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Abstract
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in 
concentrations up to 320.0 µg L−1. In the present study, we evaluated the effects of the highest IMI concentration detected in 
surface water (320.0 µg L−1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different 
scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascor-
bate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using 
an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by 
IMI (320.0 µg L−1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in 
unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause 
mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% 
of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of 
aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed 
alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW 
and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.

The intensive use of pesticides contributes to the growth 
of agricultural productivity. These chemicals are used to 
eliminate pests that can cause injuries to crops, increasing 
the production and quality of the harvest. It is estimated 
that agriculture annually uses 2.5 million tons of active 

ingredients of pesticides worldwide (Chen et al. 2018; Fen-
ner et al. 2013).

Neonicotinoids are the most important, effective, and 
best-selling class of new synthetic pesticides used to con-
trol insects in crops (Xia et al. 2016). These compounds 
were recently developed from the (S)-(-)-nicotine molecule, 
after isolation as an alkaloid from Nicotiana sp. (tobacco) 
(Jeschke et al. 2013). The neonicotinoids act as agonists of 
nicotine acetylcholine receptors (nAChR) in the nervous sys-
tem of insects. The binding of neonicotinoids to nAChRs 
prevents the binding of acetylcholine. The enzyme acetyl-
cholinesterase cannot degrade these pesticides, resulting in 
continuous stimulation of the receptors. The neural over-
stimulation results in tremors, paralysis, and death (Matsuda 
et al. 2001; Stara et al. 2019; Vignet et al. 2019; Yamamoto 
and Casida 1999).

The commercial success of this group of pesticides is 
due to their high efficiency against pests, long-term control, 
harvest guarantee, suitable for application in a wide range 
of crops, and the ability to act on a large number of insect 
species (Jeschke et al. 2011). Furthermore, these compounds 
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show lower toxicity to vertebrates compared with carbamate 
and organophosphates insecticides (Jeschke et al. 2011; 
Anderson et al. 2015; Simon-Delso et al. 2015). The selec-
tive toxicity of these substances to invertebrates can result 
in unintentional adverse effects on nontarget species like 
bees. This fact led the European Union to adopt restrictions 
on the use of thiamethoxam, clothianidin, and imidacloprid 
(Domenica et al. 2017; EFSA 2018).

Imidacloprid (IMI) (1-(6-chloro-3-pyridylmethyl)-N-ni-
tro-imidazolidin-2-ylideneamine) (Fig. 1) is considered 
the main molecule of the first generation of neonicotinoids 
developed in the early 1990s (Kagabu 2011). Currently, IMI 
it is widely used to protect several crops, such as rice, cotton, 
sugarcane, coffee, corn, beans, soy, and wheat (Xia et al. 
2016). However, the IMI can move into adjacent areas after 
application and can further migrate into aquatic environ-
ments via several environmental fate processes (e.g., runoff, 
leaching, etc.) (Wood and Goulson 2017; Yadav and Wata-
nabe 2018).

Recently, IMI was found in water bodies in several coun-
tries in concentrations up to 320.0 µg L−1 (Kreuger et al. 
2010; Lamers et al. 2011; Starner and Goh 2012; Hayasaka 
et al. 2012a; Van Dijk et al. 2013; Morrissey et al. 2015). 
The presence of IMI in aquatic ecosystems is facilitated by 
its physical and chemical characteristics. IMI is highly solu-
ble in water and displays a half-life time that varies from 
0.24 to 2.22 days in aquatic environments (Lu et al. 2015). 
IMI reaches water bodies through runoff after rainfall events 
(Gupta et al. 2002), atmospheric deposition, and transport 
of contaminated dust to aquatic ecosystems adjacent to agri-
cultural areas (Pisa et al. 2015). Additionally, IMI is hardly 
biodegraded (Van Dijk et al. 2013).

In aquatic ecosystems, IMI may be harmful to the eco-
system structure and function of the aquatic life. Several 
studies have reported the impacts of IMI on different 
nontarget aquatic species, including insects, crustaceans, 
and fish. Stonefly Pteronarcys comstocki exposed to IMI 
had its eating habit affected, as reported by Pestana et al. 
(2009). The authors observed a decrease in the leaf lit-
ter decomposition and feeding rates after exposure to 
17.6 µg L−1. IMI also can affect the reproduction of aquatic 
crustaceans (Böttger et al. 2013). Female individuals of 
Gammarus roeseli had smaller broods after repeated low-
level and short-term exposure to IMI (12.0 µg L−1), which 

