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Abstract
The polycyclic aromatic hydrocarbons (PAHs) bound to fine particulate matter  (PM2.5) can cause long-term adverse health 
consequences and are a public concern. A total of 144  PM2.5-bound PAHs samples collected from Guiyang City, a typical 
plateau montane area in southwest China, from September 2012 to August 2013 were investigated to clarify their concentra-
tion, distribution, and potential sources. The health exposure risk also was evaluated. The samplers equipped with 90-mm 
glass fibre filters were operated at a flow rate of 100 L min−1 for 24 h. The concentrations of the 16 PAHs (US EPA prior-
ity) were analysed by using ultra performance liquid chromatography equipped with photo diode array detector. Diagnostic 
ratios and back-trajectories were performed for the 16 PAHs sources apportionment. The results showed that the 16 PAHs 
ranged from 2.9 to 231 ng m−3 with an annual average of 41 ± 21 ng m−3. The PAHs concentrations exhibited obvious sea-
sonal variation, with higher levels in winter than in summer. Diagnostic ratios indicated that PAHs mainly originated from 
the combustion of coal and biomass, followed by the emission of vehicle exhaust. Cluster analyses on back-trajectories 
illustrated that approximately 34% of the air mass came from abroad, as far as Laos and Vietnam, in summer, whereas more 
than 90% of the air mass came from domestic sources in winter. The lifetime excess cancer risk from exposure to PAHs 
was 3.63 × 10−4, approximately 360 times higher than the health guideline  (10−6) recommended by the US EPA, reflecting 
a high risk of cancer.

Fine particulate matter with an aerodynamic diameter less 
than 2.5 μm  (PM2.5) is a major environmental issue and 
health concern (Fan et al. 2017).  PM2.5 can cause morbid-
ity and failure of respiratory and cardiac systems (Analitis 
et al. 2006). A large number of toxic compounds can be 

adsorbed to  PM2.5, including polycyclic aromatic hydrocar-
bons (PAHs), polychlorinated biphenyls, and heavy metals 
(Ostro et al. 2000; Mar et al. 2006; Anyenda et al. 2016; 
Yang et al. 2017). PAHs are semivolatile organic compounds 
that lead to long-term adverse health consequences, such as 
cancer, birth defects, genetic damage, respiratory diseases, 
immunodeficiency, and neurological diseases (Boström et al. 
2002; Choi et al. 2015; Han et al. 2015). Because of their 
proven carcinogenic properties (Ohura et al. 2004; Li et al. 
2009a, b, c), much attention has been paid to  PM2.5-bound 
PAHs, even very recently (Bourotte et al. 2005; Liu et al. 
2015; Yang et al. 2017).

PAHs have both natural and anthropogenic origins. The 
latter is the main source in the modern environment. In 
atmosphere, most anthropogenic PAHs are originated from 
the incomplete combustion of coal, petroleum, biofuels, and 
organic polymer compounds (Zhang and Tao 2009; Estel-
lano et al. 2012; Cheruyiot et al. 2015). High concentrations 
of PAHs were found in the ambient atmosphere of industrial 
and commercial areas (Kim et al. 2013; Wu et al. 2014) and 
approximately 65–90% of PAHs in the global atmosphere 
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are bound to  PM2.5 (Poster et al. 1995; Wang et al. 2008). 
With the acceleration of urbanization and the increase in 
energy consumption, in most developing countries, emis-
sions of PAHs have increased dramatically (Suvarapu et al. 
2012; Huang et al. 2014).

Presently, characteristics, sources, and risk assessment of 
 PM2.5-bound PAHs were widely conducted (Li et al. 2009a, 
b, c; Mohanraj et al. 2012). The average concentrations of 
 PM2.5-bound PAHs as high as 458 ± 246 ng m−3 have been 
found in India (Etchie et al. 2018). A large number of studies 
showed that concentrations of  PM2.5-bound PAHs in winter 
and autumn were higher than those in spring and summer 
(Gu et al. 2010; Yang et al. 2017). The concentrations of 
PAHs were heavily influenced by meteorological parame-
ters, such as temperature and humidity (Liu et al. 2016). The 
primary anthropogenic sources of PAHs in  PM2.5 are coal 
combustion and vehicle exhaust emission (Moon et al. 2006; 
Liu et al. 2016; Fan et al. 2017). Some studies indicated that 
the excess cancer risk (ECR) in Taiwan (8.4 × 10−5), Beijing 
(1.1 × 10−3), and other places exceeded the US EPA health 
guidelines  (10−6) (Li et al. 2017; Chen et al. 2017). How-
ever, most of these studies were conducted in plains (Bei-
jing) and hilly regions (Guangzhou). There are few reports 
of  PM2.5-bound PAHs in highly developing plateau moun-
tain cities in China (Liu et al. 2015; Chen et al. 2017), of 
which geographical and meteorological factors may affect on 
concentrations of PAHs and cause big differences among the 
regions (Kume et al. 2007; Liu et al. 2016; Yang et al. 2017).

