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Abstract
The presence of radioactive elements in groundwater results in high health risks on surrounding populations. Hence, a 
study was conducted in central Tamil Nadu, South India, to measure the radon levels in groundwater and determine the 
associated health risk. The study was conducted along the lithological contact of hard rock and sedimentary formation. 
The concentrations of uranium (U) varied from 0.28 to 84.65 µg/L, and the radioactivity of radon (Rn) varied from 258 to 
7072 Bq/m3 in the collected groundwater samples. The spatial distribution of Rn in the study area showed that higher values 
were identified along the central and northern regions of the study area. The data also indicate that granitic and gneissic 
rocks are the major contributors to Rn in groundwater through U-enriched lithological zones. The radon levels in all samples 
were below the maximum concentration level, prescribed by Environmental Protection Agency. The effective dose levels 
for ingestion and inhalation were calculated according to parameters introduced by UNSCEAR and were found to be lesser 
(0.235–6.453 μSvy−1) than the recommended limit. Hence, the regional groundwater in the study area does not pose any 
health risks to consumers. The spatial distribution of Rn’s effective dose level indicates the higher values were mainly in the 
central and northern portion of the study area consist of gneissic, quarzitic, and granitic rocks. The present study showed that 
Rn concentrations in groundwater depend on the lithology, structural attributes, the existence of uranium minerals in rocks, 
and the redox conditions. The results of this study provide information on the spatial distribution of Rn in the groundwater 
and its potential health risk in central Tamil Nadu, India. It is anticipated that these data will help policymakers to develop 
plans for management of drinking water resources in the region.

Introduction

Groundwater is a crucial and significant water resource on 
the global scale (Subba Rao et al. 2020). Overpopulation 
and superior living standards lead to a rapid demand and 
increased usage of groundwater during the past few decades 
(Ji et al. 2020; Li and Qian 2018; Su et al. 2020). Exposures 
to radioactive elements is one of the major water-quality 
concerns that have not been investigated extensively. Many 
studies have stated high U and Rn levels in groundwater of 
various granitic terrains (Lahermo et al. 1990; Cho et al. 
2007, 2015, 2019; Prat et  al. 2009; Thivya et  al. 2014, 
2016a, b; Yun et al. 2017). High Rn levels are commonly 
observed in granitic terrains that generally contain more U 
minerals in the rock matrix (Yun et al. 2017). The Rn level 
in groundwater usually rises with an increase in U content 
of the soil and bedrock (Knutsson and Olofsson 2002). 
However, depending on aquifer characteristics, geology, and 
hydrochemical parameters, radon in groundwater is highly 
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variable (Choo and Choo 2019). High levels of Rn can 
pose health risks to residents and this radioactive element 
can be transported into the aquifer due to its water-soluble 
characteristics. The major pathway for Rn migration from 
source rock is physical transport as a solute in groundwa-
ter (Durrance 1986; Nazarof 1992; Waseem et al. 2015). 
Groundwater systems acquire Rn from aquifer formations 
predominantly through alpha recoil of Rn as well as diffu-
sion and transfer through mineral grains and fracture net-
works in a rock mass (Andrews and Wood 1972; Durrance 
1986). Rn produces short-lived alpha decay products which 
may cause health risk to human body if inhaled or ingested 
(NRC 1999). Drinking water with an exceptionally high Rn 
content greatly raises the risk of stomach and gastrointestinal 
cancers (Zhuo et al. 2001; Kendall and Smith 2002; Kendall 
et al. 2015). However, inhaled radon poses a higher risk 
than ingested radon (Folger et al. 1994; Khan et al. 2010); 
89% of radon-related deaths are attributed to radon inhala-
tion (lung cancers) and 11% due to drinking water (stom-
ach cancers) ingested by radon (USEPA 1999). Identifying 
the amount of groundwater Rn in household environments 
is essential to prevent excessive radiation exposure and to 
quantify potential health risks (Brunskill and Wilkinson 
1987; Council 1999; Segovia et al. 2007). Radon migrates 
through groundwater into households and other structures, 
generating a health hazard (Badhan et al. 2010). Dissolved 
radon is released into the indoor atmosphere when water is 
used for bathing, washing, and other domestic uses.