demonstrated the potential of this insecticide to affect the 
individual’s reproduction and to cause long-term effects on 
the population size (Böttger et al. 2013). IMI caused toxic 
effects on Hyalella azteca survival (LC50 = 230.0 µg L−1) 
and the growth was reduced (Bartlett et al. 2019). Also, 
in sublethal concentrations, the IMI affects the nervous 
system and promotes the drift of macrozoobenthos (Baetis 
rhodani and Gammarus pulex) to downstream areas after 
2-h exposure, as reported by Beketov and Liess (2008). 
Hong et al. (2018) observed genetic damage, a decrease 
in immune response, and changes in nuclei of erythrocytes 
in Chinese rare minnows Gobiocypris rarus after chronic 
exposure to IMI (0.1 to 2.0 mg L−1). Oxidative stress 
caused by IMI also has been noticed in aquatic organisms 
(Iturburu et al. 2018; Qi et al. 2018; Vieira et al. 2018; 
Hong et al. 2020; Shan et al. 2020). Enzymes associated 
with the line defense in the antioxidant system, such as 
glutathione S-transferase (GST), catalase (CAT), and 
ascorbate peroxidase (APX), are essential for the detoxi-
fication of pollutants in aerobic organisms (Slaninova et al. 
2009; Zhang et al. 2015). GST shows a rapid enzymatic 
response when exposed to azole compounds similar to imi-
dazoline, which is a heterocyclic compound produced in 
the process of degradation of the IMI (Giraudo et al. 2017; 
Vieira et al. 2019). CAT and APX are important antioxi-
dant enzymes that regulate intracellular H2O2 produced 
in the detoxification process (Gebicka and Krych-Madej 
2019). Likewise, CAT and APX are good biomarkers to 
compounds that exhibit the formation of nitrogen com-
pounds (Sinha et al. 2015), such as IMI (Simon-Delso 
et al. 2015).

Due to the immediate importance to understand the 
effects of this agent in aquatic systems, we aimed to fur-
ther study this pesticide. In the present report, we simu-
lated different scenarios of environmental contamination 
using water from different sources and IMI concentrations 
close to the highest concentration detected in an aquatic 
environment (320.0  µg  L−1). For this reason, we pro-
posed a lotic indoor channels system to evaluate the IMI 
toxicity using water from different sources to represent 
three scenarios of water quality (water of known qual-
ity—reconstituted, natural water collected in an unpol-
luted area, and natural water collected in a polluted area). 
The high IMI concentration (320.0 µg L−1) was used to 
validate the indoor system of artificial channels proposed 
in the present study. We performed a multispecific evalu-
ation using simultaneously three freshwater organisms: 
Chironomus sancticaroli, Daphnia similis, and Danio 
rerio. We evaluated the effects on the survival of the three 
organisms and enzymatic activity (GST, CAT, and APX) 
in D. rerio. These assays allowed us to evaluate the pos-
sible synergistic effects between IMI and different levels 
of contamination.Fig. 1   Molecule of imidacloprid



439Archives of Environmental Contamination and Toxicology (2021) 80:437–449	

1 3

Material and Methods

Water Samples

We performed the assays in the present study using three 
types of water. A1 was reconstituted water (RW) from D. 
similis culturing. Water A2 and A3 was collected in the 
Piquete River (Piquete—Sao Paulo, Brazil) at two differ-
ent points: upstream (UW) in Piquete river in a preserved 
area close to the spring (22.35′ 39.7″ S; 45.13′ 35.5″ W) 
and downstream (DW) of an urbanized area through which 
the Piquete River flows (22° 37′ 22.5″ S; 45° 09′ 40.8″ W) 
(Online resource 1). The use of natural water from differ-
ent sources aimed to evaluate a possible synergistic effect 
between IMI and other pollutants present in the water col-
umn of the river.

Parameters that were determined in situ included: pH, 
electrical conductivity (µS cm−1), and temperature (°C) 
using a multiparameter probe YSI model ProDSS. We stored 
the collected samples in a polyethylene containers and sent 
them to the laboratory where turbidity (UNT), by turbidim-
etry (Tecnopon model TB-1000), dissolved oxygen (mg L−1) 
and biochemical oxygen demand (BOD) (mg L−1), by Win-
kler’s method (Barnett 1939), and total phosphorus con-
centrations (µg L−1), by the ascorbic acid method (APHA, 
2005), were determined.

Chemicals

The commercial formulation Galeão® (Helm do Brasil 
Mercantil LTDA, São Paulo, SP—Brazil) (imidacloprid/
inert ingredients (70:30, m/m), 460.0 µg Galeão® L−1) 
was used as the source of the active ingredient to reach the 
concentration of 320.0 µg IMI L−1. We used the highest 
IMI concentration (320.0 µg L−1) detected in freshwater to 

validate the ecotoxicological assessment system proposed 
in the present study, facilitating the quantification of this 
pesticide. Because the main source of IMI in agricultural 
practice is the formulated product (Anderson et al. 2015), 
we chose to work with the final product instead of the pure 
active ingredient (imidacloprid) to approach the conditions 
found in the field.

The analytical standard Imidacloprid Pestanal® was pur-
chased from Sigma-Aldrich (St. Louis, MO). The pesticide 
Galeão® (70% w/w of imidacloprid) was purchased from 
HELM DO BRASIL MERCANTIL LTDA (São Paulo, Bra-
zil). Methanol and acetonitrile were analytical grade and 
were obtained from Merck KGaA (Darmstadt, Germany) 
and Honeywell (Muskegon, USA), respectively. Water was 
purified by a Milli-Q system (Millipore).

Summary of Experimental System and Treatments

Assays A1, A2, and A3 were performed to evaluate the tox-
icity of IMI (320.0 µg L−1) in three different scenarios of 
water quality (RW, UW, and DW) using two indoor artificial 
channels systems (CS): control (without IMI) and treatment 
with IMI. We performed each CS assay twice.

