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Abstract

Mercury (Hg), particularly as methylmercury (MeHg), is a nonessential, persistent, and bioaccumulative toxic element
with high biomagnification capacity and is considered a threat to marine environments. We evaluated total Hg concentra-
tions in liver, kidney, and brain in 62 individuals of 9 bird species linked to marine ecosystems from western Mediterranean
admitted in a Wildlife Rehabilitation Center (WRC) (Alicante, Spain, 2005-2020). Age- and sex-related differences in Hg
levels, as well as the cause of admission to the WRC, were also evaluated in certain species. The species studied were: north-
ern gannet (Morus bassanus), European shag (Phalacrocorax aristotelis), great cormorant (Phalacrocorax carbo), osprey
(Pandion haliaetus), Balearic shearwater (Puffinus mauretanicus), yellow-legged gull (Larus michahellis), razorbill (Alca
torda), common tern (Sterna hirundo), and black-headed gull (Chroicocephalus ridibundus). Concentrations in feathers of
27 individuals, and concentrations in internal tissues in 7 other individuals of 7 different species were also reported but not
statistically evaluated due to the limited number of samples. Results suggest that individuals were chronically exposed to
Hg through diet. The differences in Hg concentrations among species may be explained by their diet habits. Mercury con-
centrations strongly correlated between tissues (r=0.78-0.94, p <0.001, n=61-62). Some individuals of certain species
(i.e., European shag, northern gannet, and great cormorant) showed Hg concentrations close to or above those described in
the literature as causing reproductive alterations in other avian species. Consequently, certain individuals inhabiting western
Mediterranean could be at risk of suffering long-term, Hg-related effects. Some of the species evaluated are listed within
different categories of threat according to the International Union for Conservation of Nature IUCN) and are endangered at
a national level, so this study will provide valuable information for assessors and authorities in charge of the management
of the environment and pollution.

Marine ecosystems are threatened by pollutants such as mer-
cury (Hg), especially in its organic form as methylmercury
(MeHg), a persistent, bioaccumulative, and toxic, nones-
sential element that is distributed worldwide (Cherel et al.
2018; Kenney et al. 2018). Natural processes and anthropo-
genic activities participate in the continuous release of Hg
into the environment (Kenney et al. 2018; Ruus et al. 2015),
which enters marine ecosystems mostly through wet and dry
atmospheric deposition processes and runoff from industrial
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emissions (Carravieri et al. 2018; Ishii et al. 2017; Zamani-
Ahmadmahmoodi et al. 2010). In the marine environment,
the inorganic Hg is methylated and converted into MeHg, the
most toxic and bioavailable form (Cherel et al. 2018; Kenney
et al. 2018; Ruus et al. 2015). Methylmercury is assimilated
by phytoplankton and zooplankton, becoming part of the
food chain, where it bioaccumulates and biomagnifies as the
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trophic level increases. Consequently, top predators, such as
seabirds achieve higher concentrations of this contaminant
in their organs and tissues (Carravieri et al. 2018; Misztal-
Szkudlinska et al. 2018).

Methylmercury is a neurotoxic and endocrine disrup-
tor element that also alters behaviour, reproductive suc-
cess, nestlings’ growth and development, metabolism, and
immune responses (Carravieri et al. 2018; Fort et al. 2015;
Garcia-Fernandez 2014), affecting principally reproduction
in seabirds (Carravieri et al. 2018). Against this toxicity,
organisms have protective mechanisms, such as the synthesis
and binding to metallothioneins (MT), demethylation and
formation of nontoxic complexes with selenium, or MeHg
elimination through moult (Espin et al. 2012, 2016). These
processes seem to be particularly effective in seabirds,
explaining the tolerance of these predators to higher Hg
concentrations compared with other bird species (Garcia-
Fernandez 2014).

