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Abstract
The investigation of organochlorine pesticides (OCPs) levels in sea turtles is an important issue in conservation research, due 
to the harmful effects of these chemicals. In the present study, OCPs concentrations were determined in the eggs of two sea 
turtle species (Eretmochelys imbricata and Chelonia mydas) collected from the Punta Xen and Isla Aguada (Mexican coast) in 
2014 and 2015. Concentrations of 20 OCPs were analysed, including isomers of hexachlorocyclohexane, aldrin, chlordanes, 
endosulfans, methoxychlor, DDTs, and heptachlor. From the group of contaminants considered (analysed as families), the 
results revealed higher concentrations of ΣHCH and ΣDienes on both selected species. We analysed the relationship between 
turtle size and the OCPs concentrations; no correlation was found between the size of the female and concentrations in the 
eggs. In addition, principal component analysis indicated pattern differences between species and years, in good agreement 
with concentrations differences.

Global anthropogenic pollution of the marine environment 
by organic contaminants, including persistent organic pol-
lutants (POPs), is an issue of great concern. Their presence 
in aquatic systems around the world is a result of its wide-
spread use and long-distance transport (Hamann et al. 2010). 
Environmental contaminants of chemical origin can resist 
chemical, photolytic, and biological degradation (Clark 
1992). Due to their lipophilic properties, resistance to break-
down, and biomagnification potential, these chemicals are 

extremely persistent in the environment and can have many 
harmful effects on the development and functioning of sea 
animals (Clark and Krynitsky 1980; Mckenzie et al. 1999; 
Alava et al. 2006). The bioaccumulation of these toxic sub-
stances has become a major cause for concern on several 
wildlife species (Marcotrigiano and Storelli 2003; Keller 
et al. 2004b; Ogata et al. 2009) and for the marine turtles 
communities worldwide (Lake et al. 1994; Storelli and Mar-
cotrigiano 2003; Alava et al. 2006; de Andréa 2008; Alava 
et al. 2011; Marcovecchio and Freije 2013; da Silva et al. 
2014; Guerranti et al. 2014).

Sea turtles have recently been considered as suitable envi-
ronmental indicators to improve the effectiveness of con-
servation strategies (Parliament 2008) due to their long life, 
their trophic position, and their mobility, which allow for the 
integration of pollutants from extensive areas. Taking into 
account those characteristics, several studies have reported 
the worldwide accumulation of pollutant substances in the 
marine turtles during the past decade (Alam and Brim 2000; 
Gardner et al. 2003; Lam et al. 2004; Andreani et al. 2008; 
Monagas et al. 2008; Oros et al. 2009; Jerez et al. 2010; 
Alava et al. 2011; D’Ilio et al. 2011). Because marine turtles 
allow the integration of pollutants from extensive areas, they 
can offer a comprehensive contamination profile within that 
energy flow ecosystem. The contamination of the marine 
system is one of the research priorities in the topic of turtle 
biology and conservation (Hamann et al. 2006).
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Some persistent organic pollutants can mimic hormones 
and may cause adverse health effects in wildlife popula-
tions, namely on the fecundity and reproductive competence. 
According to Camacho et al. (2013a), the bioaccumulation 
of POPs, such as OCPs, polychlorinated biphenyls (PCBs), 
polybrominated diphenyl ethers (PBDEs), and polycyclic 
aromatic hydrocarbon (PAHs), in the tissues and organs of 
these animals can influence sea turtle natural populations’ 
growth and development, ultimately causing mortality in the 
various stages of development. Many sea turtle populations 
are declining worldwide at alarming rates (Pritchard and 
Cox 2002) and are considered globally threatened or endan-
gered. (MTSG 1995). Populations of marine turtles suffer 
greatly by environmental stress and anthropogenic activi-
ties being most of the impact on these populations caused 
by increased commercial and industrial exploitation in the 
coastal regions. According to the Marine Turtle Specialist 
Group (MTSG), the main threats to marine turtles currently 
causing of these species population collapse are coastal 
development, the incidental capture by fisheries, habitat loss 
(spawning and feeding) (Derraik 2002), direct use for human 
consumption and egg poaching (López-Mendilaharsu et al. 
2007), climate change, pollution, and pathogens (Shigenaka 
and Milton 2003).