Each system consisted of  a  glass channel 
(80 cm × 12 cm × 12 cm) and a reservoir containing a sub-
merged pump (380 L h−1) to promote the oxygenation and 
circulation of water between compartments. Channel and 
reservoir were connected by hoses. The capacity of the sys-
tem was 20 L with the principal channel having a volume of 
8 L and the reservoir a volume of 12 L (Fig. 2a).

Initially, we filled the systems with water (RW, UW, or 
DW). Then, we added the commercial product Galeão® 
in the experimental channels (final IMI concentra-
tion ≅ 320.0 µg L−1). The systems remained circulating for 
1 h to homogenize the compound before the introduction of 
any organism. After this period, we inserted the organisms 

Fig. 2   Lotic indoor channels system. a Artificial channels used. b Assay performed in each channel of the system
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Daphnia similis (neonates < 24 h old), Chironomus sancti-
caroli (first-instar larvae), and Danio rerio (adults) at the 
same time in both systems. To prevent predation by fish, 
we put D. similis and C. sancticaroli individuals in distinct 
PVC capsules with openings coated with a plankton net. In 
each channel, we used 20 neonates of D. similis per capsule 
(n = 2), 20 larvae of C. sancticaroli per capsule (n = 2), and 
5 adults D. rerio (0.59 ± 0.06 g) (Fig. 2b). Each capsule was 
considered a replicate and we positioned them randomly 
inside the channel. The number of replicates was based on 
the standard NBR 12713:2016 (ABNT 2016), which defines 
two replicates as a minimum number in an ecotoxicological 
evaluation using Daphnia sp. The C. sancticaroli capsules 
contained quartz sand (0.6 mm) employed as a substrate for 
these organisms. The quartz sand was treated at 500 °C for 
1 h to remove organic matter and volatile substances.

The exposure period adopted in this experiment was the 
same as that used to evaluate the acute toxic effect: 48 h for 
D. similis and C. sancticaroli, and 96 h for D. rerio. We 
performed the assays at room temperature. Previous experi-
ments in the channels system demonstrated that the IMI con-
centration was maintained stable during the proposed period 
of the assays (96 h). The final IMI concentration did not dis-
play a statistically significant difference (p < 0.05) compared 
to the initial test concentration (Online resource 2).

During the CS assays, organisms and water parameters 
pH, conductivity (µS cm−1), temperature (°C), and dissolved 
oxygen (mg L−1) were monitored daily. After 48 h, capsules 
containing D. similis and C. sancticaroli were removed from 
the channels to verify the mortality rate.

According to the literature, the IMI displays high LC50 
values for fish. Thus, in the present study we did not focus 
to understand the survival of this organism, but the physi-
ological effects caused by the exposure to IMI instead. After 
96 h, we removed the fish from the system and analyzed the 
enzymatic activity of glutathione S-transferase (GST), cata-
lase (CAT), and ascorbate peroxidase (APX). The activity 
of these enzymes was determined for the fish from all three 
assays (A1, A2, and A3).

Standard acute tests using the water from the channels 
were simultaneously performed for each channel system 
experiment. The standard tests were performed in con-
trolled conditions following ISO 6341 (2012) and OECD 
235 (2011) for D. similis and C. sancticaroli, respectively, 
and Douglas et al. (1986) for D. rerio. The results obtained 
in the standard tests were compared with the results obtained 
in the channels system.

The adopted channels system simulated the natural condi-
tions of an aquatic ecosystem. Thus, we expected to evalu-
ate possible synergistic effects between IMI and water with 
different quality levels. Although there are studies that have 
evaluated the toxicity of IMI on Chironomidae (Kobashi 
et al. 2017; Chandran et al. 2018) and daphnids (Qi et al. 

2018; Raby et al. 2018b; Rico et al. 2018), no work using 
C. sancticaroli and Daphnia similis was found in the litera-
ture so far. Moreover, C. sancticaroli is an insect found in 
tropical water bodies. Thus, the use of this organism allows 
to understand the effects of the IMI in aquatic ecosystems 
from these regions (Fonseca and Rocha 2004). Therefore, 
we used these organisms to obtain preliminary information 
about the effects of IMI on these species. Also, we decided 
to use D. rerio in the present study, because one of the rea-
sons for the commercial success of IMI is the lower tox-
icity to vertebrates. Although D. rerio displays high LC50 
values, minor effects could be evidenced by enzyme bio-
markers. The Ethics Committee on Animals Use of the Bio-
sciences Institute of the University of São Paulo (CEUA no. 
310/2018) approved the experimental procedures adopted 
in the present study.

Sample Preparation and Chromatographic Analyses

The IMI concentration in the system was determined at the 
beginning of the CS assays. The water samples were filtered 
in a glass fiber prefilter (47 mm) using a Millipore System 
(Swinnex-47) and a 3-mL syringe. The samples (40 mL per 
Falcon® tube) were frozen and lyophilized. The dried sam-
ples were resuspended in 500 µL of methanol: water (1:1). 
The samples were diluted to adjust the concentrations to 
the linear interval of the standard curve. Aliquots (20 μL) 
of each sample were injected into the high-pressure liquid 
chromatograph (HPLC). The concentration of the active 
ingredient in the samples was expressed as μg of imidaclo-
prid per L.