Guiyang City, the capital of Guizhou province in South-
west China, is a typical inland plateau mountain city charac-
terized with high sea level and unfavourable diffusion condi-
tions. The average altitude of approximately 1100 m. It had 
a population of approximately 4.8 million in 2017. Guiyang 
has currently become a high-traffic, domestic tourism area, 
and its industries of coal mining, aviation manufacturing, 
oil processing, and nuclear fuel processing are growing fast. 
With the quick development, housing construction has accel-
erated, and the number of motor vehicles has increased dra-
matically in Guiyang. Several studies on  PM2.5 in ambient 
air in Guiyang have been conducted, suggesting high pollu-
tion level with concentrations ranging from 41 to 75 μg m−3 
(Liu et al. 2014; Liang et al. 2015). However,  PM2.5-bound 
PAHs characterization and risk assessment in Guiyang has 
not been studied yet.

The objectives of this study were (1) to elucidate char-
acteristics and distribution patterns of  PM2.5-bound PAHs 
in an inland plateau mountain city, (2) to identify potential 
sources of PAHs in Guiyang, and (3) to assess the associated 
health risk.

Materials and Methods

Study Area

Guiyang is located in Southwestern China and has a sub-
tropical, humid, and mild climate, with an annual aver-
age temperature of 15.3 °C. The annual average relative 
humidity in Guiyang is 77%, and the total annual pre-
cipitation is 1129.5 mm. According to statistical data, 
the number of motor vehicles, including private cars and 
taxis, increased from 310,000 to 700,000 between 2007 
and 2012. The energy structure of Guiyang is dominated 
by coal, which is mainly used for industry and domes-
tic heating. The former generally uses coal in nonferrous 
metal smelting and cement plant, whereas the latter mostly 
uses it for heating in the winter. The Yunyan district is 
a major urban area within the city. By the end of 2016, 
the total population was approximately 1.0 million in the 
Yunyan region. Several nonferrous heavy metal facilities 
and an airport are adjacent to Yunyan. The Baiyun district 
is the geographical centre of Guiyang City. It is the largest 
aluminum industrial center in China because of its abun-
dant bauxite sources. The Huaxi district is an ecological 
district of Guiyang. It is a tourism area with no apparent 
emission sources.

Sampling and Preparation

Considering geographical, economic, and social develop-
ment information of Guiyang, three sampling sites were 
selected for  PM2.5 collection, consisting of a site YY 
(26°35′31.26″N, 106°43′12.02″E) in Yunyan district, a 
site BY (26°43′01.51″N, 106°37′21.27″E) in Baiyun dis-
trict, approximately 23 km northwest of YY, and a site 
HX (26°25′44.74″N, 106°40′19.65″E) in Huaxi district, 
approximately 21 km southwest of YY (Fig. 1).

All sites were located on a rooftop, approximately 
15 m above the ground. At each site, a middle-volume 
 PM2.5 sampler (TH-150A, China) equipped with  PM2.5 cut 
cyclones and 90-mm glass fibre filters (Whatman, USA) 
was operated at a flow rate of 100 L min−1 for 24 h. Five 
samples at each sampling site were continually collected 
per month. The overall sampling period was from Sep-
tember 2012 to August 2013. A total of 144 valid samples 
were selected for further analysis. Glass fibre filters were 
preheated at 500 °C for 5 h before sample collection to 
remove any organic contaminants. An average of quadru-
plicate filter weighing was determined using an analytical 
balance (AX120, SHIMADZU, Japan) after equilibra-
tion, with initial filter weighing 24 h prior under precon-
ditional temperature (25 ± 2 °C) and humidity (50 ± 5%) 
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in a controlling chamber (HWS-250BX, Nernst, Tianjin, 
China). Each membrane was weighed again after 2 h in 
the constant temperature and humidity chamber, and the 
difference between four repeated weighing values was not 
greater than 0.4 mg. All weighed membranes were placed 
in self-sealing bags with the corresponding recorded total 
mass and then placed in a drying box for sampling.

After sampling, the filter membrane was folded in half by 
using tweezers and then loaded into the original sample bag. 
All sampled filter membranes were reweighed four times. 
The mass of the samples was determined by using a weight 
reduction method. To ensure the accuracy of the analytical 
results, all samples for PAHs analysis were weighed and 
stored in a refrigerator at − 18 °C. Measurements of PAHs 
in filters were conducted within 7 days.