The Mexican coast represents an area of vital importance 
for the survival of marine turtles to growth and reproduce. 
Six of the seven existing species in the world visit the Mexi-
can coasts: Caretta caretta, Chelonia mydas, Dermochelys 
coriacea, Eretmochelys imbricata, Lepidochelys olivacea, 
Natator depressus, Lepidochelys kempii, except for Natator 
depressus, all are listed as vulnerable, endangered, and criti-
cally endangered in the IUCN Red List (International Union 
for Conservation of Nature) (IUCN 2016). The green turtle 
(Chelonia mydas) can be found in all tropical and subtropi-
cal seas, and nesting populations are generally comprised of 
individuals that have migrated from a wide range of foraging 
grounds (Godley et al. 2002; Seminoff et al. 2008), and it is 
the species of sea turtle that presents more coastal habits (de 
Pádua Almeida et al. 2011). Hawksbill turtles (Eretmochelys 
imbricata) are circumtropically distributed in coastal waters 
(Meylan and Donnelly 1999). This species can be found in 
larger numbers in tropical coastal areas than in subtropical 
seas (Marcovaldi et al. 2011). Sea turtles are highly migra-
tory, and they undertake complex movements and migrations 
through geographically disparate habitats. Their movements 
within the marine environment are less understood, but it is 
believed that hawksbills turtles in 108 countries and green 
turtles inhabit coastal waters of more than 140 countries 
(Groombridge and Luxmoore 1989; IUCN 2016).

During their reproductive years, C. mydas and E. imbri-
cata show strong fidelity to their foraging and breeding 
sites, which can be up to thousands of kilometers apart (Carr 
1964; Carr and Carr 1972; Limpus et al. 1992; Lohmann 

et al. 1997). Using satellite telemetry, scientists can track 
the movements of sea turtles between areas and even across 
entire oceans (Gaos et al. 2012); however, information on the 
migrations of sea turtles is currently sparse (Limpus et al. 
1992). Marcovaldi and Marcovaldi (1985) describe these 
species’ general feeding characteristics, indicating that E. 
imbricata prefer corals and sponges and C. mydas feed on 
small molluscs and sponges during the first year of life, pref-
erentially feeding on macroalgae and phanerogams after this 
period; during this foraging time, local environmental nutri-
tional resources are deposited into follicles (which become 
the yolk of the egg) for the next nesting season.

Most studies focusing on the concentrations of pollut-
ants in sea turtles were based on tissues collected from dead 
animals. Levels and distribution of various chemical com-
pounds were reported for liver (Malarvannan et al. 2011; 
Guerranti et al. 2014; Storelli and Zizzo 2014), adipose tis-
sue (Lazar et al. 2011; Yogui 2002), or for more than one 
organ and tissue (Lake et al. 1994; Corsolini et al. 2000; 
Miao et al. 2001; Gardner et al. 2003; da Silva 2009; Oros 
et al. 2009; D’Ilio et al. 2011). Blood samples were success-
fully used to measure the concentrations of organochlorine 
pollutants, which is considered to be a non-lethal collection 
technique (Keller et al. 2004a; Hamann et al. 2006; Swarth-
out et al. 2010; Camacho et al. 2013b, 2014). Assessments 
from POP concentrations in eggs and the extent to which 
contaminants affect these developmental stages of sea turtles 
has been insufficiently researched, including the embryonic 
abnormality rates, relationships to hatching success, the tim-
ing of reproductive maturation, hatchling growth rates, and 
hatchling survival rates. Contaminant levels in eggs may 
offer information for two different life stages—the embryo 
and the adult females—because contaminants are transferred 
to the egg from the mother during vitellogenesis (Pagano 
et al. 1999). Maternal transfer of POPs into eggs has been 
documented in some turtle species, including sea turtles 
(Russell et al. 1999; Stewart et al. 2011; Guirlet et al. 2008, 
2010).