Groundwater from granitic aquifers contains higher Rn 
levels greater than 100,000 pCi/L (Asikainen and Kahlos 
1979; Brutsaert et al. 1981; Snihs 1973). It was reported that 
Rn levels in groundwater from sedimentary aquifers were 
less than 500 pCi/L (Andrews and Wood 1972; Gorgoni 
et al. 1982; King et al. 1982). Besides U content of source, 
the Rn level in groundwater also is affected by other geo-
logical and hydrological conditions, such as dispersal of 
nuclides, groundwater flow, and hydrogeochemistry (Nanda-
kumaran et al. 2015).

In previous studies in the study area conducted by Thivya 
et al. (2014, 2015, 2016a, b, 2017), these authors reported 
that higher Rn concentrations in groundwater were associ-
ated with higher U concentration in granitic rocks. In these 
studies, Rn values varied from 0.20 to 211 Bq/L, but no 
attempt was made to calculate the annual radon dose to 
humans through drinking water. Adithya et al. (2016, 2020) 
also studied the overall water quality and U geochemistry of 
the study area and identified that rock weathering was the 
major process in the granitic terrain that played a key role in 
U release into groundwater. This mechanism was believed 
to be facilitated by variations in the Oxidation Reduction 
Potential (ORP) of the water.

These previous studies mainly concentrated on describ-
ing the general water chemistry and U concentrations in 

groundwater in this water-scarce region. Although Rn levels 
were reported in the previous studies, several aspects were 
not addressed, including the human health risks calculated 
using estimates of the average annual dose, detailed litho-
logical data, land use controls, and the relationship between 
U and Rn in the groundwater. Hence, the present study 
focuses on describing: (1) the geochemical controls of Rn 
in groundwater, (2) the qualitative analysis of Rn related 
to the lithology and landuse evaluated using a GIS model, 
(3) health risk assessment with respect to exposure to Rn 
calculated from estimates of the effective dose.

Materials and Methods

Study Area

The study area is located in the central part of Tamil-
nadu (South India), which comprises the districts of 
Madurai, Dindigul, Trichy, Pudukottai, and Sivaganga 
(Fig. 1). It covers a total surface area of 4311 km2 and is 
limited to East 09°53′24″–10°20′60″ latitudes and North 
78°1′48″–78°48′36″ longitudes. Vaigai River is the major 
seasonal river, which originates from the western Ghats. 
The average precipitation is 950 mm/yr. The study area has 
a diverse geological terrain consisting of hard rock, Ceno-
zoic sedimentary rocks with conglomerate beds, and granite 
intrusions. The geological settings of the region have been 
reported favourable for likely uranium deposit (Thivya et al. 
2016a, b, Adithya et al. 2019). The major rock types present 
in the central, northern, western, and southern portions of 
the study area are fissile hornblende biotite gneiss (FHBG), 
Charnokites on the west, followed by the Hornblende biotite 
gneiss (HBG) on the NE (Fig. 2). In the study area, there are 
six categories of land use patterns, including agricultural 
land, water bodies, tank, wasteland, forest, and land build-up 
area (Fig. 3a). The western portion is covered by the forest, 
and the agricultural land is spread throughout the study area. 
Wasteland is predominantly observed in the eastern side 
of the study area. Weathered fractured crystalline forma-
tion and porous formation are the two major aquifers in the 
study region. The aquifer system presents in both hard and 
sedimentary formations, including unconfined and confined 
condition. In the hard rock terrain, groundwater occurs under 
semiconfined to confined condition and confined condition 
in sedimentary terrain. The maximum yields in sedimentary 
and hard rock aquifers are 12% and 1.5%, respectively, and 
the transmissivity varies between 1 and 5 m2/day in shallow 
aquifers and 1–25 m2/day in deeper aquifers. The storativ-
ity varies from 7.5 × 10−5 to 3.59 × 10−4 in the sedimentary 
aquifer and from 2.16 × 10−5 to 4.9 × 10−5 in the hard rock 
aquifer at a lower level. Decadal fluctuation (1998–2007), 
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inferred that water table fluctuates from 0.004 to 1.523 m/
year. (CGWB 2007). Recharge in the study area is mainly 

due to the normal rainfall, whereas surface water sources and 
rate is enhanced by the surface water irrigation. The effect 
of the rainfall on water levels in nearby region was studied 

Fig. 1  Location details and sampling points of Central Tamilnadu, India

Fig. 2  Lithological distribution in central Tamil Nadu, India
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by Thivya et al. (2018), Devaraj et al. (2020). Discharge is 
mainly due to bore well extraction; the groundwater serves 
as the main source of drinking, domestic, and irrigation pur-
poses in the study region.  