Quantification of the active ingredient (imidacloprid) in 
the samples containing the pesticide Galeão® was performed 
using a Shimadzu Prominence HPLC (Shimadzu, Kyoto, 
Japan) equipped with a photodiode array detector (PDA), 
SPD-M20A. The chromatographic separation was achieved 
using a Kinetex EVO C18 column (150 mm × 4.6 mm, 5 µm, 
Phenomenex) maintained at room temperature. All ultra-
violet–visible spectra were recorded from 200 to 600 nm. 
For quantitative analyses, chromatograms were integrated 
at 270 nm. The volume injected was 20 µL. The mobile 
phases were: (A) Milli-Q water and (B) acetonitrile, and 
the flow rate was set at 1.5 mL min−1. The gradient used 
for separation was 20% B at the start of the run, 90% B at 
2.1 min, which was held until 3.5 min, followed by a 4.5 min 
equilibration at 20% B before the next injection. The identifi-
cation of the peak was performed by comparing the chroma-
tographic retention time with the standard and evaluating the 
characteristics of the electronic absorption spectra.

A stock solution (1 mg 1 mL−1) was prepared with the 
analytical standard Imidacloprid Pestanal®. Calibration 
was performed using dilutions of the stock solution (0.39, 
0.78, 1.56, 3.125, 6.25, 12.50, 25.00, and 50.00 µg L−1). The 
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respective peak areas obtained in the PDA (270 nm) were 
plotted vs. the quantity (ng) of analyte in the samples. Stand-
ard curve displayed in Online Resource 3.

Enzymatic Activities on Danio rerio

After 96-h exposure to IMI, two individuals from each chan-
nel were randomly selected from which the homogenates 
were prepared (1:9, w/v) by maceration of the whole fish in 
cold potassium phosphate buffer (pH 7.4). The homogenates 
were centrifuged at 2000g for 20 min at 4 °C, and the super-
natants were collected to determine the enzymatic activity of 
glutathione S-transferase (GST), catalase (CAT), and ascor-
bate peroxidase (APX). The same procedure was followed 
for fish from the acute toxicity testing in the standard tests.

The protein contents were determined by the Bradford 
method using bovine serum albumin (BSA) as a standard 
(Bradford 1976). Each enzyme activity was determined three 
times using the same homogenate of the original two indi-
viduals and the results used to calculate the specific activity 
of GST, CAT, and APX.

Glutathione S‑transferase

Glutathione S-transferase (GST) activity was adapted from 
the method proposed by Habig et al. (1974). Tests were 
conducted in triplicate using 100 mM of potassium phos-
phate buffer (pH 6.5), 1.0 mM of EDTA, 9.5 mM of reduced 
glutathione (GSH), 1.0 mM 1-chloro-2,4-dinitrobenzene 
(CDNB), and 10.0 µL of homogenate. CDNB was used as 
a substrate for the reaction of converting GSH to thiolate 
anion of glutathione (GS−), through the enzyme GST. The 
formation of conjugate S-(2,4-dinitrophenyl) glutathione 
was monitored for increased absorbance at 340 nm for 5 min 
in the UV–VIS spectrometer. The molar extinction coeffi-
cient of CDNB was 9.6 mM−1 cm−1.

Catalase

Catalase (CAT) activity was determined following the 
method described by Aebi (1984). The tests were con-
ducted using 100 mM of potassium phosphate buffer (7.0), 
20.0 mM of H2O2, and 10.0 µL of homogenate. The activity 
was monitored by the consumption of H2O2 resulting in the 
decline of absorbance at 240 nm for 3 min in the UV–VIS 
spectrometer. The molar extinction coefficient to H2O2 was 
40.0 mM−1.cm−1. Enzymatic activity was expressed from 
the consumption of 1 mmol of H2O2 min−1 mg protein−1.

Ascorbate Peroxidase

Ascorbate peroxidase (APX) activity was determined from 
an adapted method by Nakano and Asada (1981). The 

tests were conducted using potassium phosphate buffer 
50 mM (pH 7.0), ascorbic acid 0.5 mM, H2O2 0.1 mM, and 
20.0 µL of homogenate. The activity was determined by 
the decrease in absorbance values at 290 nm caused by the 
consumption of ascorbate for 2 min in the UV–VIS spec-
trometer. Molar extinction coefficient was 2.9 mM−1 cm−1. 
The activity was expressed in terms of the consumption of 
1 mmol of H2O2 min−1 mg protein−1.

Statistical Analysis

All values were expressed as the mean value ± stand-
ard deviation (SD). The normality of data was assessed 
using the Kolmogorov–Smirnov test, and homogeneity 
of variance was tested by Bartlett’s test. The mortality 
was assessed by Fisher’s test. The enzymatic activity 
was assessed by one-way analysis of variance (ANOVA) 
followed by Dunnett’s test to determine the significant 
difference among IMI treatment and control group. 
MINITAB  19® software was employed for statistical 
evaluation with a level of significance set as p < 0.05.

Results

Water Parameters

UW and DW samples showed physical and chemical char-
acteristics expected for unpolluted and polluted areas, 
respectively. Water collected downstream (DW) of the 
urban area in the Piquete river presented the highest val-
ues for turbidity, conductivity, BOD, and total phosphorus, 
which indicate the occurrence of anthropogenic pollution 
(Le Moal et al. 2019). Physicochemical parameters of 
reconstituted water (RW) and the water collected upstream 
(UW) and the downstream (DW) of the Piquete river are 
presented in Table 1.

