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Abstract

Metal oxide nanoparticles (MO-NPs) with multifunctional properties are used extensively in various industries and released
into the environment as industrial effluents and waste nano-products. These non-degradable, toxic MO-NPs are accumulating
in the environment, debilitating the ecosystem and their biological communities. In this review article, a real-time scenario
of MO-NP toxicity towards the soil and aquatic ecosystem and their mode of toxicity have been addressed in detail. The up-
to-date information presented here suggests serious consideration of the consequences before random utilization of MO-NPs.

The advent and the worldwide growth of nanoparticle (NP)-
based industries have been referred as the next industrial
revolution by Lux Research 2008. In past 2 decades, suc-
cessful synthesis of engineered nanoparticles (ENPs), espe-
cially metal oxide nanoparticles (MO-NPs) with fascinating
physico-chemical properties, such as transparency to visible
light, semi-conductivity, intrinsic UV-absorbing capacity,
etc., has facilitated the golden age of these industries (Bond-
arenko et al. 2013). NP-rich industrial effluents are continu-
ously disposed to the environment, resulting in alteration of
soil and aquatic equilibrium, thus challenging to their liv-
ing population (Ciacci et al. 2012). These risks are growing
in tandem with increasing demand of nano-products in the
global market (Morales-Diaz et al. 2017). A schematic pres-
entation of eco-toxicological aspects of MO-NPs is shown
in Fig. 1.

In recent years, many of studies have reported MO-NP
induced toxicity in mammalian cells, specifically humans
(Yamamoto et al. 2004; Bondarenko et al. 2013), and
plants (Morales-Diaz et al. 2017; Siddiqgi and Husen 2017).
Although a few scientific reports are available focusing the
eco-toxicity of individual MO-NP on a specific biological
species, complete information comprising the MO-NP toxic-
ity as a whole towards the entire soil and aquatic habitats is
yet to be explored extensively.
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This review article is a compact attempt to understand
the real-time MO-NP induced eco-toxicity and its threshold
level towards the entire soil and aquatic habitats. The most
abundantly used MO-NPs, such as TiO,, ZnO, CuO, etc.,
have been studied with special consideration. This review
strongly demonstrates the necessity of monitoring the ran-
dom use of toxic MO-NPs to avoid the irreversible environ-
mental impairment in the near future.

Global Production, Production Strategy
and Application of MO-NPs

Global Production

In the year 2000, the very first national nanotechnology
programme was launched in the United States, and in 2010
itself, the worldwide funding for NT was 1.78 billion dol-
lars (Sargent 2012). Effectively, mammoth quantity of SiO,,
TiO,, and other MO-NPs were produced (Piccinno et al.
2012). Projections indicate this exponentially increasing
market value of NT to reach as high as $1 trillion by 2020
(Chakraborty et al. 2016).

Production Strategy

NPs are traditionally synthesized by a number of physical,
chemical, and biological routes. The physical methods in
practice include gas condensation technique, spray pyroly-
sis, laser pyrolysis, vapour deposition (Dhand et al. 2015),
etc. Highly pure NPs with desired shape and size can be
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Fig. 1 Schematic presentation of eco-toxicity of MO-NPs

achieved this way, but complicated instrumentation and
high-power consumption make these processes inconven-
ient and expensive. Chemical methods include sol-gel,
microemulsion, hydrothermal, chemical vapour synthesis,
etc. (Dhand et al. 2015), but employment of highly toxic
and non-biodegradable chemicals causes environmental
hazard and limits its biomedical applications (Boxi et al.
2016). Recently, biological synthesis of NPs has come to
the fore where biomolecules secreted by plants or micro-
organisms being used as reducing agents for the material
salts (Dhand et al. 2015).