The OCPs concentrations in sea turtle eggs are of high 
concern and their potential impact on embryonic and hatch-
ling development is poorly understood. In addition, sea 
turtle nesting populations are of high interest to determine 
the range of exposure among different species and loca-
tions (Alava et al. 2011). Because nesting females do not 
feed during migration or nesting periods (Bjorndal et al. 
1997), their POPs concentrations are likely to reflect the 
contamination in their foraging areas and their feeding habits 
(Bjorndal et al. 1985, 1997; Alava et al. 2006, 2011). Conse-
quently, the POPs concentrations in eggs may represent the 
contamination levels received on the adult female foraging 
grounds. Females nesting on the same beach but foraging 
in different locations would likely produce eggs contain-
ing different POPs concentrations. Alternatively, if females 
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from one nesting beach forage in similar locations, then their 
egg POPs concentrations would be similar and indicative 
of their foraging regions. Adult females accumulate POPs 
from their prey as well as from incidentally ingested sedi-
ments, which then are deposited, along with lipids, into the 
follicles. According to Aguirre et al. (2006), the consump-
tion of sea turtle products (tissues, eggs, and blood) poses a 
number of public health concerns because of the high lipid 
content and the presence of bacteria, parasites, and environ-
mental contaminants. Thereby, the World Health Organiza-
tion (WHO) and other regional organizations have provided 
a guide for consumption of foods containing environmental 
contaminants and acceptable daily intakes (ADIs) (FAO/
WHO 2007). The ADIs are based on human and animal 
experiments, which investigate the nonobservable adverse 
effect levels of these chemicals and are generally presented 
as micrograms per kilogram of body weight per day (Van 
Oostdam et al. 2005).

Because marine turtles are an endangered species, it is 
important to understand the responses to long-term impact 
and conservation measures. Therefore, knowing the spe-
cies exposure level to these compounds is of paramount 
importance to make informed management decisions 
and to perform response measures in order to improve 
the effectiveness of long-term conservation strategies in 
developing populations’ recovery (Lam et al. 2004; Casale 
et al. 2004; Jakimska et al. 2011). The purpose of this 
study was to determine the POPs and OCPs concentrations 
in eggs from two species of sea turtles, C. mydas and E. 
imbricata, nesting on the coasts of Mexico during two 

consecutive years (2014 and 2015). Understanding chemi-
cal contamination, and ultimately the potential risks to the 
development and reproduction, are crucial elements to the 
management and conservation of sea turtles.

Materials and methods

Sample collection

Eggs of two sea turtles species with spawning areas from 
Campeche were collected to analyse the concentration 
of organochlorine contaminants. Campeche is located in 
southeastern Mexico in the Yucatan Peninsula (Fig. 1).

Two species were analysed in the study: green tur-
tles (C. mydas) were sampled in Isla Aguada field 
(18°47′15.5″N, 91°29′56.5″W), and hawksbill turtles 
(E. imbricata) were sampled in the Punta Xen field 
(19°12′39″N, 90°52′09.7″W) (Fig. 1). Sixty eggs for 60 
individual sea turtles were collected (1 egg per nest), for 
each species during the breeding season of 2014 and 2015 
(30 eggs per year/species). The curved carapace length 
(CCL) and curved carapace width (CCW) of the cara-
pace were measured with a flexible tape (Bolten 1999). 
Sea turtle eggs were collected and wrapped in aluminium 
foil, stored in Ziploc bags, stored on ice and frozen at 
− 20 °C. All analyses were performed at the Institute of 
Ecology, Fishery and Oceanography of the Gulf of Mexico 
(EPOMEX, Campeche, Mexico).