Sample Collection and Analysis

58 groundwater samples were collected during postmonsoon 
period (January 2015) (Table 1) from bore wells, consider-
ing spatial coverage and lithology. In situ levels of Rn were 
measured using portable Smart Radon Monitor (SRM) from 

Bhabha Atomic Research Centre, India, and the measure-
ment is based on the microprocessor. SRM uses a continu-
ous monitoring technique which provides Rn series of time 
concentrations in water samples where simultaneous sam-
pling and counting are performed. SRM works based on 
a software which takes account of the progeny growth in 
each counting period, without making balance assumptions. 
The benefit of this technology is that relative moisture does 
not affect its efficiency, and therefore no silica gel or any 
other dehumidifying agents are needed (Fig. 4). SRM has 
been successfully and extensively used for radon and thoron 

Fig. 3  Spatial distribution of 
radon over (a) land use/land-
cover, (b) lithology, and (c) total 
annual effective dose of Radon 
over lithology
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detection in different parts of India (Chauhan et al. 2014; 
Kumar et al. 2016). In Bq/m3 (disintegration per second per 
 m3), Rn processes are expressed with 2 sigma uncertain-
ties. SRM displays radon readings after every 15 min of 
measurement run (after started). The in situ radon readers 
will take the average readings of 3 or 4 cycles. Using this 
reading, the level of radon can be determined by correcting 
the time between the sample collection and analysis using 
the equation.

where C is the measured level, C0 is initial concentration 
(calculated) after the decay correction, t is the time elapsed 
since collection (days), and ƛ = (0.693)/(t1/2) = 0.181, 
t1/2 = 3.83 days. The instrument tests the behaviour of radon 
using the alpha scintillation process. Detection limit of radon 
is 8 Bq/m3 at 1 sigma confidence for 1 h counting. The over-
all calibration accuracy of detector is approximately ± 5%. 

(1)C = C
0
e
−μ�t

Table 1  Rn concentration in groundwaters of central Tamil Nadu, 
India

Sampling num-
ber

Location Rn (Bq/m3)

1 Puludipatti 3827
2 Aravankurichi 325
3 Kambarpatti 1220
4 Viralipatti 2136
5 Kurumbavetti 308
6 Kanavaipatti 7072
7 Oluppakkudi 3720
8 Natham 605
9 Udukkattai 1142
10 Parali 1476
11 Kadavur-kanvai 1833
12 Alanganallur 258
13 Kalivelipatti 919
14 Palamedu 540
15 Mettupatti 1441
16 Chatravellarapatti 447
17 Chinnamalayur 3711
18 Kumaram 549
19 Viratipathu 302
20 Chattaratondanpatti 1009
21 Thukkalampatti 1981
22 Chettiarpatti 2747
23 Allampatti 4863
24 Periyakarpurapatti 1134
25 Karungalakkudi 6388
26 Manapatti 1078
27 Thanchiyam 1199
28 Kottampatti 460
29 Piranmalai 375
30 Singampunari 2143
31 Nadunattarmangalam 653
32 Marudipatti 4063
33 Ponnamaravathy 5687
34 Kulipirai 2021
35 Nachanthupatti 1117
36 Sevvoor 418
37 Velangudi 292
38 Keezhseralpatti 767
39 Kundrakkudi 2434
40 Thirupathur 4080
41 Thirukosthiyur 828
42 Satrusamharakottai 986
43 Vachampatti (keela valavu) 1067
44 Karpayurani 1317
45 Othakadai 3577
46 Chinnasooragundu 1508
47 Melur 1368
48 Near thiruvadur 593

Table 1  (continued)

Sampling num-
ber

Location Rn (Bq/m3)