It is essential to conduct Hg biomonitoring studies in
wildlife inhabiting marine ecosystems and, for this purpose,
seabirds and other piscivorous birds (e.g., osprey, Pandion
haliaetus) are considered good bioindicators of Hg-polluted
marine environments because they are long-lived species,
they bioaccumulate MeHg in their organism, and they are
in a high trophic position in the food web (Carravieri et al.
2018; Espin et al. 2012; Garcia-Fernandez 2014; Garcia-
Fernandez et al. 2020; Kojadinovic et al. 2007; Moura et al.
2018a; Ribeiro et al. 2009). In this sense, collecting tissues
from birds that have died in massive mortality events or from
dead specimens stored at Research or Wildlife Rehabilitation
Centers may provide interesting data to examine Hg concen-
trations and the relationships between internal tissues in a
broad range of species (Espin et al. 2012; Fort et al. 2015;
Mallory et al. 2018).

The Mediterranean is a semiclosed sea with restricted
water exchange and surrounded by industrialized countries,
which entails a greater risk of Hg contamination (Espin et al.
2012; Pereira et al. 2019). However, data are scarce about
the concentrations of this metal in certain bird species of the
western Mediterranean. The purpose of this study was to
evaluate the exposure to Hg in different seabird and aquatic
bird species linked to marine ecosystems in eastern Spain.
The specific objectives are: (1) to provide data on total Hg
concentrations in liver, kidney, and brain of different sea-
bird and aquatic bird species as well as in feathers of some
individuals, and (2) to assess differences in total Hg con-
centrations among nine species, as well as between sexes,
age groups and causes of admission in the Wildlife Reha-
bilitation Center (WRC) for four species where a sufficient
number of samples was available. Based on the available
literature, we hypothesize that larger species, as well as male
and adult individuals, will present higher Hg concentrations.
In addition, we expect to find higher Hg concentrations in
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internal tissues of those specimens suffering non-traumatic
pathologies (i.e., individuals with symptoms of undernutri-
tion due to infectious or parasitic diseases).

Materials and Methods
Species and Study Area

In this study, Hg exposure was evaluated in 62 individu-
als of 9 species of birds linked to marine ecosystems: 13
European shags (Phalacrocorax aristotelis), 13 yellow-leg-
ged gulls (Larus michahellis), 12 northern gannets (Morus
bassanus), 8 great cormorants (Phalacrocorax carbo), 5
razorbills (Alca torda), 3 common terns (Sterna hirundo),
3 Balearic shearwaters (Puffinus mauretanicus), 3 osprey
(Pandion haliaetus), and 2 black-headed gulls (Chroico-
cephalus ridibundus). Table 1 reports the main character-
istics of these 9 species, including their habitat, diet, body
weight, and conservation status. Mercury concentrations in
7 individuals of 7 other different species are also reported:
Atlantic puffin (Fratercula arctica), ruddy turnstone (Are-
naria interpres), Audouin’s gull (Ichthyaetus audouinii),
Mediterranean gull (Ichthyaetus melanocephalus), Scopoli’s
shearwater (Calonectris diomedea), little tern (Sternula albi-
frons), and grey heron (Ardea cinerea). Data for those 7 spe-
cies where only one individual was available are presented
for information purposes but are not included in the statis-
tics nor discussed due to limitations in number of samples.
All of these animals were found dead or injured along the
Occidental Mediterranean coastline, at different locations
in the province of Alicante, and were admitted in the WRC
of Santa Faz (Alicante, eastern Spain; Fig. 1) between 2005
and 2020. The causes of admission in the WRC were trauma,
drowning, fish-hook ingestion, electrocution, entanglement
in fishing line and fishing net, and undernutrition as a result
of other pathologies (e.g., infectious diseases).

Sampling

Necropsies of the 69 individuals were performed in the
WRC. A total of 206 samples of liver (n=69), kidney
(n=068, no kidney sample was retained in a cormorant
individual), and brain (n=69) were collected in Eppendorf
tubes, transported under cold conditions to the Toxicology
laboratory at the University of Murcia, and stored frozen at
—20 °C until analysis. Sterile Eppendorf tubes were used
so that there was no possibility of contamination from the
containers. Back feathers were only collected in 27 indi-
viduals and were kept in sterile sealed plastic bags at room
temperature. In most cases, the age (n =63 individuals), sex
(n=061), and body mass (n=155) of the individuals were
recorded. Age was determined through plumage patterns
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Fig.1 Map of the sampling area (coastline of Alicante, Spain). Three individuals were found in different locations in the province of Valencia

(i.e., Montaverner, Oliva, and Valencia; not shown in map)

and morphological criteria and sex by direct visualization
of the gonads during the necropsy.