PAHs in  PM2.5 were extracted with a mixed solvent of 
acetone and n-hexane (1:1, v/v) using an accelerated solvent 
extraction ASE 150 (DIONEX, USA) (Johansen et al. 1994). 
The extraction was duplicated at a temperature of 100 °C 
and a pressure of 1500 psi. The extract was concentrated to 
approximately 5.0 mL using a rotary evaporator (EYALA, 
Japan) and then reduced to 0.5–1.0 mL under a gentle nitro-
gen stream. The concentrated extracts were sequentially 
purified in the chromatography column filled with 6-cm 
length activated neutral alumina  (Al2O3) and 12-cm length 
Silica gel  (SiO2) and eluted with 70 mL of Hexane/dichlo-
romethane (1:1, v:v). After that, the purified extract was con-
centrated to approximately 5.0 mL using a rotary evaporator 
(EYALA, Japan) and then reduced to 1.0 mL under a gentle 
nitrogen for analysis.

All glassware was soaked in potassium dichromate sul-
furic acid solution for 5 h, were rinsed with distilled water 
and Milli-Q water (Merck Millipore, France), and then were 
baked in a muffle furnace at 450 °C for 4 h. Silica gel and 
alumina used in the chromatographic column were extracted 
by soxhlet extractor with methanol and dichloromethane for 
24 h, both of which were baked for 12 h at 180 °C for silica 
and 250 °C for alumina. Then, silica gel and alumina were 
activated by 3% water and soaked in n-hexane before usage.

Analysis

Sixteen PAHs mixed standards, including Naphthalene 
(Nap), Acenaphthylene (Acy), Acenaphthene (Ace), Flu-
orene (Flu), Phenanthrene (Phe), Anthracene (Ant), Fluoran-
thene (Fla), Pyrene (Pyr), Benzo(a)anthracene (BaA), 
Chrysene (Chr), Benzo(b)fluoranthene (BbF), Benzo(k)
fluoranthene (BkF), Benzo(a)pyrene (Bap), Indeno(1,2,3-
cd)pyrene (IcdP), Dibenzo(a,h)anthracene (DBA), and 
Benzo(g,hi)perylene (Bghip), were used for the quantitative 
determination (Supelco, USA).

Analyses of PAHs were performed by ultra performance 
liquid chromatography (UPLC) (ACQUITY, Waters, 
USA), equipped with photo diode array (PDA) detector, 
and Empower chromatography work station. The chroma-
tographic separation was performed on a Waters Acquity 
UPLC BEH C18 column (100 mm × 2.1 mm × 1.7 mm) 
maintained at 25 °C (Mirivel et al. 2011). The detection 
wavelengths were 254 nm and 220 nm. The injection vol-
ume was 2 μL, and the mobile phase consisted of water (A) 

Fig. 1  Map of sampling sites
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and acetonitrile (B). The gradient elution procedure was 
as follows: solvent B 65–89% at 0–5 min, 89% at 5–7 min, 
89–100% at 7–9  min, 100% at 9–16  min, and 65% at 
16–18 min. The flow rate was 0.15 mL min−1.

Date Analysis

The proportion of PAHs in  PM2.5, the seasonal variation of 
PAHs, and the correlation between  PM2.5 and PAHs were 
analyzed by Origin 8.5 (OriginLab, USA). Pearson’s and 
Spearman correlation coefficients were used to report the 
association between PAHs and meteorological factors by 
SPSS 22 (IBM, USA). One-way ANOVA analysis was used 
to analyze significant differences in different seasons by 
SPSS 22 (IBM, USA).

Quality Control

The linearity, detection limit, relative standard deviation, 
and recovery of 16 PAHs were determined by referring to 
the US EPA-610 method (Dejean et al. 2009). The exter-
nal method was applied in the present study, following with 
duplicate analyses every ten samples, and spiked recovery 
tests of treatment with standard samples for each batch dur-
ing measurements. The target compound in the regent and 
blank filter membrane was not detectable. Prior to each 
sample analyzed, the detector UPLC-PDA was rinsed for 
30 min. The PAHs recoveries of the standard-spiked matrix 
ranged from 67 to 102%, and the relative standard devia-
tion (RSD) was in the range of 0.25–7.2% (n = 10). The 
method detection limit (MDLs) of PAHs was between 0.50 
and 2.0 μg L−1. All correlation coefficients of the standard 
curves of each target compound were greater than 0.999. 
Detail information of quality control was shown in Table S1 
in Supplemental Materials.

Source Apportionment

According to their properties and sources, the 16 PAHs are 
divided into low-molecular-weight PAHs (LMW-PAHs: 
2–3 rings), middle-molecular-weight PAHs (MMW-PAHs: 
4rings), and high-molecular-weight PAHs (HMW-PAHs: 
5–6 rings). PAHs of 3–4 rings are mainly derived from coal 
combustion, whereas those of 5–6 rings are mainly derived 
from gasoline vehicles (Ravindra et al. 2006; Wu et al. 
2014).

Diagnostic Ratios

The ratios of Phe/(Ant + Phe), Flu/(Flu + Pyr), BaA/
(BaA + Chr), and IcdP/(IcdP + BghiP) were widely used 
to estimate various sources of PAHs contamination in the 
environment (Grimmer et al. 1983; Larsen and Baker 2003; 

Wang et al. 2014), which were employed in the present study 
for sources apportionment as well. Each interval value and 
reference of diagnostic ratios were shown in Table S2 in 
Supplemental Materials.