Table 1   Physical and chemical variables of water used in the treat-
ments

RW reconstituted water, UW upstream water, DW downstream water

Variables RW UW DW

pH 6.9 7.85 7.32
Turbidity (UNT) 0.01 0.40 0.65
Conductivity (µS cm−1) 214.0 37.5 318.0
Dissolved oxygen (mg L−1) 7.26 4.0 3.5
Biochemical oxygen demand 

(BOD) (mg L−1)
0.31 0.5 2.2

Total phosphorus (µg L−1) 0.29 1.36 22.43
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Test Solution Parameters

The pH variation at the beginning and the end of the D. simi-
lis and C. sancticaroli standard tests did not exceed 0.5 units 
in any treatment, and it did not present significant change 
(p < 0.05). Mean values of water parameters, pH, tempera-
ture (°C), conductivity (µS cm−1), and IMI concentration 
(µg L−1) measured in assays are shown in Table 2. The DO 
was maintained at 7.31 ± 0.25 mg L−1 by the oxygenation 
system during all experiments in the channels. The varia-
tion of the temperature between A3 and the other assays is 
related to the room temperature during the period that the 
experiments were performed.

As the test solutions were prepared using the commer-
cial product targeting the highest concentration, we observed 
variations in the IMI concentrations, such as displayed in 
Table 2. The mean concentration between the CS assays was 
287.60 ± 32.06 µg L−1.

Toxicity

The survival rate was 100 ± 0.0% for all individuals in the 
control water (i.e. all water without IMI) except for the 
mortality of a number of daphnids in the DW water of the 
channels system (A3) (Table 3). However, the observed 

mortality rate did not indicate an acute toxic effect for D. 
similis (Fisher’s test, p < 0.05), i.e., the observed mortality 
remained within natural variability. Differently, C. sancti-
caroli showed 100% ± 0.0% mortality in all treatments that 
contained IMI; in both the channels system (CS) and stand-
ard tests (ST). IMI did not cause mortality of D. rerio in any 
treatment (Table 3).

Enzymatic Activity

Activities of GST, CAT, and APX were assessed to inves-
tigate the detoxification capacity of D. rerio to IMI. In the 
presence of IMI (320.0 µg L−1), GST activity was reduced 
in the A1 (one-way ANOVA, p < 0.05), using reconstituted 
water (RW + IMI) (Fig. 3a). We observed a reduction of 
CAT activity in A2 (UW + IMI) in both systems, standard 
tests, and channels system (one-way ANOVA, p < 0.05; 
Fig. 3b). APX activity increased only in A2 (UW + IMI) 
(one-way ANOVA, p < 0.05) in the standard tests (Fig. 3c).

Table 2   Physical and 
chemical variables obtained 
from ecotoxicological assays 
performed in the channels 
system and IMI concentrations

Values expressed as mean value ± standard deviation
RW reconstituted water, UW upstream water, DW downstream water

Assay Treatment IMI (µg L−1) Temperature (°C) pH Conductivity (µS cm−1)

A1 RW 0.00 ± 0.00 22.43 ± 0.51 7.80 ± 0.27 219.63 ± 4.75
RW + IMI 278.80 ± 56.25 22.65 ± 0.31 7.57 ± 0.15 250.25 ± 4.65

A2 UW 0.00 ± 0.00 23.40 ± 0.37 7.80 ± 0.07 35.22 ± 8.26
UW + IMI 335.69 ± 16.80 23.56 ± 0.67 7.76 ± 0.06 27.42 ± 7.38

A3 DW 0.00 ± 0.00 19.50 ± 0.14 7.80 ± 0.00 323.40 ± 7.60
DW + IMI 248.32 ± 19.52 19.60 ± 0.07 7.70 ± 0.00 328.10 ± 5.80

Table 3   Mortality (%) of 
Daphnia similis, Chironomus 
sancticaroli, and Danio rerio 
observed at the end of standard 
tests (ST) and channels system 
(CS) tests with imidacloprid 
(IMI)

Values expressed as mean value ± standard deviation
* Statistically significant difference (p < 0.05) according to Fisher’s test
RW reconstituted water; UW upstream water; DW downstream water

Assay Treatment Daphnia similis Chironomus sancticaroli Danio rerio

ST CS ST CS ST CS

A1 RW 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
RW + IMI 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0* 100.0 ± 0.0* 0.0 ± 0.0 0.0 ± 0.0

A2 RW 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UW 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UW + IMI 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0* 100.0 ± 0.0* 0.0 ± 0.0 0.0 ± 0.0

A3 RW 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
DW 10.0 ± 0.0 12.5 ± 3.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
DW + IMI 0.0 ± 0.0 7.5 ± 3.5 100.0 ± 0.0* 100.0 ± 0.0* 0.0 ± 0.0 0.0 ± 0.0
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Discussion