Fig. 1   Map of the study area 
and sampling locations in 
Mexico
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Pollutants analysed in this study

A total of 20 organochlorine pesticides compounds were 
investigated in sea turtle eggs, including isomers of hex-
achlorocyclohexane (alpha, beta, gamma, delta-HCH), 
aldrin, dieldrin, endrin, endrin aldehyde, ketone endrin, 
trans chlordane, cis chlordane, endosulfan I, endosulfan 
II, endosulfan sulfate, methoxychlor, p,p′ DDE, p,p′ DDD, 
p,p′ DDT, heptachlor, heptachlor epoxide). OCPs were ana-
lysed using a mix of standards (SUPELCO 47426-U CLP 
Organochlorine Pesticide Mix), contaminant concentra-
tions were organized as families: ΣDDT was defined as the 
sum of p,p′ DDE, p,p′ DDT, and p,p′ DDD; ΣChlordanes 
as the sum of cis-chlordane and trans-chlordane; ΣHCH as 
the sum of alpha, beta, gamma, delta; ΣHeptachlor as the 
sum of heptachlor and heptachlor epoxide; ΣDienes as the 
sum of aldrin, dieldrin, endrin, endrin aldehyde, and ketone 
endrin; ΣEndosulfans as the sum of endosulfan I, endosulfan 
II, and endosulfan sulfate. Limit of detection for each family 
of compounds in μg g−1 (HCHs—0.007; Aldrin—0.0018; 
DDTs—0.01; Chlordanes—0.009; Endosulfans—0.007; 
Heptachlors—0.013; Methoxychlor—0.01).

Contaminant analysis

All the solvents used in the laboratory procedures were of 
98% of purity grade (HPLC). Silica gel, alumina, Florisil, 
and sodium sulfate were purified following the protocol 
NMX-AA-071-1981 (1981). The glassware was washed with 
Extran, dried in the oven for 4 h at 200 °C, and washed with 
acetone and hexane. POP analysis of the eggs followed the 
method described by Zhang et al. (2007). Fertile eggs were 
rinsed with distilled water, and the contents were extracted 
and homogenized thoroughly. The homogenized mix was 
dried in an oven at 40 °C. Three extractions were performed 
in an ultrasonic bath. For the first extraction, 50 ml of ethyl 
acetate-hexane (1:1) was added, and the sample was soni-
cated for 1 h. The organic layer was transferred to a glass 
tube, and the extraction was repeated twice with 40 mL of 
hexane for 1 h. Samples were purified by column chromatog-
raphy. The column was packed with silica gel (2 g), alumina 
(2 g), florisil (2 g), and sodium sulfate (2 g). First, 20 ml of 
methylene chloride was added, followed by 20 ml acetone, 
and finally 20 ml of hexane. The mobile phase, 35-ml mix-
ture of ethyl acetate: hexane (1: 9) was added. The cleaned 
extracts were diluted to 5 ml for analysis. The final volume 
of the solvent used was 0.5 ml.

Instrumental analysis

The contaminants were quantified using a Varian 3800 
gas chromatograph equipped with an Ni63 electron cap-
ture detector and HT8 capillary column (60 m × 0.25 mm; 

25-μm film thickness) (SGE Analytical Science, USA). 
The temperatures of the injector and detector were 150 
and 300 °C, respectively. The oven temperature was main-
tained at 60 °C min−1 and then increased to 320 °C at a 
rate of 2 °C min−1 for 5 min. The nitrogen flow into the 
column was 2 ml/min and a composition of 30 ml/min. 
Qualitative data were obtained by calculating the area 
under the curve with the star Chromatography Workstation 
software version 6 and the calibration patter. The quality 
of the standard is 99%, and the stock solutions, to make 
the calibration curve were: 1, 10, 50, 100, and 150 µg/ml.

Quality assurance

Laboratory blanks were analysed for quality assurance. 
Chicken egg samples were used in triplicate. One mil-
liliter of a 200 ng/ml Decachlorobiphenyl surrogate spike 
(SK011 Sigma-Aldrich) was added to the samples before 
the extraction, and they were subsequently refrigerated 
for 48 h. One of the subsamples was not spiked with the 
standard as a positive blank. Afterward, the contaminants 
were extracted and processed in an identical manner to the 
rest of the samples. Percentages of recovery was > 85%.