Mercury Analysis

Total Hg (hereafter Hg) was analysed using a Milestone
DMA-80 direct Hg analyser based on atomic absorption
spectrophotometry, with a detection limit of 0.005 ng. Each
sample (0.05 g wet weight for internal tissues and 0.005 g
dry weight for feathers) was loaded in a quartz boat. The
precision and accuracy of the method were previously evalu-
ated using certified reference material (CRM; TORT-2, lob-
ster hepatopancreas, National Research Council Canada),
and blanks were also run in each sample set. A recovery
percentage of 108.9 +4.1% (mean =+ standard deviation,
SD) and a coefficient of variation for repeatability of 3.7%
were obtained. Feathers were washed using distilled water,
Milli-Q water, and acetone before analytical determination
to remove external contamination from the surface.

The percentage of humidity of the internal tissues was
calculated in an Infrared Moisture Analyser MA35 (Sarto-
rius) in order to express the results of total Hg in both wet

weight (ww) and dry weight (dw) and compare them with
other published studies.

Statistical Analysis

The results obtained were analysed using the IBM SPSS v.24
statistical package. A descriptive statistical analysis was per-
formed by obtaining the mean + SD and median (min—-max)
Hg concentrations. Species with only one individual available
(n="17 species; Table 2) and results from feathers (27 samples
from 11 species; Table 2) were excluded to perform statistical
tests and discuss results due to limitations in number of sam-
ples. The normality of the variables was tested using a Kol-
mogorov—Smirnov test and Hg concentrations in liver, kidney,
and brain were log-transformed, obtaining a normal distribu-
tion after the transformation. ANOVA followed by Tukey’s
tests for multiple comparison were performed to test signifi-
cant differences in Hg concentrations between tissues and spe-
cies (n=9 species; Table 2). The relationships between the Hg
concentrations in liver, kidney, and brain and their correlation
with body mass were tested using Pearson’s correlation coef-
ficient. For those species where male, female, juvenile, and

@ Springer
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Table 2 Mercury concentrations (mean + SD, median and range) in ug/g (wet weight) of the species studied

Species N* Liver Kidney Brain NF* Feathers
Morus bassanus 12 7.16 +4.60* 6.62 +2.85* 1.27+0.81* 3 15.45+5.84
6.16 (1.96-19.33) 6.58 (3.03-10.98) 1.13 (0.32-2.97) 13.86 (10.58-21.93)
Phalacrocorax aristotelis 13 14.56 +29.63* 16.12+37.89*¢ 0.98 +0.62* 5 3.25+1.99
4.74 (1.43-110.57) 3.17 (1.30-134.17) 0.88 (0.29-1.92) 3.04 (0.64-6.26)
Phalacrocorax carbo 8 5.65+3.62%¢ 440447544 0.53+0.27> 1 5.53
4.40 (2.34-10.81) 2.88 (1.71-16.06) 0.50 (0.28-1.14)
Pandion haliaetus 3 1.98+0.02*° 3.12+3.28% 0.88+0.56 3 2.87+1.19
1.99 (1.95-2.00) 1.42 (1.03-6.91) 0.94 (0.28-1.41) 2.83 (1.70—4.08)
Puffinus mauretanicus 3 1.81+0.04*° 1.14£0.515¢ 0.40 +0.06>" -
1.83 (1.76-1.85) 1.08 (0.67-1.68) 0.43 (0.33-0.46)
Larus michahellis 13 1.31+0.74° 1.01 +0.66° 0.27+0.15° 8 491+2.74
1.03 (0.35-2.47) 0.90 (0.30-2.50) 0.20 (0.10-0.60) 4.55 (1.61-10.59)
Alca torda 5 1.27+0.90° 1.11£0.97°¢ 0.54 +0.42%0 -
0.96 (0.63-2.87) 0.70 (0.55-2.84) 0.37 (0.27-1.29)
Sterna hirundo 3 1.194£0.295¢ 0.74+0.37°¢ 0.20+0.03° -
1.15 (0.93-1.50) 0.54 (0.51-1.17) 0.20 (0.17-0.24)
Chroicocephalus ridibundus 2 0.41+0.14° 0.28+0.08" 0.15+0.08" 2 1.61+0.58
0.41 (0.30-0.51) 0.28 (0.22-0.34) 0.15 (0.09-0.21) 1.61 (1.20-2.02)
Fratercula arctica 1 1.98 1.26 0.58 -
Ichthyaetus audouinii 1 10.07 6.43 1.36 1 14.15
Ichthyaetus melanocephalus 1 0.88 1.01 0.35 1 29.23
Calonectris diomedea 1 8.54 3.32 1.10 1 10.54
Sternula albifrons 1 0.90 0.66 0.13 1 2.12
Ardea cinerea 1 2.13 0.52 0.22 1 5.23
Arenaria interpres 1 0.68 0.52 0.22 -