According to Morrissey et al. (2015) review, imidacloprid 
(IMI) concentrations detected in worldwide surface waters 
varied from 0.001 to 320.0 µg L−1. In the present study, 
we selected 320.0 µg L−1 as a reference to carry out the 
ecotoxicological evaluation. Although most of the reports 
indicate that the lower IMI concentrations are detected 
more frequently in natural conditions, we chose the high-
est concentration considering that this concentration can 
occur again in similar environmental contamination cir-
cumstances. Additionally, in a typical aquatic ecosystem, 
IMI is rapidly dissipated and the loss of this compound 
occur through different pathways including dilution, infil-
tration in the soil, photolysis, microbial degradation, and 
sorption to soil and sediment (La et al. 2014). Therefore, 
these sources of concentration reduction can mask the 
results of experiments using lowered concentrations, espe-
cially in polluted water as used herein. It also is important 
to notice that studies that quantify the IMI in water bodies 
report values from point samples, i.e., samples collected 
in a specific place and moment. This type of sampling 
does not consider the loss pathways of the compound in 
the aquatic environment and so often underestimates peak 
concentrations by 1–3 orders of magnitude and average 
concentrations by 50% (Xing et  al. 2013). Thus, high 
IMI concentrations can be observed before this pesti-
cide is diluted in the aquatic environment, mainly close 
to the agricultural areas. Moreover, another variable that 
increases the concentrations of IMI in the water column is 
the rainfall, which can intensify the runoff of the pesticide 
to the aquatic environment. However, other factors should 
be considered to understand the transport of the IMI to the 
streams, such as its increasing use observed each year and 
the information about the watershed (Hladik et al. 2014). 
Therefore, apart from the real possibility to find such a 
high concentration of IMI in water bodies, we chose to 
perform our assays using the high IMI concentration for 
the sake of simplicity and to maintain and monitor the 
target concentration in our indoor system of artificial chan-
nels. This also enables the validation of our system for 
further studies at lower concentrations of neonicotinoids.

The limnological parameters of the UW and DW 
sites fell in between the recommended standards for 
the protection of aquatic biota under Resolution CON-
AMA 357/2005 (BRASIL, 2005). However, DW high val-
ues for total phosphorus, conductivity, BOD, and turbid-
ity (Table 1) indicate contamination by organic effluents 
from the urban area. Aquatic environments located close 
to urbanized areas are vulnerable to pollution by several 
contaminants that affect the ecosystem in the short and 
long term (do Amaral et al. 2018). Effluents released in 

Fig. 3   GST, CAT, and APX activity in Danio rerio after exposure to 
imidacloprid (IMI) in experiments using reconstituted water (RW) 
and water collected upstream (UW) and downstream (DW) of Piquete 
river carried out in standard tests (ST) and channels system (CS). Val-
ues expressed as mean value ± standard deviation (SD). Errors bars 
represent the SD. *Significant differences between IMI and control 
groups (Dunnett’s test, p < 0.05)
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water bodies have high loads of organic matter, dissolved 
phosphorus, and nitrogen compounds (Mor et al. 2019), 
which explain the high values of physical and chemical 
parameters observed in DW water (Table 1). These nutri-
ents occur naturally in aquatic ecosystems and are impor-
tant components of the main energy pathways of lotic 
ecosystems. However, a significant increase in its concen-
trations can indicate a eutrophication process that results 
in an ecological imbalance in hydrobiocenosis (Milošević 
et al. 2018). According to the trophic index proposed by 
Cunha et al. 2013, we classified the trophic level of UW 
and DW as ultraoligotrophic (≤ 15.9 µg L−1) and oligo-
trophic (16.0–23.8 µg L−1), respectively.

Under the conditions of the present study, the tested IMI 
concentration (320.0 µg L−1) did not cause mortality in 
D. similis and D. rerio (Table 3). Other studies evaluated 
the effects of IMI in different species of Daphnia sp. and 
found EC50 values between 16.5 and 56.6 mg L−1 (Tišler 
et al. 2009; Hayasaka et al. 2012b; Qi et al. 2018). Wu et al. 
(2018) determined LC50 of IMI for different development 
stages of D. rerio, the concentrations varied from 26.39 to 
128.6 mg L−1. In both cases, EC/LC50 values were relatively 
high compared with the concentration used in the present 
study. Moreover, no toxicity was observed in the water 
collected in the Piquete river used in the control group in 
A2 and A3 (Table 3). The absence of toxicity in A2 can be 
associated with the quality of the water collected upstream 
(UW) of the Piquete river. This sampling point consisted 
of a preserved area without human interference, i.e., with-
out evidence of pollution (Table 1). On the other hand, the 
water used in A3 was collected downstream of this river. 
Although the river receives wastewater from the urban areas, 
its capacity for dilution and self-purification could explain 
the absence of toxicity observed in this assay.

Considering other studies, IMI can cause mortality in 
species of Chironomus sp. in low concentrations of the 
commercial product and analytical grade chemicals. The 
LC50 values vary from 1.7 to 31.5  µg  L−1 (Stoughton 
et al. 2008; Pestana et al. 2009; Raby et al. 2018a; Chan-
dran et al. 2018). As mentioned, there is a lack of stud-
ies evaluating the toxicity of IMI in C. sancticaroli. In 
the present study, we observed 100 ± 0.0% of mortality in 
C. sancticaroli individuals after exposure of 48 h to IMI 
(320.0 µg L−1) in both systems, standard tests, and chan-
nels system (Table 3). The results indicated that low IMI 
concentrations detected in water bodies offer risks to the 
survival of populations of the genus Chironomus sp. This 
is especially true if we consider that IMI can remain in 
water bodies for long periods when not exposed to light, 
such as in sediment, where these benthonic organisms live 
part of their life (Sumon et al. 2018). From an ecological 
viewpoint, it is important to note that if benthic organisms 
are negatively impacted the entire ecosystem may suffer 

because they play a key role in the food web and nutrient 
cycling in water bodies (Silva et al. 2019). Aquatic inver-
tebrates are important components of these ecosystems, 
acting as detritivore, herbivore, parasite, and predator. 
Furthermore, they provide food to vertebrates associated 
with these systems (Pisa et al. 2015).