Applications

The MO-NPs are critically used in manufacturing indus-
tries to reinforce the physical properties of bulk materi-
als or to achieve enhanced surface features like scratch
resistance, water repellence, reflectivity, photo-activity,
etc. (Bondarenko et al. 2013). These are most commonly
used in sensor and sensing devices, catalyst designing,
sunscreens, cosmetics, electronic devices, textiles, agri-
culture, diagnostic imaging, potential cancer treatment,
antimicrobial applications, etc. (Exbrayat et al. 2015;
Dhand et al. 2015). Conclusively, MO-NPs have become
an integral part of our daily life.

@ Springer

Eco-toxicology
NPs as Contaminant

NPs existed in the environment from the beginning of the
earth’s history as volcanic dust, soil-particles, rock erosion,
etc. With time, living systems had learnt to withstand the ill
effects and interference of these natural NPs (Exbrayat et al.
2015). In the past 2 decades, synthesis of ENPs has intro-
duced multipurpose industries but imposed new challenges
to the living population. Even though some researchers deny
the size-dependent mechanical toxicity of MO-NPs (Yama-
moto et al. 2004; Warheit et al. 2006), manipulating the sur-
face area, surface chemistry, and ionic characters of these
ENPs for achieving desired properties has increased their
toxicity and bioavailability to much higher level than their
bulk form (http://europa.eu.int/comm/health/ph_risk/commi
ttees/04_scenihr/04_scenihr_en.htm). These toxic NPs are
continuously disposed and accumulated in the environment
resulting consequent ecological imbalance (Hu et al. 2010).
The major sources of the NP contaminants in environment
are summarized in Fig. 2.
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MO-NPs in Aquatic Eco-system

Aquatic ecosystem consists of many organisms ranging from
producers to decomposers (Bondarenko et al. 2013). The
MO-NP toxicity on growth and survival of the producers
causes depletion of dissolved oxygen in the water bodies.
Again, lethal effects on decomposers limit biodegradation
process resulting accumulation of waste materials that con-
tribute to the pollution in aquatic environment (Navarro et al.
2008; Siddiqi and Husen 2017). Consumers at different lev-
els, such as Zebrafish (Chakraborty et al. 2016), Daphnids
and other crustaceans (Heinlaan et al. 2008), sea urchin
(Fairbairn et al. 2011), rainbow trout (Federici et al. 2007),
some amphibians, and molluscs (Exbrayat et al. 2015), are
the most reported aquatic habitats to suffer from MO-NP
toxicity (Table 1).

Toxicity of the MO-NPs are relative to their solubility in
aqueous medium. TiO, and CeO,-NPs aggregate and sedi-
ment fast (~30-60 min) and are completely insoluble in sea-
water (Keller et al. 2010) that limits their toxicity and bio-
availability, too. In contrast, ZnO and CuO-NPs are readily
soluble and release metal ions (Zn** and Cu**) in aqueous
solution, making them more toxic and bioavailable (Chang
et al. 2012). In some cases, bulk ZnSO, releases more metal
ions in aqueous medium exerting higher toxicity than nano-
ZnO, which supports the size independent toxicity of MO-
NPs (Yamamoto et al. 2004; Warheit et al. 2006; Heinlaan
et al. 2008). Similarly, influence of Cu** ions in CuO-NP
toxicity has been reported by Bondarenko et al. (2013).

Hence, without even entering the cell, MO-NP may
exert toxicity by altering the ionic character of the micro-
environment in close vicinity of cell-particle contact area.

soil remediation

Waste of
nano-products

Soil
&
aqueous body
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*Reduced Photosynthesis
and respiration
*Decreased reproduction

Uptake
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However, each metal ion is unique in its mode of toxicity
and the toxicity is highly species-specific (Bondarenko et al.
2013; Exbrayat et al. 2015).