Air Mass Trajectories Analysis

The HYSPLIT Trajectory model, developed by NOAA (https 
://ready .arl.noaa.gov/HYSPL IT_traj.php), was employed to 
identify pollutants sources using the direction of air mass 
movement. Because the sampling sites are closed, the back-
ward trajectory analyses are the same. Therefore, YY was 
selected to analyze and calculate the clustering backward tra-
jectory during the summer and winter sampling campaigns. 
Considering the altitude of Guiyang, a height of 1000 m was 
selected as the starting point to track the changes in both 
summer and winter.

Estimation of Distance from Emission Sources

The low ring PAHs can migrate over a long distance with 
the circulation of the atmosphere. Based on differences in 
photochemical decomposition of Ant and Phe isomers that 
can be used as the geochemical tracers showing the anthro-
pogenic activities, Li et al. (2014) established a model to 
estimate PAHs migration distance in the atmosphere, and 
the calculation is Eq. (1) as follows:

where Dt (km) is the longest distance that PAHs may trans-
port in the atmosphere, COH (mol cm−3) is the concentration 
of OH radicals in the atmosphere, Sw (m s−1) is wind speed, 
C
P
g0
∕CA

g0
 is the ratio of Phe and Ant at the emission site, 

C
A
st
∕CP

st
 is the ratio of Ant and Phe in samples.

To obtain the maximum transmission distance of PAHs 
between emission sources and sampling location, the maxi-
mum wind speed of 60 m s−1 (Gatey and Miller 2007) and 
the lowest concentration of OH radical of 0.3 × 106 mol cm−3 
(Hewitt and Harrison 1985) were referred in the calculation. 
For low ring PAHs are mainly derived from coal combus-
tion; hence, the CP

g0
∕CA

g0
 ratio was referred to coal burning, 

which is 5.67 (Li et al. 2014; Yu et al. 2018).

Health Risk Assessment

BaP was used as a marker of total carcinogenicity of PAHs 
(Guerreiro et al. 2014). The equivalent concentration of BaP 
(BaPeq) is commonly used to assess the carcinogenicity of 
PAHs (Zhu et al. 2015), and it is calculated by multiply-
ing the mass concentration of specific PAHs species with 

(1)Dt = −
6 × 106

COH

× Sw × ln

(

C
A
st

C
P
st

×
C
P
g0

C
A
g0

)

https://ready.arl.noaa.gov/HYSPLIT_traj.php
https://ready.arl.noaa.gov/HYSPLIT_traj.php
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their corresponding toxic equivalent factor (TEF), as Eq. (2) 
(Nisbet and Lagoy 1992; Pongpiachan 2016). The toxic 
equivalence quotient (TEQ) represents the toxic equiva-
lent of target compounds and can be estimated by the sum 
of the BaPeq concentrations of each PAH (Li et al. 2017). 
The lifetime excess cancer risk (ECR) can be obtained by 
the resultant BaPeq (in ng m−3) and the unit risk (UR) of 
8.7 × 10−5 ng m−3 (WHO 2000). Its calculation Eq. (3) is 
as follows:

Results and Discussion

PAHs Concentrations

The annual average concentration of PAHs in all  PM2.5 sam-
ples was 41 ± 21 ng m−3 (n = 144). At the three sampling 
sites, slight variations were observed, with the highest aver-
age of 43 ± 25 ng m−3 recorded at YY, followed by (average: 
36 ± 16 ng m−3) and HX (average: 35 ± 26 ng m−3) (Table 1). 
These values were higher than those observed in other cities 
worldwide, such as Tuscany, Italy (Martellini et al. 2012), 
Shizuoka, Japan (Kume et al. 2007), Madrid, Spain (Bar-
rado et al. 2012), and Atlanta, GA, USA (Li et al. 2009a, b, 
c) (Table 2). Compared with those in Hong Kong (Ma et al. 
2016), Kunming (Bi et al. 2015), and Guangdong (Liu et al. 
2015), PAH levels in Guiyang were high.

Generally, for all samples, the percentages of PAHs with 
different rings were in the following order: LMW-PAHs 
(55.1%) > HMW-PAHs (32.1%) > MMW-PAH (12.8%). 
For each site, the same order for three categories of PAHs 
was found (Fig. 2). The highest percentage of LMW-PAHs 
observed in the present study was different from those pre-
viously reported, where PAHs in  PM2.5 were dominated by 
HMW-PAHs (Eiguren-Fernandez et al. 2004; Kume et al. 
2007; Li et al. 2010; Wang et al. 2014, 2017; Yang et al. 
2017). This difference may be related to low-temperature 
combustion of coal, which can cause a sharp increase in 
emission of LMW-PAHs (Wu et al. 2014; Samburova et al. 
2016).