The mortality rate in standard tests and channels system 
showed similar results. The use of the channels system did 
not affect the survival of the tested organisms. Thus, the 
channels system can be an alternative to evaluate the effects 
of environmental contaminants in a multispecific approach. 
Some adaptations, such as removing the capsules, could 
promote interactions between the tested species and bring 
greater ecological complexity to the analysis. Thus, these 
adaptations in the channels system would allow the evalua-
tion of other variables that could not be obtained in a stand-
ard test, such as the predation index and behavior changes. 
In short, the channels system proposed in the present study 
demonstrated to be a promising method for the simultaneous 
assessment of different effects of the contaminants on the 
aquatic ecosystem.

In addition to mortality, aquatic contaminants cause 
physiological and biochemistry imbalances, increase the sus-
ceptibility to disease, and change the reproductive system. 
Bioaccumulation of these contaminants can induce oxidative 
stress characterized by an imbalance of the redox system, 
between oxidant and antioxidant mechanisms, which result 
in cell damage. The aquatic organisms can live in contami-
nated environments due to defense mechanisms that allow 
detoxification, antioxidant protection, excretion, and stress 
response of xenobiotics (Hook et  al. 2014; Narra et  al. 
2017; Stara et al. 2019). In fish, oxidative stress can occur 
as a secondary aspect of hypoxia, presenting histopathologi-
cal and biochemical alterations in the gills, as well as the 
nuclear abnormalities of the erythrocytes (Dantzger et al. 
2018). Several studies have indicated the potential of IMI to 
change the enzymatic activity in different fish species. For 
instance, Topal et al. (2017) evaluated the IMI neurotoxicity 
in Oncorhynchus mykiss at concentrations of 5.0, 10.0, and 
20.0 mg L−1 for 21 days. An increase in the activity of CAT, 
superoxide dismutase (SOD), glutathione peroxidase (GPx), 
malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine 
(8-OHdG) was observed, but the activity of acetylcholinest-
erase (AChE) enzyme decreased. Wu et al. (2018) exposed 
D. rerio embryos to 0.38, 1.52, and 6.08 mg L−1 of IMI 
active ingredient for 96 h. The activity of GST, SOD, and 
CYP450 increased. On the other hand, the activities of car-
boxylesterase (CarE) and CAT decreased. Xia et al. (2016) 
observed a decrease in the glutamic-pyruvic transaminase 
(GPT) and glutamic-oxalacetic transaminase (GOT) activi-
ties of the Misgurnus anguilicaudatus after 96-h exposure 
to IMI in all tested concentrations (43.0, 67.0, 91.0, and 
115.0 mg L−1).
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In the present study, we examined the oxidative stress 
caused by the tested IMI concentration (320.0 µg L−1), 
which is lower compared with the reported ones (Xia et al. 
2016; Topal et al. 2017; Wu et al. 2018). Thus, we meas-
ured the enzymatic activities of GST, CAT, and APX of D. 
rerio (Fig. 3). GST activity showed a statistically significant 
decrease (p < 0.05) in the presence of IMI in the treatment 
RW + IMI (Fig. 3a). In the treatment UW + IMI, we also 
observed a decrease in CAT activity in both experiments: 
standard tests and channels system (Fig. 3b). Differently, 
APX activity increased only in the treatment UW + IMI per-
formed in standard tests (Fig. 3c). According to Hook et al. 
(2014), variations in the activity of enzymes responsible for 
the detoxification process demonstrate that the physiological 
system is capable of detecting these pollutants and identify-
ing them as stressors agents, which must be excreted from 
the body.

GST has a key role in IMI elimination and its metabolites. 
IMI metabolism involves glucuronidation and methylation in 
the imidazole ring and glutathione (GSH) binding in chlo-
ropyridinyl groups. These processes lead to the formation 
of the metabolites N-acetylcysteine and S-methyl at the end 
of the detoxification process, which will be excreted by the 
body (Wang et al. 2018; Stara et al. 2019). However, in some 
cases, GST activity does not show significant changes or 
even displays lower activity values compared with the con-
trol group, as observed herein in the RW + IMI treatment. 
The decline or absence of GST activity in D. rerio also has 
been reported by Ge et al. (2015) even during a long expo-
sure period to IMI concentrations that varied between 0.3 
and 5.0 mg mL−1.

The absence of GST activity is possibly associated with 
enzymes that failed to convert xenobiotics to adequate levels 
to activate GST during the initial stages of the detoxifica-
tion process (Uguz et al. 2003). The decline of GST activ-
ity may be related to the excessive consumption of GSH as 
a substrate and the change in GST composition triggered 
by intermediate metabolites or associated with competitive 
inhibition between GST and its substrate (Egaas et al. 1999). 
Another possibility is that glutathione levels could decrease 
due to the excretion of its oxidized form during the exposure 
period to xenobiotic (DeLeve and Kaplowitz 1991).