MO-NPs in Soil Environment and Its Impact on Soil Habitats

Nanoparticles are introduced into the soil environment
during transportation, consumer’s use, and improper dis-
posal (Navarro et al. 2008). The NP toxicity becomes more
complex when it combines with the organic and inorganic
substances present in the soil matrix. Dissolved or particu-
late organic matters present in the soil environment may get
adsorbed onto the NP surface and influence its ionic char-
acter in a number of ways. In humus-rich soil, negatively
charged substances are adsorbed onto the MO-NP surface
and forms a negative charge bearing complex. The resulting
complex increases MO-NP stability by reducing the chances
of agglomeration (Ben-Moshe et al. 2010; Fang et al. 2009).
Nature of humus, such as hydrophobicity and the capacity
to change ionic character of MO-NPs, improves the stability
of NPs in soil (Ghosh et al. 2008). Stability of the MO-NPs
also influences the NP transportation through the soil matrix
(Fig. 3). Aggregation of the MO-NPs make them deposit
heavily on the soil surface (Dunphy et al. 2006). Likewise,
oppositely charged soil surface and NPs form a conjugate
and immobilize the NPs onto the soil surface (Cornelis et al.
2011). As an example, positively charged Al,05-NPs are
relatively less mobile but in phosphate rich soil (negatively
charged) mobility increases due to phosphate sorption onto
the surface (repulsive force) (Darlington et al. 2009). On the
contrary, the electrostatic interaction between the soil sur-
face and the MO-NPs determines the NP mobility through
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the soil gradient. The identical charge on the NP and soil
surfaces create repulsive force that favours NP mobility

§0 towards deeper level causing ground water contamination.
§ Hence, accumulation of MO-NP and their consequent

-~ _ % toxicity in soil environment is highly associated with the

g % E soil chemistry, composition, and its biological community.

= = s Again, the toxicological implications of MO-NPs affect the
z| ® g g soil habitats significantly, and thus it has been specially con-
2| E 3 i< sidered (Table 2).
s = = ” Toxicity of MO-NPs on Living Population

- T, Toxicity of MO-NPs is highly species-specific and depends

- & on its environmental chemistry. Among all industrially used

5 2 MO-NPs, ZnO and CuO are reported to be most toxic in
% 3 3 recent studies. Toxicity of the abundantly used MO-NPs is
gl & a F discussed individually with special focus to the microbial
C|H z ~ community and plant kingdom.

s o )

_EE £, ER: ZnO-NP

é‘ %) 2 % § E" g E; '::; ) ZnO is one of the most studied and most toxic MO-NPs in

_QE %% % ;C;‘Ji:f“ = g ;E“ the present age. According to Jiang et al. (2009), among

B o) g % 3 z g é ; § g Zn0, Al,0O;, TiO,, and SiO,-NPs, ZnO is the most toxic

£5E5=82:2273 %‘E causing 100% mortality to E. coli, B. subtilis, and P. flures-
e 3 02383 g 22 cens. Effect of ZnO-NP on soil bacterial community also has
é z ?{)ij T E& ° 2 g x73 % £ been studied by Ge et al. (2014). Another study stated that
S8~ 2F 5 E= S == nano-ZnQO affects the bacterial taxa associated with nitro-

gen fixation (order Rhizobiales), methane oxidation (family
Methylobacteriaceae), and recalcitrant organic compound
decomposition (family Sphingomonadaceae and Streptomy-
cetaceae) (Ge et al. 2012). Arakha et al. (2015) reported the
higher inhibition of tested group of bacteria by negatively
charged ZnO-NP compared with the positively charged one,
which reveals the influence of surface charge on the antimi-
crobial propensity of the MO-NP.

ZnO induces seed germination inhibition in Zea mays
plant and collapses the epidermis and cortex cells in the
plant root of Lolium perenne was reported by Lin and Xing
(2007, 2008). In aquatic environment, ZnO-NP delays
embryo and larvae development in Zebrafish and decreases
their hatching rate and survival significantly (Zhu et al.
2008).

