fish showed reduced brain AChE activity. The fish 
also spent significantly more time near the aquarium walls 
when exposed to high atrazine concentrations. The results 
observed in the present study with zebrafish clearly indi-
cate that behavior impairment of zebrafish could be related 
to changes in brain cholinergic neurotransmission. Another 
commonly observed response of fish exposed to low con-
centrations of pesticides is an increase in oxidative damage 
to lipid proteins (Vieira et al. 2018; Wu et al. 2018; Clasen 
et al. 2018). Carbonyl protein (CP) formation is an indica-
tor of oxidative damage to proteins and TBARS is related 
to lipid damage (Parvez and Raissudin 2005; Lushchak 
2016). Increased CP levels in zebrafish exposed to 15 and 
45 μg/L of IMI indicated protein damage in brain tissue. 
Probably the CP increase could be due to the highest con-
centrations of IMI tested. Alterations to AChE activity are 
considered a biomarker of pesticide toxicity, and in addi-
tion, behavioral alterations in affected organisms have also 
been observed (Beauvais et al. 2000; Rodríguez-Fuentes 
et al. 2015; Pamanji et al. 2015; Cheghib et al. 2020; Pul-
laguri et al. 2020). Swimming alterations recorded in the 
present study in fish exposed to the highest concentration 
of IMI are common symptoms related to overstimulation 
of nicotinic and muscarinic receptors as noted by Pullaguri 

Fig. 4  Effects of exposure to 
different concentrations (µg/L) 
of Imidacloprid (IMI) on 
oxidative stress parameters of 
the zebrafish brain. a Glu-
tathione S-transferase (GST) 
activity and carbonyl protein. 
b lipid peroxidation (TBARS) 
and non-protein thiol (NPSH) 
levels. Data were expressed as 
means ± S.E.M and analyzed by 
one–way ANOVA by Newman-
Keuls multiple comparisons 
test. (****p < 0.0001, n = 12 per 
group)

Fig. 5  Brain acetylcholinesterase (AChE) activity in zebrafish 
after exposure to different concentrations (µg/L) of Imidacloprid 
(IMI). Data were expressed as means ± S.E.M and analyzed by 
one–way ANOVA by Newman-Keuls multiple comparisons test. 
(****p < 0.0001, n = 12 per group)
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et al. (2020) in zebrafish exposed to 0.6 mg/L of the anti-
bacterial compound, triclosan.

On the other hand, there was no increase observed in the 
levels of brain lipid peroxidation, as indicated by TBARS 
assay. In a previous study, IMI did not change MDA pro-
duction in zebrafish (Alvim and Martinez 2019). Previ-
ous studies have shown that several pesticides induce an 
increase in the production of reactive oxygen species (ROS) 
and can cause lipoperoxidation (Lushchak 2016). Contrary 
to the results showed in the present results, Prochilodus 
lineatus exposed to IMI showed brain lipid peroxidation 
Vieira et al. 2018). There is a clear relationship between 
increased GST activity and the absence of lipid peroxida-
tion, so it is possible that lipid peroxidation in the brain was 
inhibitedas a result of the increase in brain GST levels. The 
same hypothesis was previously proposed by (Vieira et al. 
2018). Glutathione (GSH) is also an important component 
of Phase II detoxification. Therefore, the protective effects of 
glutathione may be related to its ability to form conjugates 
with IMI and its transformation products, as suggested by 
Sillapawattana and Schäffer (2017). However, in the pre-
sent study, brain non-protein thiols (NPSH) levels did not 
show any variation. Consistent with the results of present 
study, when mosquitofish Gambusia affinis were exposed 
to a formulation of the neonicotinoid insecticide, thiameth-
oxam  (Actara®) for 28 days, an increase in GST activity, 
carbonyl protein formation and a decrease in AChE activity 
were observed (Cheghib et al. 2020). In addition, many stud-
ies have shown that oxidative stress has negative effects on 
the nervous system and physiological development (Rahal 
et al. 2014; Ge et al., 2015; Parlak 2018; Wu et al., 2018).

Overall, we demonstrated in the present study that expo-
sures to IMI at nominal concentrations higher than those 
reported in surface waters (i.e., 15 and 45 µg/L) altered the 
behavior of zebrafish and reduced AChE activity. However, 
exposures at the environmentally relevant concentration of 
0.15 µg/L caused subtle changes to the antioxidant system 
(i.e., reduced GST activity). Since the zebrafish in the pre-
sent study were only exposed to IMI for 96 h prior to assess-
ing behavior and biomarkers response, further studies are 
warranted to evaluate effects in fish chronically exposed to 
this and other neonicotinoid insecticides. It also must be 
recognized that neonicotinoid insecticides are often present 
as mixtures in surface waters and may have additive effects 
or greater than additive effects.
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