N* number of samples for liver, kidney and brain; N** number of samples for feathers

Means sharing the same letter within each sample type do not show significant differences (Tukey test comparing Hg concentrations between
species for each tissue type, species with one individual were excluded in the analysis)

The mean water content in the liver, kidney, and brain was 69.5 +2.4%, 72.6 +2.7%, and 80.6 +2.0%, respectively

adult individuals were available, as well as different causes of
admission to the WRC (n=4 species, i.e., Morus bassanus,
Phalacrocorax aristotelis, Phalacrocorax carbo, and Larus
michahellis), ANOVA was used to test differences in Hg con-
centrations according to sex, age and cause of admission. The
causes of admission were classified into two groups, based on
the probability to be related to loss of body mass: (1) traumatic
type entry, which included trauma, drowning, hook ingestion,
fishing line entanglement, and fishing net entanglement, and
(2) nontraumatic type entry, which included individuals with
symptoms of undernutrition as a result of other pathologies
(e.g., parasitic or infectious diseases). For all analyses, the
level of significance was set at p <0.05.

@ Springer

Results

Hg concentrations in liver, kidney, brain, and feathers for
the different study species are shown in Table 2, and Hg
concentrations reported in internal tissues of the same spe-
cies in some publications are provided in Table 3 for com-
parison purposes. Mercury concentrations differed signifi-
cantly between the nine species for the three internal tissue
types (ANOVA test for liver: F=10.09, kidney: F=9.5
and brain: F=7.8, p<0.001; Table 2; Fig. 2). Tukey’s
test results comparing Hg concentrations among species
within each sample type show that, in general, northern
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gannet, European shag, and great cormorant—the greater
species—were the ones that presented the highest Hg con-
centrations (mean Hg in liver: 7.16, 14.56, and 5.65 ug/g
ww, respectively; Table 2), coinciding with our initial
hypothesis. The osprey was the next species with the high-
est Hg concentration (mean Hg in liver: 1.98 pg/g ww;
Table 2) but did not show significant differences with the
rest of the species except for yellow-legged gull, razorbill,
common tern, and black-headed gull in brain (Table 2).
Mercury levels also differed among tissues (ANOVA test:
F=46.7, p<0.001). Tukey’s test showed no differences
between liver and kidney (p =0.386), whereas the con-
centrations in these tissues were significantly higher than
those found in the brain (p <0.001) for the nine species
studied (Table 2). For these nine species, the mean ratio
of Hgjjyer HEkigney Was 1.03 (0.63-1.61, n=62; coefficient
of variation, CV, of 26%), reflecting that liver and kidney
values were similar, whereas the ratio of Hg;.,:Hgy.in Was
8.28 (2.25-14.86, n=62, CV 70%) similar to the ratio of
Hgyianey HEbrain (8-01, 1.87-16.45, n =62, CV 87%), show-
ing the higher Hg levels in the liver and kidney compared
with the brain.

Pearson’s correlation coefficients showed that Hg con-
centrations in tissues were positively correlated with the
body mass of the individuals (7 yg jiver—Body mass = 0-450, 7
Hg kidney—Body mass = 05377 r Hg brain—Body mass = 0565’ p< 0005’
n=48). In addition, strong significant positive correla-
tions were observed for Hg concentrations between tissues
(rliver—kidney = 0937’ Miver—brain = 0787’ rkidney—brain = 0784’
p<0.001, n=61-62; Fig. 3).