96 h
14 days
96 h

Size (nm) Concentration range Duration
0-1 mgL™!
0-16 mg L™

ZnO  300-350 0-200 pg L~!
24
ZnO <100

NPs
TiO,

CuO-NP

Toxicity-based categorising of the MO-NPs is a difficult
task because of their species-specific reactivity. However,
according to literature, CuO-NP can be ranked alongside
ZnO-NP. In some instances, CuO-NP was reported to be
more toxic to beneficial rhizosphere soil isolate P. chlorora-
phis 06, than ZnO-NP (Dimkpa et al. 2011). Similarly, Baek
and An (2011) observed toxicity of CuO-NP to be higher

Fresh water fish (Cyprinus carpio)

Rainbow trout (Oncorhynchus

Sea urchin (Lytechinus pictus)
mykiss)

Table 1 (continued)
Organism tested
N.D. not determined
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on E. coli, B. subtilis, and S. aureus compared with NiO,
ZnO, and Sb,0;-NPs. Kim et al. (2013) studied the soil
enzyme activities in CuO-NP treated and untreated soil. A
considerable reduction in dehydrogenase, phosphatase and
B-glucosidase (62, 80, and ~ 60%, respectively) activity were
observed in NP treated soil. However, the toxicity of NPs
is highly influenced by plant species and soil characteris-
tics. Frenk et al. (2013) studied the toxicity of CuO-NP on
soil bacterial community, which is highly influenced by soil
composition. The NP was found to be less toxic in soil sam-
ples containing larger clay and organic matter. A similar
study has been reported by Ben-Moshe et al. (2013), which
states the negative impact of CuO-NP on soil bacterial com-
munity. CuO-NP-induced morphological and genetic altera-
tions in leaf litter decomposing fungus have been studied by
Pradhan et al. (2011).

TiO,-NP

TiO, is the most abundant, industrially used NP, reported
to be less toxic to a living population compared with ZnO
and CuO-NPs. In the presence of ultraviolet irradiation, it
releases reactive oxygen species (ROS), which scavenges
biomolecules, resulting in cell damage. Generation of
ROS is restricted or limited in absence of UV light. Adams
et al. (2006) studied the higher toxicity of TiO,-NP on
Gram-positive Bacillus subtilis compared with the Gram-
negative E. coli. The growth inhibitory effect of TiO,-NP
under darkness reveals the involvement of alternative mode
of toxicity other than ROS generation. The toxic effect of
TiO,-NP on Zea mays plants has been reported by Asli and
Neumann (2009). The NP accumulation around the root cell
wall resulted in hindrance of hydraulic conductivity of the

Grouiﬁi Water flow

primary root and induction of water stress in shoot of the
young seedlings. However, no intracellular accumulation of
NP has been observed.

Other MO-NPs

Other MO-NPs, such as Fe;0,, CeO,, Al,O;, etc., are much
less toxic (Fairbairn et al. 2011; Zhu et al. 2008) compared
with those already discussed. He et al. (2011) reported the
Fe;0, induced alteration in anthrosol soil bacterial com-
munity that consequently influences the soil chemistry and
property. Non-toxicity of CeO,-NP has been studied on
the sea urchin (Lytechinus pictus) at concentrations up to
10 mg L~! (Fairbairn et al. 2011). Similarly, non-toxicity
of alumina-NP (Al,0O;) against Zebrafish embryo has been
reported by Zhu et al. (2008).

Mechanism of Toxicity

Three main mechanisms have been implicated for MO-
NP-induced toxicity: generation of reactive oxygen species
(ROS), dissolution property in aqueous phase, and exertion
of oxidative stress.