Statistical analysis

All obtained data were checked for distribution, normal-
ity and homogeneity of variances using the Kolmogo-
rov–Smirnov and Levene’s tests, respectively (Zar 1996). 
A logarithmic transformation (log (x + 1)) was used when 
data did not fulfil the assumptions of normality or homo-
geneity of variances. Differences in concentrations among 
eggs within species and years were determined using a 
one-way Analysis of Variance (ANOVA) and the interac-
tions using a two-way ANOVA. For these analysis, the 
IBM SPSS Statistics package, version 22, was used, and 
the significance level was 0.05. The variation of con-
taminants was, also, tested by a Permutational multivari-
ate analysis of variance (PERMANOVA) test, including 
a multifactorial temporal and spatial design (sampling 
locations, years and interactions). The Principal Coor-
dinates Analysis (PCA) was used visualise the temporal 
and spatial variation of selected contaminants, with vec-
tor overlays (Pearson correlations), indicating correlations 
between these variables and ordination axes (Anderson 
et al. 2008). Both PERMANOVA and PCA analysis were 
based on Euclidian distances between samples, after data 
transformation Log (x + 1). Multivariate PERMANOVA 
tests were performed using PRIMER with PERMANOVA 
software (PRIMER v6 & PERMANOVA v1, PRIMER-E 
Ltd.).
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Results

A total of 120 eggs were sampled for contaminant analy-
sis; data from 6 of these were excluded because of prob-
lems during analysis. We identified POPs as ΣChlordane, 
ΣHCHs, ΣDienes, ΣDDTs, ΣHeptachlor, ΣEndosulfans, 
and methoxychlor in all 114 of the eggs analysed. Com-
pounds most commonly identified in Punta Xen were 
ΣDienes, ΣHCHs, and ΣDDT, and in Isla Aguada were 
ΣDienes, ΣHCHs, ΣChlordane, and ΣHeptachlor (Table 1).

Contaminants concentration in the eggs 
of hawksbill turtles

In Punta Xen, ΣChlordane, ΣDienes, ΣEndosulfans, and 
methoxychlor were found to be higher in eggs collected 
in 2014 than from 2015, whereas ΣDDTs, ΣHCHs, and 
ΣHeptachlor were found at higher levels in 2015 compared 
with 2014 (Table 1). For the hawksbill turtles, no signifi-
cant differences were found for OCPs in eggs between 
years (p > 0.05). No correlation was found between the 
CCL and OCP concentrations in eggs (p > 0.05).

Contaminants concentration in the eggs of green 
turtles

In Isla Aguada, ΣChlordane, ΣHCHs, ΣDienes, 
ΣEndosulfans, ΣHeptachlor, ΣDDTs, and methoxy-
chlor were the most highly concentrated compounds in 
2015 compared with 2014 (Table 1). Significant differ-
ences were found between years for OCPs, except DDT, 
in eggs of green turtles (p = 0.124). No correlation was 
found between the CCL and OCP concentrations in eggs 
(p > 0.05).

Interyear and intersite comparisons

The concentrations of OCPs in eggs were significantly 
differed between green and hawksbill turtles (p < 0.05) in 
nearly every family of compounds, except for ΣDDT. When 
analysing the data of two-way ANOVA, according to the 
year and the sampling location, it was found that the interac-
tion between factors was significant (p < 0.05). Additionally, 
location and year separately showed differences (p < 0.05; 
Table 2). The Permutational multivariate analysis of vari-
ance (PERMANOVA) test allowed to verify that all the loca-
tions were different from each other and showed a significant 
correlation between location and year (p = 0.015; Table 3). 
The first Principal Coordinate Analysis (PCA) showed a 
clear separation between the years and between both sam-
pled locations: Isla Aguada e Punta Xen (Fig. 2). In both 