49 Panaikulam 402
50 Ottapatty 767
51 Keelapungudi 345
52 Paganeri 1054
53 Kundramanikam 469
54 Kallal 295
55 Vetriyur 446
56 Periyakarai 327
57 Pallathur 335
58 Thirumayam 694

Minimum 258
Maximum 7072
Average 1605

Fig. 4  Portable Smart Radon Monitor (SRM)
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Uranium is analysed by laser fluorimeter (Model LF-2a, 
Quantalase, India). For 15 days, all laboratory glassware 
used for sample processing was soaked in 10% nitric acid 
and then thoroughly rinsed with distilled and double distilled 
water before use. For each batch of sample preparation, the 
reagent blank was taken and concentrations found in the rea-
gent blank were subtracted from the same batch of samples. 
The technical features of laser uranium analyser detection 
limit: 0.2 ppb of uranium; range: 0.5–1000 ppb; excitation 
source: sealed-off nitrogen laser; wavelength: 337 nm; pulse 
energy: 20 µjoule; pulse duration: 7 nano second; frequency: 
10 Hz and sample size: 3–5 ml.

Data Interpretation

The radiological effects of dissolved radon intake are 
described as the effective dose of radiation received from 
the population at the time of daily water intake. A relation-
ship is used to assess an appropriate annual dose for a single 
person by the ingestion of radon from drinking water (Wu 
et al. 2014; Krishan et al. 2015).

where DW is the annual effective dose (mSv/y) due to inges-
tion of radionuclides from the consumption of water, CW is 
the concentration of Rn in the ingested drinking water (Bq 
 L−1), CRW is the annual intake of drinking water (L  y−1), 
and DCW is the ingested dose conversion factor for 222Rn 
(Sv Bq−1).

The dose conversion metric suggested by the Scientific 
Committee of the United Nations on the effects of atomic 
radiation (UNSCEAR 1993) was used to calculate effective 
dose. Annual effective dose due to Rn consumption was esti-
mated from drinking water, since an adult (age > 18 years) 
takes an average of 730 L of water per year (WHO 2011). 

(2)D
W
= 1∕4C

W
C
RW

D
cW

Annual effective doses (mSv/y) and effective doses per liter 
(mSv/y) were measured following the ingestion of Rn, dis-
solved in drinking water. Inverse distance weighted (IDW) 
technique was used for spatial analysis tools in Arc GIS 10.2.

Results and Discussion

Table 1 shows the Rn concentrations in groundwater col-
lected from the 58 sampling locations. Overall, Rn lev-
els ranged from 258 to 7072 Bq/m3, with an average of 
1605 Bq/m3.

Spatial Distribution of Radon

Spatial distribution of Rn in the study area (Fig. 5) shows 
that higher-level of Rn were observed in the central and 
northern portion of the study area. It is further noted that 
Granitic intrusions are located in the central part. There are 
few outcrops of Charnockites, Quartzite, Hornblende biotite 
gneiss (HBG), and mainly fissile hornblende biotite gneiss 
(FHBG) in the western and northern region of the study 
area contributing to higher Rn levels compared with the 
sedimentary formations in the southeastern region (Fig. 3b; 
Table 2). Lithology, porosity, degree of fracture, flood flow 
rate, and topography play a major role in the distribution of 
Rn levels in groundwater (Appleton and Miles 2010; Künze 
et al. 2013; Pinti et al. 2014; Skeppstrom and Olofsson 2006; 
Zunic et al. 2014). Groundwater in hardrock aquifer usu-
ally contains high Rn because of increased radon migration 
(Yang et al. 2014; Atkins et al. 2016). Figure 3a depicts the 
spatial distribution of land use/land cover and Rn levels in 
the study area revealing their spatial relations between these 
two parameters. 

Higher Rn values were observed around the agricul-
tural lands and the forest areas. Groundwater from wells in 

Fig. 5  Spatial distribution of 
Radon concentration in the 
study area
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agricultural settings shows higher levels of U than ground-
water from wells in urban settings, possibly due to higher 
pH influencing the redox levels in agricultural wells (Ayotte 
et al. 2011).