Differences in Hg concentrations according to sex, age,
and cause of admission were evaluated in four species (i.e.,
northern gannet, European shag, great cormorant, and

M Liver
% Kidney
i Brain

A\

L=
NN

H .z,% M

PC PH PM LM AT SH CR
Species

yellow-legged gulls). Adult European shags showed sig-
nificantly higher Hg concentrations in liver and kidney than
juvenile birds (F=35.3 and 68.9, respectively, p <0.001), as
expected, whereas the opposite trend was found in the three
tissue types in yellow-legged gulls (F=28.5, 35.0, and 16.6
in liver, kidney, and brain, respectively, p <0.003; Fig. 4).
Sex-related differences were only observed in yellow-leg-
ged gulls. Females had lower Hg concentrations in tissues
than males (F=8.0, p=0.018 in liver; F=8.8, p=0.014 in
kidney; F=5.8, p=0.037 in brain; Fig. 4), which is in line
with the literature data. Finally, significant differences in
Hg concentrations according to the cause of admission to
WRC were only found in liver for northern gannets (F=6.3,
p=0.033) and European shags (F=6.7, p=0.029), birds suf-
fering nontraumatic pathologies showing higher hepatic Hg
concentrations than birds admitted due to traumatic causes
(Fig. 5), which was expected according to our hypothesis.

Discussion

Tissue Hg Concentrations and Interspecific
Differences

The pattern of Hg distribution in tissues of nine species
linked to marine ecosystems was similar to other stud-
ies: liver > kidney > brain (Table 3). Chronic exposure to
Hg entails a balance in concentrations between compart-
ments in the body, which explains the distribution pattern
observed and the strong correlations found between Hg
concentrations in liver, kidney, and brain (Fig. 3). The
distribution of Hg in different organs depends on the form
of Hg to which the individual is exposed, and the ratio

@ Springer
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of Hg in kidney and liver may be used to distinguish a
chronic exposure to MeHg or inorganic Hg (Scheuhammer
1987). Thus, a kidney:liver ratio markedly greater than
1 reflects an exposure to inorganic Hg, whereas a ratio
close to 1 (and < 2) is characteristic of MeHg exposure.
In this study, the kidney:liver ratio was within the range
0.62-1.58 (mean ratio: 0.88) depending on the species,
probably reflecting that the individuals evaluated were
mainly exposed to MeHg. This is consistent with the fact
that almost 100% of the total Hg detected in muscle of
different fish species was in the form of MeHg (Scheu-
hammer 1987).

Several factors may explain variations in Hg concen-
trations between species (Table 2), some of them inter-
specific, such as detoxification capacity, size, diet, or

Age
* W Juvenil
e SAdl
- *
2
2
5
3
c
K]
j
€
8
c
8
o
x
A\

Brain

migratory habits, and others intraspecific, such as age, sex,
or body condition (Moura et al. 2018a; Ramos et al. 2013).
One of the main factors that determine the interspecific
differences in the pollutant load in the organism is the diet,
being the main route of Hg exposure in marine vertebrates
(Carravieri et al. 2018; Kojadinovic et al. 2007; Moura
et al. 2018b; Ribeiro et al. 2009). Although the study area
is an essential factor to consider due to the potential dif-
ferences in Hg contamination, it has not been discussed
in this study, because all individuals were found dead or
injured along the Occidental Mediterranean coastline.
Also, the exact origin of the migratory individuals before
their arrival to the coast of Alicante is unknown. Despite
this, it should be considered that the origin could partly
explain the differences in Hg concentrations found in cer-
tain species. This may be critical in some cases, and an

Gender

% Female

250
W Male

2,00

1,50

1,00

Hg concentration (ug/g, w.w.)