During the study period, the total average concentrations 
of  PM2.5-bound PAHs combined with three sites in Guiyang 
among the four seasons were in the order of spring > win-
ter > autumn > summer (Fig. S1). The highest average of 
49 ± 18 ng m−3 was observed in spring, with a similar aver-
age of 46 ± 35 ng m−3 in winter, and the lowest average of 
26 ± 16 ng m−3 was recorded in summer. Among three sam-
pling sites, Fig. 3 showed that the seasonal variation in YY 
was different from both BY and HX (ANOVA, p < 0.05). 

(2)TEQ =
∑

BaPeq
i
=
∑

PAH
i
× TEF

i

(3)ECR = BaPeq × UR

Those differences observed in the present study might be 
related to the unclear seasonal changes in Guiyang caused 
by its meteorological parameters. Seasonal variations at the 
three sites showed that the average concentrations of PAHs 
in winter were 2.1, 1.1, and 2.6 times of those in summer for 
YY, BY, and HX, respectively. The highest concentrations of 
PAHs observed in winter may be attributed to domestic coal 
combustion. An alternative explanation is the slow degrada-
tion of PAHs during winter, due to the low temperature and 
little rain. In contrast, in summer, the degradation rate of 
PAHs increased with high temperature, strong radiation, and 
abundant rainwater (Eiguren-Fernandez et al. 2004; Moon 
et al. 2006), which resulted in low concentrations of PAHs in 
the present study. Our results were in agreement with previ-
ous studies, in which the concentrations of PAHs in winter 
were high and up to 5.6 times of those in summer in Dekalb, 
USA (Li et al. 2009a, b, c). Yi et al. (2013) also reported that 
the concentration of PAHs in winter was approximately 2 
times than that in summer in Fuzhou, China.

Influencing factors

PM2.5 mass concentrations

The annual average mass concentration of  PM2.5 
(66 ± 31  μg  m−3) exceeded the air quality guideline of 
25 μg m−3 recommended by WHO (2008) but was lower 
than the secondary standard concentration of 75 μg m−3 
in China. As shown in Fig. 4, PAHs were positively cor-
related with  PM2.5 (R = 0.43, p < 0.001), which was simi-
lar to the findings reported by Yang et al. (2017). Previous 
studies indicated that HMW-PAHs and MMW-PAHs were 
more likely to associate with particulate matter (Krugly 
et al. 2014; Fan et al. 2017), whereas in the present study, 
the correlation between  PM2.5 and HMW-PAHs (R = 0.48, 
p < 0.001) was stronger than that of  PM2.5 and MMW-PAHs 
(R = 0.35, p < 0.001) as well as  PM2.5 and LMW-PAHs 
(R = 0.26, p < 0.001), which indicates the higher molecular 
rings of PAHs the easier combined to  PM2.5 (Kume et al. 
2007; Yang et al. 2017).

Meteorology Parameters

Meteorological conditions, such as pressure (P), tem-
perature (T), relative humidity (RH), precipitation, and 
wind speed (WS), may affect PAHs (Cortes et al. 2000; 
Li et al. 2010). In this study, correlations between PAHs 
and meteorological parameters were obtained with the 
results in YY. The meteorological data of YY were col-
lected by HOBO-U30 (Onset, USA). As known, the deg-
radation rate of PAHs is high at high temperatures, and 
high wind speed can disperse pollutants in the atmos-
phere. Weak and negative correlations between PAHs and 
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temperature (R = − 0.15) and between PAHs and wind 
speed (R = − 0.12) were observed, which was in agree-
ment with previous results (Eiguren-Fernandez et al. 2004; 
Moon et al. 2006; Teixeira et al. 2013; Kim et al. 2015). 

However, we obtained a positive correlation (R = 0.25) 
between PAHs and humidity, which was in agreement with 
results reported by Gu et al. (2010) and Li et al. (2009a, 
b, c).

Table 1  Concentrations of  PM2.5 (μg m−3) and PAHs (ng m−3) collected from three sites of YY, BY, and HX during a whole year period

SD Standard deviation

YY (N = 48) BY (N = 48)