However, the relationships between Rn level and geologi-
cal parameters are much more complex than expected due 
to its short half-life and volatile character (Cho et al. 2015). 
Sundal et al. (2004) reported that apart from the type of bed-
rock lithology and structures, Rn levels are also influenced 
by emanation coefficients, moisture content, permeability, 
and Rn emission rates.

Relationship Between U and Rn

The scatter plot (Fig. 6) of Rn and U shows that there was 
a progressive increase in Rn levels with U concentrations, 
especially in samples collected from granitic terrain. A simi-
lar trend was observed in FHBG and Charnockite, indicating 
the lithological influence in spatial distribution of U and Rn 
in groundwater. However, the sedimentary formations in the 
study area do not show any definite trend. The relationship 
between U and Rn is a good indicator that the groundwater 
contains a direct geogenic radionuclide source.

U in groundwater of the study area is due to rock water 
interaction, initiated by the dissolution of U in the host 
rock and Rn also dissolves into the groundwater during 

Table 2  Variation of Rn concentration in different lithological units

Lithology Sampling points Percentage 
of samples

Clay Nil –
Garnet-sillimanite gneiss Nil –
Quartzite 1, 61 3.28
Hornblende-biotite gneiss 35, 36, 37 4.92
Laterite (Ferricrete) Nil –
Sand, Silt and Clay Partings 19, 43, 55, 56, 58 8.20
Calc-granulite Nil –
Charnockite 8, 9, 14, 15, 16, 17, 28 11.48
Fissile hornblende biotite gneiss 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 18, 20, 21, 22, 27, 29, 30, 31, 32, 33, 34, 38, 39, 

40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54
60.66

Sandstone and Conglomerate Nil –
Granite (Gr3) 23, 24, 25, 26 6.56
Sandstone and shales 60, 59, 57 4.92

Fig. 6  Correlation between 
annual effective dose rate of 
radon (222Rn) in groundwater 
samples and total U content of 
the background lithology
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radioactive decay of U (Arabi et al. 2013). It also has been 
recorded that U from bedrock is the primary source of Rn 
(Appleton and Miles 2010; Akerblom and Lindgren 1997). 
Hence, it is assumed that U is the principal source of Rn 
in the groundwater of this region (Skeppstrom and Olofs-
son 2006). Therefore, Rn develops from the lithological U 
source, concentrated in the fracture zone within Granitic and 
Gneissic rocks (Choubey et al. 2003). Lithology regulates 
the distribution of Rn in groundwater (Langmuir 1997), and 
it is observed that the granite rocks have the highest U and 
Rn values in the study area. U is commonly found as uranin-
ite in granite, which is easily dissolves to release Rn into 
groundwater (Kraemer and Genereux 1998).

U is leached from the rock and precipitated on the sur-
faces of the cracks in the rock along with its decay prod-
ucts, such as radium. Rn is then emanated directly into the 
groundwater along the fractures from the radium-enriched 
coatings (Akerblom and Lindgren 1997). The release and 
movement of radon in the groundwater are regulated by 
the content of U, grain size, host rock permeability, and the 
type and extent of fracturing in the host rock (Choubey and 
Ramola 1997). Granite rocks commonly contain, higher U 
than sedimentary rocks, such as sandstone (Faure 1986). 
Adithya et al. (2016) reported higher U concentrations in 
groundwater samples of hard rock terrain than the sedi-
mentary formations. The period of groundwater residence 
in Granite, Charnockite, and Gneissic rocks facilitates the 
greater release of U into groundwater (Adithya et al. 2016).

It was noted by earlier researchers that U need not be 
enhanced by a single factor as observed by lithological 
influence (Thivya et al. 2017). The highest dissolution of U 
occurs in near-neutral to acidic groundwater pH conditions. 
In addition, to other responsible sources, redox potential also 
is a major governing factor that contributes to higher U in 
groundwater (Harley and Robbins 1994). This clearly shows 

that the concentration of Rn depends primarily on the lithol-
ogy, structural attributes, the nature of U minerals in rocks, 
and the conditions of redox.