Also, the GST activity can vary between the organs 
evaluated. Vieira et al. (2018) used the commercial product 
Nortox® to evaluate the changes in the enzymatic activity 
of Prochilodus lineatus at low IMI concentrations (1.25 to 
1250.0 µg L−1). After 5-d exposure, GST activity increased 
in the brain in concentrations from 125.0 µg L−1. In contrast, 
a reduction in gills and kidneys was observed from 12.5 and 
1250.0 µg L−1, respectively. At low IMI concentrations, an 
analysis that considers organs separately brings more spe-
cific information about the effects of IMI in the physiologi-
cal system of fish.

CAT and APX are enzymes that act as removing the 
toxic form of H2O2 by converting it into H2O and O2 mol-
ecules (Sellaththurai et al. 2019). The standard tests that 
used UW + IMI showed an increase in APX activity and a 
decrease in CAT activity (Fig. 3). Although CAT reduces 
H2O2 (Van der Oost et al. 2003), at high concentrations of 
superoxide anion and hydrogen peroxide, it can be inac-
tivated (Lushchak et al. 2009; Semchyshyn and Lozinska 
2012). Therefore, other peroxide detoxifying enzymes would 
need to be active, which increased APX activity. Inhibition 
of CAT has been reported by several studies evaluating the 
effects of different pesticides on fish, as in the present study 
(Coelho et al. 2011; Husak et al. 2014; Dantzger et al. 2018).

Although DW displayed the highest nutrient concen-
tration and other parameters associated with the presence 
of high organic load (Table 1), the results of enzymatic 
activity demonstrated that the effect of IMI was significant 
only in samples without signs of pollution (RW and UW) 
(Fig. 3). The organisms could be subject to the effects of 
possible contaminants present in the collected water. More-
over, a synergic effect between pollutants and IMI could 
be observed increasing the toxicity in the tested organ-
isms. However, we did not observe this synergism was not 
observed in the present study.

Some studies have demonstrated that IMI can interact 
with the sediment and nutrients, considered as contaminants, 
mitigating the impacts of this pesticide in macroinvertebrate 
communities (Alexander et al. 2016; Chará-Serna et al. 
2019). That is, IMI appears to be more harmful to organ-
isms that live in pristine and unpolluted water bodies could 
be more susceptive to suffer impacts from IMI. The pollut-
ants can keep the detoxification system active, thus, when 
exposed to IMI, the organism can metabolize it more easily.

The use of biomarkers is important to obtain an inte-
grative analysis of the impact of the pollutants on ecosys-
tems. In the present study, we did not report acute toxic 
effects in D. rerio after exposure to IMI (Table 3), but we 
could observe changes in GST, CAT, and APX activities 
(Fig. 3), which indicate that the physiological system can be 
impaired. Physiological changes affect the behavior, health, 
and eating habits of individuals and, consequently, affecting 
the aquatic community.

Conclusions

The results obtained in the present study allow us to fur-
ther understand the effects of IMI on different nontarget 
aquatic organisms from freshwater environments. We have 
simulated natural conditions using a lotic channels sys-
tem to evaluate the effect of the highest IMI concentration 
detected in surface water. The mean value of IMI in the 
three CS assays was 287.60 ± 32.06 µg L−1. The results 
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demonstrated that this concentration was able to affect the 
survival and the physiological balance of aquatic organ-
isms. The simple system adopted in our studies allowed 
the evaluation of the IMI effects in a multispecific level 
using three different nontarget organisms simultaneously 
and offers a new way to assess the impacts in the aquatic 
community. Also, further experiments using this system 
can be developed without the use of capsules to promote 
greater ecological complexity and obtain data that stand-
ard tests cannot offer, such as interactions between the 
evaluated organisms.

The data obtained suggest that Chironomus sp. could 
suffer a populational decrease in the presence of the IMI 
concentration tested in the present study (320.0 µg L−1) 
in natural conditions. Also, a high mortality rate could be 
observed even at low concentrations, if we consider the 
EC50 values for Chironomus sp. reported in the literature. 
Moreover, this genus can be used as a bioindicator in pol-
luted areas.

In the present study, we did not observe the mortality 
in daphnids and fish exposed to IMI (320.0 µg L−1). How-
ever, the oxidative stress analysis demonstrated that the 
tested IMI concentration caused physiological changes in 
D. rerio. The fish were more susceptible to oxidative stress 
in unpolluted environments.

The IMI concentration tested herein is high compared 
to most of the values detected in surface waters. How-
ever, considering losses pathways of the IMI in the aquatic 
environment, higher concentrations can be expected if we 
regard the proximity of the agricultural lands, rainfall 
events, and the variations of the persistence of the IMI in 
different compartments of the ecosystem. Besides that, we 
believe that the information obtained can support future 
experiments using a channels system to test lower concen-
trations more frequently detected in surface waters.

The channels system adopted in the present study along 
with the data obtained can contribute to the comprehen-
sion of the effects of IMI in different environmental condi-
tions, supporting the monitoring, management, and estab-
lishment of future conservation policies about the use of 
IMI and similar active ingredients used as pesticides.
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