Spring Summer Autumn Winter Annual Spring Summer Autumn Winter Annual

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Npa 3.1 ± 2.4 0.87 ± 0.92 0.48 ± 0.68 3.9 ± 1.9 2.1 ± 2.2 1.9 ± 0.83 0.73 ± 0.72 1.2 ± 1.4 2.5 ± 0.6 1.6 ± 1.1
Acy 11 ± 6.1 5.9 ± 6.3 2.6 ± 1.5 3.4 ± 1.8 5.7 ± 5.5 8.2 ± 5.5 6.3 ± 7.3 5.9 ± 4.1 2.3 ± 0.38 5.7 ± 5.4
Ace 7.0 ± 2.6 6.5 ± 4.4 2.6 ± 2.9 7.9 ± 4.4 6.0 ± 4.2 3.5 ± 1.6 5.4 ± 4.2 12.3 ± 9.8 4.0 ± 0.52 6.3 ± 6.4
Flu 1.7 ± 0.76 0.41 ± 0.16 0.26 ± 0.28 1.6 ± 0.8 1.0 ± 0.85 1.2 ± 0.21 0.37 ± 0.13 1.3 ± 0.46 0.79 ± 0.19 0.91 ± 0.45
Phe 11 ± 2.7 3.2 ± 2.2 2.6 ± 1.5 11.8 ± 7.0 7.1 ± 5.8 4.9 ± 0.68 3.2 ± 2.24 7.6 ± 2.5 6.2 ± 2.0 5.5 ± 2.6
Ant 2.3 ± 0.35 1.4 ± 0.29 2.9 ± 0.68 1.1 ± 0.29 1.9 ± 0.84 1.8 ± 0.46 1.2 ± 0.58 1.4 ± 1.3 0.88 ± 0.17 1.3 ± 0.80
Fla 1.1 ± 0.41 0.20 ± 0.12 0.11 ± 0.12 2.1 ± 1.0 0.88 ± 1.0 0.65 ± 0.06 0.27 ± 0.20 0.48 ± 0.49 0.66 ± 0.23 0.51 ± 0.33
Pyr 3.3 ± 1.3 0.45 ± 0.20 0.75 ± 0.22 1.5 ± 0.49 1.5 ± 1.3 1.9 ± 0.53 0.47 ± 0.21 1.4 ± 0.03 1.5 ± 0.80 1.3 ± 0.73
BaA 2.7 ± 0.46 0.81 ± 0.14 0.58 ± 0.15 1.5 ± 0.11 1.4 ± 0.87 3.1 ± 2.5 0.74 ± 0.12 2.1 ± 1.2 1.1 ± 0.16 1.8 ± 1.7
Chr 1.7 ± 0.76 0.44 ± 0.18 0.75 ± 0.18 2.5 ± 2.0 1.3 ± 1.4 1.4 ± 0.52 0.51 ± 0.20 1.5 ± 0.43 1.5 ± 0.39 1.2 ± 0.57
BbF 4.6 ± 1.1 1.4 ± 0.86 1.8 ± 0.13 4.9 ± 3.1 3.2 ± 2.3 3.3 ± 0.86 1.0 ± 0.37 3.2 ± 1.3 3.3 ± 1.2 2.7 ± 1.4
BkF 1.7 ± 0.88 0.57 ± 0.54 0.70 ± 0.17 2.2 ± 1.5 1.3 ± 1.1 1.4 ± 0.39 0.50 ± 0.35 1.2 ± 0.52 1.3 ± 0.29 1.1 ± 0.53
BaP 2.8 ± 1.6 0.14 ± 0.05 0.92 ± 0.19 3.1 ± 2.3 1.7 ± 1.9 1.3 ± 0.48 0.24 ± 0.24 1.1 ± 0.58 1.2 ± 0.12 1.0 ± 0.58
IcdP 2.0 ± 0.60 0.93 ± 0.89 0.82 ± 0.65 4.3 ± 2.5 2.0 ± 2.0 1.3 ± 0.31 0.67 ± 0.21 1.2 ± 1.2 2.1 ± 0.85 1.3 ± 0.92
DBA 2.7 ± 0.75 0.63 ± 0.15 1.5 ± 0.08 4.6 ± 2.3 2.3 ± 1.9 1.5 ± 0.48 0.40 ± 0.16 1.8 ± 0.73 2.7 ± 0.17 1.6 ± 0.93
BghiP 6.3 ± 2.7 0.79 ± 0.18 3.7 ± 1.0 5.4 ± 1.4 4.0 ± 2.6 2.3 ± 1.2 0.48 ± 0.16 2.5 ± 0.29 3.4 ± 1.2 2.2 ± 1.4
∑PAHs 65 ± 2.7 25 ± 16 23 ± 6.1 62 ± 27 43 ± 25 40 ± 10 22 ± 15 46 ± 20 36 ± 6.0 36 ± 16
PM2.5 76 ± 5.8 39 ± 16 53 ± 13 80 ± 51 62 ± 32 94 ± 34 63 ± 15 74 ± 14 68 ± 33 75 ± 29

HX (N = 48)