0,50

000
Kidney Brain

Liver

Fig.4 Mean (and 95% CI) mercury concentrations (ug/g, w.w.) in tissues of Larus michahellis by age and gender. *Significant differences

between ages and sexes were found in the three tissue types (p <0.05)

Fig.5 Mean (and 95% CI)

(log) mercury concentration
(ug/g, w.w.) in liver of Morus
bassanus and Phalacrocorax
aristotelis according to cause

of admission to the WRC (trau-
matic or nontraumatic). Signifi-
cant differences according to the
cause of admission were found
in both species (p <0.05)

Log Hg in liver (ugig, w.w.)

Z
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"

e
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approach to relate Hg concentrations in an abiotic matrix
with those in bird tissues is recommended for future stud-
ies (e.g., the Biota Sediment Accumulation Factor, Calle
et al. 2015).

In general, the species studied are mainly piscivorous,
which means that they are exposed to higher Hg levels
than species with different diet habits, since fish accumu-
late high levels of this metal, especially as MeHg (Koja-
dinovic et al. 2007). Depending on the species of fish they
ingest, they will be exposed to a different Hg amount.
Demersal and benthic fish have higher Hg concentrations
than pelagic fish because they occupy higher trophic lev-
els and are closer to the bottom sediments (Arcos et al.
2002; Vizuete et al. 2018). The study species that pre-
sented a larger size (northern gannet, European shag, and
great cormorant) showed the highest Hg concentrations
(Table 2), which was supported by a positive correlation
between Hg concentrations in tissues and body mass. This
could be due to the consumption of larger prey, which can
contain higher Hg levels than smaller prey of the same
species (Zamani-Ahmadmahmoodi et al. 2014). Although
the northern gannet feeds on pelagic fish, it ingests larger
prey than the cormorants by feeding farther from the
coast. Also, it selectively looks for places where it can
take advantage of trawl fishery discards (BirdLife Inter-
national 2018; Hamer et al. 2000; Kubetzki et al. 2009),
which may lead to greater Hg exposure, because birds can
consume species that they cannot access in a natural way,
such as demersal or benthic fish. One of its main prey is
the Atlantic mackerel (Scomber scombrus), a large size
fish (215-455 mm) that feeds on plankton but mostly on
smaller fish as its size increases, being more exposed to
Hg than other fish species (Hamer et al. 2000; Olaso et al.
2005). High Hg levels in cormorants (i.e., European shag
and great cormorant) can also be explained by the diving
capacity of both species, which allows them to feed on ben-
thic fish (Arcos et al. 2002; BirdLife International 2018,
Misztal-Szkudlinska et al. 2018). The osprey feeds exclu-
sively on fish, and the Balearic shearwater takes advantage
of commercial fishery discards and ingests pelagic fish but
feeds on smaller prey, so less Hg exposure can be expected
(BirdLife International 2018; Louzao et al. 2012). Both
species showed slightly (but not significant for most tis-
sues) lower Hg concentrations that northern gannets,
European shags, and great cormorants. Although the diet
of razorbills and common terns are mainly based on fish,
they presented lower Hg concentrations than the northern
gannet and European shag, probably because these spe-
cies ingest smaller and pelagic prey (BirdLife International
2018; Szostek and Becker 2015). Some fish included in
the diet of these species are sardines (Sardina pilchardus)
for razorbills and also anchovies (Engraulis encrasicolus)
in the case of common terns, being small and pelagic fish

@ Springer

species that can be found in the Mediterranean Sea (Cos-
talago et al. 2015; Espin et al. 2012; Szostek and Becker
2015). Sardines present a size <250 mm and anchovies
from 10 to 130 mm. They mainly feed on phytoplank-
ton and zooplankton, respectively, so they occupy a low
trophic level (Borme et al. 2009; Costalago et al. 2015;
Tudela and Palomera 1997). In addition, the common tern
ingests mostly juvenile fish, so they are expected to accu-
mulate a smaller amount of Hg (Szostek and Becker 2015).
The yellow-legged and black-headed gulls showed lower
Hg levels than European shags and cormorants, probably
because they are opportunistic species also ingesting ter-
restrial and freshwater food, which have less Hg load than
prey of marine origin (BirdLife International 2018; Ramos
et al. 2013; Vizuete et al. 2018). In future studies, it would
be interesting to analyse the stable isotope Nitrogen 15
(158N) to determine the trophic level of each study spe-
cies so that a comparison of Hg concentrations versus the
trophic position can be made.