Generation of ROS is the most common mode of MO-NP
toxicity (Boxi et al. 2016; Chakraborty et al. 2016), which
reacts with biomolecules, and inhibits the biological sys-
tem’s ability to detoxify the reactive intermediates or to
repair cellular damage. The MO-NP induced extracellular
ROS causes oxidative damage to the cell membrane, result-
ing in severe cellular impairment while the intracellular ROS
breaks DNA strands or alters gene expression (Chang et al.
2012).
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Table 2 Effect of MO-NP on soil habitats

Organism tested

NPs

Size (nm) Concentration range

Duration

End point

References

Soil bacterial community

Rhizobiales

Sphingobacteriaceae

Sphingomonadales

Flavobacteriales

Soybean plant

Cucumis sativus

Zea mays

Terrestrial isopod (Porcellio
scaber)

ZnO

TiO,

CuO

Fe;0,

CuO

CuO

Fe;0,

CuO

CuO

ZnO

CeO,

CuO

ZnO

CuO

ZnO

TiO,

TiO,

ZnO

20-30

15-20

<50

<50

15-20

<50

<50

15-20

15-20

10

50

50

50

50

15

25-75

84.9

0.05-0.5 mg g~

0-2mgg™!

0.1-1%

0.1-1%

500 mg L™

0.1-1%

0.1-1%

500 mg L™

500 mg L~!

0-0.5 gkg™!

0-1gkg™!

1000 mg kg™

1000 mg kg™

1000 mg kg™!

1000 mg kg™

0.5-3000 mg g~

10-1000 pg g~

2000-5000 pg g~

60 days

60 days

48 h

48 h

160 days

48 h

48 h

160 days

162 days

48 days

48 days

15 days

15 days

15 days

15 days

3 days

14 days

4 weeks

Exponential reduction in
soil DNA pool but no sig-
nificant effect on soil basal
respiration

Linear decrease in soil DNA
content but soil basal respi-
ration remains unchanged

Significant negative impact
on bacterial hydrolytic
activity, oxidative potential,
community size and com-
position

Alters the hydrolytic activity
and bacterial community
composition

Lower susceptibility

Significant negative impact
on bacterial hydrolytic
activity, oxidative potential,
community size and com-
position

Alters the hydrolytic activity
and bacterial community
composition

Complete elimination of the
bacteria from deeper hori-
zons of contaminated soil

Absence of the bacteria in
3rd horizon of the contami-
nated soil

Significant amount of metal
is accumulated in leaves
and beans affect the food
quality

Inhibits N, fixation potential
and retards plant growth

Yellowing of shoots, shorten-
ing and damage of root

Reduction in root growth and
yellowing of shoot

Yellowing of shoots, shorten-
ing and damage of root

Reduction in root growth and
yellowing of shoot

Decrease in catalase and
glutathione-S-transferase
activity but weight change
and survival were not
affected

Alteration in feeding param-
eters

Accumulation of 16% Zn
into the animal body

Geetal. (2011)

Geetal. (2011)

Frenk et al. (2013)

Frenk et al. (2013)

Collins et al. (2012)

Frenk et al. (2013)

Frenk et al. (2013)

Collins et al. (2012)

Collins et al. (2012)

Priester et al. (2012)

Priester et al. (2012)

Kim et al. (2013)

Kim et al. (2013)

Kim et al. (2013)

Kim et al. (2013)

Jemec et al. (2008)

Drobne et al. (2009)

Pipan-Tkalec et al. (2010)
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Table 2 (continued)

Organism tested NPs  Size (nm) Concentration range

Duration  End point References

Nematods (Caenorhabditis ImgL™!

elegans)

CeO, 15

TiO, 7 ImgL™!

Zn0 1.5

ZnO 20 0.8-1.6 mg L™

Arthropod (Folsomia can- ZnO <200

dida)

Earth worm (Eisenia fetida) ~ AlLO; 11 100-10,000 mg kg™

ZnO 1020  0.1-5gkg™!

TiO, 10-20 0.1-5 g kg™!

ZnO  40-100  0.1-10,000 mg L™

TiO, 32 0.1-10,000 mg L™

TiO, 5,10,21 200-10,000 mg kg™!