Spring Summer Autumn Winter Annual

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Npa 2.5 ± 1.8 0.64 ± 0.56 1.3 ± 1.6 2.0 ± 0.93 1.6 ± 1.5
Acy 7.3 ± 1.3 3.5 ± 4.6 5.5 ± 6.4 1.0 ± 0.74 4.4 ± 4.6
Ace 4.5 ± 2.0 4.1 ± 3.4 12.3 ± 16.0 2.8 ± 0.19 5.9 ± 9.1
Flu 1.1 ± 0.57 0.26 ± 0.20 0.80 ± 0.89 0.77 ± 0.41 0.73 ± 0.65
Phe 6.8 ± 2.7 2.3 ± 1.7 4.6 ± 6.2 5.1 ± 2.5 4.7 ± 4.0
Ant 1.5 ± 0.23 0.78 ± 0.40 1.5 ± 1.0 0.72 ± 0.29 1.1 ± 0.69
Fla 0.9 ± 0.58 0.20 ± 0.17 0.89 ± 1.0 2.3 ± 0.84 1.1 ± 1.1
Pyr 1.8 ± 0.04 0.34 ± 0.05 1.0 ± 0.56 1.5 ± 1.2 1.1 ± 0.88
BaA 1.9 ± 0.54 0.53 ± 0.22 1.9 ± 2.3 1.6 ± 0.43 1.5 ± 1.3
Chr 0.91 ± 0.25 0.26 ± 0.14 1.4 ± 0.66 1.4 ± 0.63 1.0 ± 0.67
BbF 2.6 ± 0.93 0.83 ± 0.68 3.1 ± 1.5 3.5 ± 2.2 2.5 ± 1.8
BkF 1.2 ± 0.39 0.50 ± 0.47 1.4 ± 0.68 1.8 ± 1.1 1.2 ± 0.85
BaP 1.7 ± 0.79 0.23 ± 0.11 1.4 ± 0.87 2.3 ± 1.7 1.4 ± 1.3
IcdP 1.7 ± 0.82 0.64 ± 0.56 1.4 ± 1.6 3.5 ± 1.6 1.8 ± 1.6
DBA 1.9 ± 0.85 0.66 ± 0.51 2.0 ± 0.95 3.8 ± 0.89 2.1 ± 1.4
BghiP 3.1 ± 1.6 0.86 ± 0.53 2.9 ± 1.5 5.1 ± 3.0 3.0 ± 2.4
∑PAHs 41 ± 11 17 ± 14 43 ± 39 39 ± 18 35 ± 26
PM2.5 83 ± 29 32 ± 1.4 53 ± 29 83 ± 11 63 ± 31
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Potential Sources of PAHs

Diagnostic Ratios of PAHs

In the present study, the ratios of Ant/(Ant + Phe) were 
mainly greater than 0.1, indicating PAHs mainly origi-
nated from combustion. Most ratios of BaA/(BaA + Chr) 
were greater than 0.35, which indicated that the main 
source of PAHs was of pyrolytic origin  (Simcik et  al. 
1999; Soclo et al. 2000).

In Fig. 5, approximately 42% of Flu/(Flu+Pyr) ratios 
were greater than 0.5, and approximately 40% of ratios 
were less than 0.4, indicating that the main source of 
PAHs in this area was combustion of biomass/coal and 
oil (Yunker et al. 2002; Liu et al. 2007). Most of the IcdP/
(Bghi + IcdP) ratios were less than 0.5 (approximately 

Table 2  Comparison of 
concentrations of  PM2.5-bound 
PAHs measured in this study 
with those reported from 
worldwide

Country Location ∑PAHs (ng m−3) Sampling period References

USA Atlanta 3.16 2003.12–2004.6 Li et al. (2009a, b, c)
Chapel Hill 1.91 2002.9–2003.2 Pleil et al. (2004)

Italy Tuscany 0.92–13.0 2009.3–2010.3 Martellini et al. (2012)
Turin 8.24 ± 6.30 2001.11–2004.12 Gilli et al. (2007)

Spain Madrid 0.18–2.13 2008.1–2008.11 Barrado et al. (2012)
Zaragoza 2.14 ± 2.18 2011.6–2012.5 Callén et al. (2014)

Japan Shizuoka 1.00–8.40 2001.12–2002.1 Kume et al. (2007)
Korea Chongju 12.9 1998.10–1999.10 Park et al. (2006)
Turkey Izmir 8.30 ± 3.10 2006.4–2006.5 Odabasi et al. (2015)
Greece Thessaloniki 12.8 2011.6–2012.5 Tolis et al. (2015)
China Hong Kong 4.59 2011.9–2012.8 Ma et al. (2016)

Beijing 9.1–200 2003.9–2004.7 Chen et al. (2017)
Shanghai 16.9 ± 9.00 2011.11–2012.8 Wang et al. (2015)
Guangdong 33.9 2012.6–2013.5 Liu et al. (2015)
Qingdao 87.5 2001.6–2002.5 Guo et al. (2003)
Kunming 28.3 2013.4–2014.1 Bi et al. (2015)
Guiyang 41 ± 21 2012.9–2013.8 This study
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67%), and the rest were greater than 0.5, indicating that 
the PAHs were from mixed sources of engine fuel and 
coal/biomass combustion (Yunker et al. 2002).

Above all, the results suggested that sources of the 
 PM2.5 in PAHs in Guiyang were mainly from the com-
bustion of coal and biomass, followed by the emission of 
vehicle exhaust. The coal combustion in Guiyang might 
be responsible for the high concentrations of PAHs in 
 PM2.5. Moreover, the unfavourable diffusion conditions 
in Guiyang due to its plateaued and montane landscape 
might be an alternative explanation.