In general, Hg concentrations found in liver, kidney, and
brain were similar to or lower than those observed in the
same species from other countries, particularly for razorbill,
osprey, black-headed gull, or Balearic shearwater (Table 3).
However, for certain species (mainly northern gannet, Euro-
pean shag, and great cormorant) concentrations found in
this study were higher than levels reported in the literature
(Table 3).

Mercury concentrations in internal tissues are a key indi-
cator of bioaccumulation. Measuring both liver and kidney
simultaneously can provide information on the nature of
exposure (i.e., chronic exposure to MeHg or inorganic Hg).
Threshold concentrations (mainly in liver and kidney) asso-
ciated with adverse effects in birds have been suggested for
interpretation (Espin et al. 2016). However, due to ethical
and legal reasons, sampling is generally possible where car-
casses are found in the field or injured animals are eutha-
nasied for welfare reasons. In addition, metabolism, dem-
ethylation and health condition (starvation versus healthy
individuals) can influence the balance (e.g., remobilization
of Hg) and alter tissue Hg concentrations. On the other hand,
feathers are considered a good matrix for Hg determina-
tion since they can be obtained as moulted feathers, from
carcasses or be plucked without permanently damaging the
bird, being a minimally invasive matrix. Moreover, MeHg
is uniformly deposited in feathers and they are a more sta-
ble matrix. However, this deposition only occurs during
feather growth, reflecting Hg concentration in blood dur-
ing this period, while internal tissues maintain a continuous
exchange with blood, so they provide updated information
even though Hg levels are affected by changes in diet and/or
fat mobilization. In addition, feathers can be contaminated
on the surface (although Hg external contamination is typi-
cally small), and moulting periods and patterns are different
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among species (Espin et al. 2016), which may pose some
difficulties when comparing results. Although Hg concen-
trations were also analysed in feathers from some species in
this study, a proper statistical analysis could not be done due
to limitations in the number of samples. Mercury concentra-
tions in feathers of most species were, in general, similar
to those reported in other studies (Arcos et al. 2002; Cotin
et al. 2012; Mazloomi et al. 2008; Misztal-Szkudlinska et al.
2012; Monteiro et al. 1999; Moreno et al. 2013; Otero et al.
2018; Paiva et al. 2008; Rumbold et al. 2001; Sanpera et al.
2008; Szumito-Pilarska et al. 2016, 2017; Zolfaghari et al.
2009), whereas they were lower in the case of osprey (Cahill
et al. 1998; DesGranges et al. 1998; Lounsbury-Billie et al.
2008) and higher for northern gannet, black-headed gull,
Audouin’s gull and Scopoli’s shearwater (Arcos et al. 2002;
Goutner et al. 2000, 2013; Mendes et al. 2008; Monteiro
et al. 1995, 1999; Nardiello et al. 2019).

Sex, Age, and Cause of Admission to WRC

In this study, the influence of sex, age, and cause of admis-
sion on Hg exposure was evaluated in four species (i.e.,
northern gannet, European shag, great cormorant, and yel-
low-legged gulls). Sex-related differences in tissue Hg con-
centrations were only found in yellow-legged gulls, females
showing lower Hg levels compared to males (Fig. 4). Dif-
ferent studies (Ishii et al. 2017; Vizuete et al. 2018) have
demonstrated that, in adult individuals, females have lower
Hg levels than males justified by their excretion capacity
through egg laying. Regarding age differences, adult Euro-
pean shags showed higher Hg concentrations in liver and
kidney than juvenile birds. Several authors agree that adult
individuals have higher Hg concentrations than juveniles of
the same species because of the greater accumulation of Hg
in their body during their life (Moura et al. 2018b; Ribeiro
et al. 2009; Saeki et al. 2000; Vizuete et al. 2018). However,
the opposite trend was found in yellow-legged gulls in this
study (Fig. 4), which might be due to their opportunistic diet
habits (Table 1) and a different diet source between juvenile
and adult birds. However, further studies with higher number
of samples would be needed to better evaluate these sex and
age-related differences.