Effective Dose Assessment

The global average dose of radon inhalation and its decay 
products from all sources is approximately 1 mSv/y (Craw-
ford-Brown 1989), which is significantly less than half the 
overall exposure of 2.4 mSv/y to natural radiation (NRC 
1999). Similarly, the total annual effective dose of radon, 
and the annual effective dose in the groundwater sampled, 
varied with radon levels. In the present research, the annual 
effective dose of radon ranged from 0.24 to 6.45 mSv/y, with 
an average value of 1.46 mSv/y. The overall effective annual 
dose (mSv/y), resulting from radon in groundwater of the 
study area was substantially lower than the acceptable level 
of 1 mSv/y for the public (EPA 1998).

The annual effective radon dose in groundwater is 
dependent on the total U content of the host rock forma-
tions. The samples from granitic terrain show that there is a 
progressive increase in Rn dose with higher U. Similar trend 
also was observed in FHBG and Charnockite rocks. There 
was no definite trend between U and effective dose of Rn 
in the sedimentary formations of the study area. It is thus 
apparent that there is a clear correlation between the overall 
annual effective dose of radon in groundwater and the host 
rock U content (Skeppstrom and Olofsson 2006), suggesting 
the influence of background lithology on the radiological 
properties of the groundwater.

The spatial variation of the total annual effective dose 
of Rn in the groundwater samples (Fig. 3c) shows that the 
northern and central portion of the area exhibits higher lev-
els. This sector was represented by Granite, Charnockites, 
FHBG, and Hornblende-biotite gneiss rocks. Observed 

Fig. 7  Distribution of mean and 
median radon annual effective 
dose in different lithologies
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elevated Rn levels are explained by enhanced Rn migra-
tion through fractures and weaker planes of the host rocks 
(Damkjær et al. 1997; Wood et al. 2004). In the case of 
the southern and eastern parts of the area, low Rn levels 
in groundwater are observed, as is common in sedimentary 
rocks (Cothern and Smith Jr. 1987).

The mean and median values of Rn effective dose is 
shown in Fig. 7. The Rn effective dose with respect to 
the sampling points exhibit the following order; Quartzite 
(n−4) > Granite (n−8) > Charnockite (n−8) > Fissile Horn-
blende Biotite Gneiss (n−31) > Sand, Silt, and Clay partings 
(n−7). This also clearly states that Rn levels in groundwater 
are dependent on the lithology of the study area. Rn activ-
ity is typically low in sedimentary rock units and higher 
in Granite, FHBG, and Charnockite terrains (Cothern and 
Smith Jr. 1987).

There is more difficulty with respect to the Rn levels in a 
fractured aquifer since, given that the flow is greater in the 
fracture, due to the heterogeneous nature of a fractured gra-
nitic aquifer, the Rn level is variable (Le Druillennec et al. 
2010). In addition, groundwater in India was found to have 
no clear association between Rn and U and no normal pat-
tern in the difference between Rn and the source of water 
(Singh et al. 2009).

Conclusions

Based on the results of this study, the Rn concentration 
was observed to be below the maximum contaminant level 
(MCL) in all groundwater samples. Overall, the Rn levels in 
sedimentary rock formations displayed lower value. Higher 
concentration of Rn was mostly observed in the central and 
NW region of the study area, due to the release of Rn from 
granite, gneissic rocks, and quartzite formations. Rn lev-
els in groundwater is due to high mobility of Rn facilitated 
by suitable geological conditions, apart from other factors, 
including agriculture. It is inferred that granite rocks were 
the main source of Rn in the groundwater, associated with U 
dissolution. This observation indicates that Rn was co-trans-
ported with U into U-enriched zones. The effective annual 
dose values also were significantly lower than 1 mSv/y and 
were well below the UNSCEAR and WHO guidance val-
ues. Rn in groundwater of the central region of Tamilnadu 
has exceptionally low levels and do not pose a significant 
health risk. However, the Rn level may be increased in the 
groundwater in near future due to the intensive agricul-
tural practice in the study area. Hence, the policy makers 
need to have a continuous monitoring on Rn levels in the 
groundwater, in order to take necessary steps to safeguard 
this water resource from pollution. The data presented are 
limited to 58 groundwater samples representing a particular 
season, which must be treated as a preliminary observation. 

Therefore, to improve the understanding and reduce poten-
tial risks, more comprehensive research should be under-
taken by detailed monitoring during various seasons for 
possible contamination of Rn.
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