Cluster Analysis on Back‑Trajectories

Figure 6 exhibited cluster backward trajectory diagram 
of YY in summer and winter. During the summer sam-
pling period, most of Guiyang’s polluted air mass came 
from China, with small amounts from Vietnam and Laos. 
Approximately 67% of the air mass mainly came from 
Gansu province via Sichuan province and Chongqing, 
21% came from Vietnam via Guangxi, and 13% came from 
Laos via Yunnan. During the winter sampling period, the 
polluted air mass was mainly domestic. The polluted air 
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Fig. 5  Diagnostic ratios of 
 PM2.5 bound PAHs in four 
seasons at Guiyang
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mass transferred from Guangxi to Guiyang is the largest, 
accounting for 54% of the total, followed by 13% from 
Chongqing, 13% from Xinjiang with the longest transmis-
sion path via Qinghai and Sichuan provinces, and 21% 
from the Guizhou province.

Estimation of Distance from Emission Sources

In the present study, the average value of CA
st
∕CP

st
 was cal-

culated as 1.31. The maximum distance between emis-
sion sources and sampling location was estimated to be 
2406 km. This estimated maximum distance was in agree-
ment with back-trajectories results, which indicated that 
PAHs primarily came from domestic regions, such as Xin-
jiang (2323 km), Gansu (1469 km), Sichuan (649.2 km), 
Guangxi (550.9 km), and minor from abroad of Vietnam 
(482.5 km) and Laos (887.9 km). Those emission sources 
are all at distances of less than 2406 km.

Health Risk Assessment

The TEQ values of PAHs in particulate matter were in 
Table 3. The TEQ of PAHs in Guiyang was 4.2 ng m−3, 
which was higher than the standard formulated by WHO 
(1 ng m−3) and lower than the national standard of China 
(10 ng m−3) (WHO 1987; Li et al. 2017). The ECR values 
in all three sites of YY (4.3 × 10−4), BY (3.7 × 10−4), and 
HX (2.9 × 10−4) exceeded the health guideline  (10−6) pro-
vided by USEPA (Chithra and Shiva Nagendra 2013). Th e 
average ECR value obtained in Guiyang was of 3.6 × 10−4, 
which was 360 times higher than the health guideline, 
indicating a high potential risk of cancer.

Conclusions

The  PM2.5-bound PAHs concentration on average in Gui-
yang was of 41 ± 21 ng m−3, which was higher than that 
of most cities in China and abroad. The highest percent-
age of LMW-PAHs observed in the present study prob-
ably related to the low-temperature combustion of coal in 
the study region. Seasonal variations of the highest PAHs 
concentrations in spring, followed by winter, autumn, and 
summer might attribute to the unclear seasonal changes 

Fig. 6  Cluster analysis on back-trajectories for PAHs during summer (a) and winter (b)

Table 3  TEF values and BaPeq concentrations  (10−2) (ng  m−3) of 
individual PAHs’ compounds

TEF toxic equivalent factor; BaPeq BaP equivalent concentration

Compounds TEF BaPeq (YY) BaPeq (BY) BaPeq (HX)

Nap 0.001 0.2080 0.1624 0.1589
Acy 0.001 0.5667 0.4355 0.5670
Ace 0.001 0.6003 0.5926 0.6296
Flu 0.001 0.0974 0.0729 0.0905
Phe 0.001 0.7096 0.4703 0.5453
Ant 0.01 1.941 1.118 1.319
Fla 0.001 0.0876 0.1077 0.0515
Pyr 0.001 0.1498 0.1148 0.1339
BaA 0.1 14.11 14.98 17.72
Chr 0.01 1.348 0.9881 1.210
BbF 0.1 31.76 24.99 26.83
BkF 0.1 12.84 12.23 11.12
BaP 1 172.7 141.3 96.4
IcdP 0.1 20.33 18.22 13.4
DBA 1 234.4 208.5 158.3
BghiP 0.01 4.039 3.003 2.194
∑BaPeq 495.9 330.7 427.2
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in Guiyang due to its meteorological parameters. Source 
apportionment results showed that coal/biomass combus-
tion and vehicle emission were the two dominant sources 
of  PM2.5-bound PAHs. The cluster backward trajectory 
analysis indicated that PAHs also was influenced by 
air masses from other domestic provinces of Sichuan, 
Guangxi, and Yunnan, as well as abroad countries of 
Laos and Vietnam. The maximum distance between emis-
sion sources and sampling location was estimated to be 
2406 km, which was in agreement with back-trajectories 
results. The ECR value in Guiyang (3.6 × 10−4) exceeded 
the health guideline  (10−6), reflecting high potential risks 
of cancer. Both particulate and gaseous phase of PAHs 
as well as their transformation and bioaccumulation are 
necessary to investigate in the montane city in the future.
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