Earth worm (Eisenia andrei) TiO, 5,10,21 200-10,000 mg kg_'

Earth worm (Eisenia veneta) ZnO <100 750 mg kg~!

Earth worm (Lumbricus 0-100 mg kg™!

terrestris)

TiO, 50

325-1625 mg Zn L™!

100-6400 mg Zn kg~

24 h Decreased worm fertility but  Roh et al. (2010)
no significant alteration in

growth

24 h Decreased growth and Roh et al. (2010)

fertility

24h Significant reduction in
worm mobility, survival

and reproduction

Ma et al. (2009)

96 h Significant retardation in

reproduction

Wang et al. (2009)

4 weeks Retardation in reproduction

but survival not affected

Kool et al. (2011)

28 days Significant decrease in Coleman et al. (2010)
reproduction and cocoon
production but no effect on

survival

7 days Significant inhibition in Hu et al. (2010)
cellulose activity, DNA

damage, abnormalities and

damage in mitochondria,

decreased antioxidant

enzymes activity

7 days Significant inhibition in Hu et al. (2010)
cellulose activity, DNA

damage, abnormalities and

damage in mitochondria,

decreased antioxidant

enzymes activity

4 weeks Complete inhibition in Canas et al. (2011)

cocoon production

Decreased cocoon produc-
tion

Canas et al. (2011)

28 days No negative effect on sur- McShane et al. (2012)
vival, growth and reproduc-

tion of the worm

28 days No negative effect on sur- McShane et al. (2012)
vival, growth and reproduc-

tion of the worm

Accumulation of Zn in worm
tissue and gut, significant
reduction in cocoon pro-
duction but survival rate is
not affected

21 days Hooper et al. (2011)

2-8 weeks Induced apoptosis and
adverse damage in cuticle
and gut tissue

Lapied et al. (2011)

Dissolution property of MO-NPs play significant role in
their individual toxicity, which has already been discussed
in section “MO-NPs in aquatic eco-system”. Released metal
ions in aqueous medium enter the cell by ion/voltage-gated
channels (Colvin et al. 2003) and exert toxicity in different
ways, such as: (1) inducing intracellular ROS generation
by various chemical reactions, (2) chelating with essen-
tial biomolecules, (3) dislodging metal ions in specific

metallo-proteins resulting in functional protein inactivation,
and (4) increasing metal ion concentration, thus disrupting
the cellular metal cation homeostasis (Chang et al. 2012).
Exertion of oxidative stress is another common mecha-
nism of toxicity, especially for the MO-NPs insoluble in
aqueous phase (Gurr et al. 2005; Xiong et al. 2011). In
the absence of light, when ROS generation is arrested,
NP-induced intracellular oxidative stress modifies cellular
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Release \'
of
metal
ions

Fig.4 Mechanistic outline of MO-NP toxicity

proteins, lipids, and nucleic acids, stimulating the antioxi-
dant defence system and leading to cell death (Adams et al.
2006; Handy et al. 2008). The mechanistic details of MO-NP
toxicity have been schematically presented in Fig. 4.

Conclusions

The attractive physico-chemical properties of the MO-NPs
are extensively exploited in multipurpose industries and
released to the environment as industrial effluents and con-
sumed nano-products. Discovery and use of some MO-NPs
induced massive eco-toxicological and bio-cellular damages
have alarmed the scientific community to consciousness.
Although some studies have been performed on MO-NP tox-
icity in recent times, a broad research focusing on eco-toxi-
cological threats remains untouched to date. Much extensive
research and critical analysis is needed at a molecular level
for better understanding the mechanistic details and species-
specific toxicity of MO-NPs. An interdisciplinary approach
for developing standard techniques and methodologies for
NP toxicity assessment has become mandatory and have to
be followed strictly before the utilization of any NP at an
industrial scale. The random consumption of these NPs in
different industries has to be restricted to protect the environ-
ment for our own well-being and future generations.
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