Northern gannets and European shags suffering non-
traumatic pathologies (i.e., specimens with symptoms of
undernutrition as a result of pathologies such as infectious or
parasitic diseases) showed higher hepatic Hg concentrations
than birds admitted to the WRC due to traumatic causes
(Fig. 5). In this regard, Sanpera et al. (2008) have observed
that dehydrated individuals, with poor body condition and
a state of weakness had higher Hg concentrations in their
tissues as a result of a general redistribution of metals in
the organs. Further studies with a larger number of samples
within each cause of admission type would be necessary in

order to evaluate deeply the effect of the cause of admission
on Hg concentrations in the study species.

Risk Assessment

In the majority of cases, the individuals studied showed
Hg concentrations below the critical levels related to
reproductive disturbances in black ducks (Anas rubripes)
(i.e., reduced egg production, hatchability, and survival of
ducklings; liver: 23 ug/g, ww; kidney: 16 pg/g, ww; brain:
3.79 ug/g, ww; Finley and Stendell 1978) or marked behav-
ioural changes in pigeons (i.e., declined rate of pecking,
changes in posture and coordination; brain: 12—-16 ug/g,
Evans et al. 1982). However, two individuals of European
shag showed tissue concentrations exceeding those criti-
cal levels in liver and kidney (liver: 27.94 and 110.57 pg/g,
ww; kidney: 28.40 and 134.17 pg/g, ww; brain: 0.57 and
1.92 pg/g, ww). A northern gannet (liver: 19.33 pg/g, ww;
kidney: 10.13 pg/g, ww; brain: 2.97 pg/g, ww) and a great
cormorant (kidney: 16.06 pug/g, ww; liver: 10.58 ug/g, ww;
brain: 0.53 nug/g, ww) had concentrations close to that levels.
In addition, all the species studied showed mean hepatic Hg
levels similar to or higher than those associated with altered
behaviour and decreased reproductive success in laboratory-
reared ducklings (liver: 1-2 pg/g, ww; reviewed by Zillioux
et al. 1993). It is clear that these comparisons should be
interpreted with caution due to the interspecific differences
in tolerance to contaminants. In addition, total Hg is not
the best indicator of toxic effects, and more importance
should be given to the more toxic form, MeHg concentra-
tions (Wolfe et al. 1998). However, these results suggest that
Hg concentrations in the marine ecosystems of the western
Mediterranean could constitute a risk situation for certain
seabird individuals, especially for endangered species (at
national level), such as the European shag, with only 49-55
breeding pairs in the Valencian Community in 2018 (D. G.
Medi Natural i Avaluacié Ambiental 2018), or the northern
gannet under Special Protection in Spain (Table 1).

Conclusions

The results of this study suggest that individuals of nine
bird species linked to marine ecosystems found dead in
the western Mediterranean coasts were chronically exposed
to MeHg. Mercury concentrations differed among species,
which can be explained by their different dietary habits. In
general, Hg concentrations found are similar to or higher
than those reported in other studies worldwide. Some indi-
viduals of certain species (i.e., European shag, northern gan-
net, and great cormorant) showed Hg concentrations close
to or higher than those described in the literature as caus-
ing reproductive alterations in other avian species. These
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comparisons should be made with caution due to the pos-
sible difference in sensitivity between species. However, our
results suggest that certain individuals inhabiting marine
ecosystems in the western Mediterranean could be at risk
of suffering long-term, Hg-related effects on physiology,
reproduction, and behaviour. Some of the species evaluated
are listed within different categories of threat according to
the International Union for Conservation of Nature (IUCN)
(including Near Threatened and Critically Endangered spe-
cies) and are endangered at a national level, so this study will
provide valuable information for risk assessors and authori-
ties in charge of the management of the environment and
pollution. Further studies with a greater number of speci-
mens of each species are necessary to better evaluate the
effect of sex, age, and cause of admission to WRCs on Hg
concentrations in the study species. The cause of admission
to the WRC is essential, because it helps to relate the Hg
concentrations found with the history and symptoms of the
individuals. Therefore, this factor should be described and
evaluated in future research.
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