Table 1   Selected contaminant concentrations (mean ± SD) for each family of compounds (ng/g dw) in the eggs of green turtles and hawksbill 
turtles, during two spawning seasons

The one-way ANOVA, comparing both years, within each species also are presented (p < 0.05)

2727OCPs E. imbricata One-way 
ANOVA

C. mydas One-way 
ANOVA

N 2014 N 2015 F P N 2014 N 2015 F P

ΣHCHs 32 0.504 ± 0.371 27 0.695 ± 1.229 0.673 0.415 28 0.484 ± 0.404 27 4.934 ± 16.834 5.581 0.022
ΣDienes 32 0.329 ± 0.452 27 0.289 ± 0.691 0.071 0.791 28 0.506 ± 0.508 27 2.635 ± 6.049 7.480 0.008
ΣChlordane 32 0.201 ± 0.290 27 0.193 ± 0.439 0.007 0.935 28 0.337 ± 0.319 27 2.417 ± 6.096 7.406 0.009
ΣDDTs 32 0.192 ± 0.337 27 0.318 ± 0.615 0.953 0.333 28 0.308 ± 0.389 27 0.965 ± 6.001 2.444 0.124
ΣHeptachlor 32 0.100 ± 0.151 27 0.155 ± 0.418 0.452 0.504 28 0.189 ± 0.194 27 2.460 ± 4.777 11.611 0.001
ΣEndolsufans 32 0.191 ± 0.337 27 0.185 ± 0.379 0.004 0.949 28 0.330 ± 0.348 27 0.941 ± 2.161 5.595 0.022
Methoxychlor 32 0.073 ± 0.141 27 0.059 ± 0.209 0.087 0.769 28 0.165 ± 0.167 27 1.060 ± 1.787 12.359 0.001

Table 2   Summary results of two-way ANOVA

Two-way ANOVA

F P

Location 19.210 0.000 p < 0.001
Year 11.062 0.001 p < 0.05
Year × location 11.161 0.001 p < 0.05

Table 3   Summary results of permutational multivariate analysis of 
variance (PERMANOVA) main test

Source df SS Pseudo-F P(perm)

Location 1 25,230 14.04 0.001
Year 1 17,311 9.6333 0.001
Location × year 1 5927.3 3.2985 0.015
Res 118 2.1205E5
Total 121 2.6037E5
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PCA analysis, all analysed contaminants were clearly associ-
ated with Isla Aguada and the 2015 sampling.

Discussion

Overall, the present research results may provide an impor-
tant baseline data on contaminant concentrations in sea turtle 
eggs from south eastern Mexico. OCPs concentrations (ng/g 
dw) measured in this study and other research (ng/g dw; lw; 
ww) are reported in Table 4. In the discussion, where the 
authors measured the concentrations in ng/g wet mass the 
values were converted to ng/g dry mass.

The green turtle is a typically a nectonic and solitary 
animal and may occasionally form aggregations in feeding 
areas (Márquez 1990). The diet of this species varies con-
siderably during its life cycle and during the first year of life, 
from an omnivorous diet, mainly consuming food of animal 
origin, to herbivorous when juvenile and adults, being able 
to feed themselves eventually of living sponges, propagules 
of mangrove, molluscs, fish, and crustaceans (Bjorndal et al. 
1997). According to Meylan (1988), hawksbill turtles are 

omnivorous with a specialize diet made of sponges. Differ-
ences in feeding preferences, foraging strategies and thus 
trophic levels could explain the differences in OCPs concen-
trations observed in these two species of sea turtles.

The average hawksbill turtle ΣHCH concentration 
(0.59 ng/g dw) measured in the current study were lower 
to that found in hawksbill and green turtle eggs (1.88; 
2.64 ng/g dw respectively) from Caribbean region (Dyc et al. 
2015), leatherback eggs (1.64 ng/g dw) from Guiana Franc-
esa (Guirlet et al. 2010), and green turtle eggs (2.76 ng/g 
dw) from Malasia (van de Merwe et al. 2009a), being lower 
concentrations were found in green turtle eggs (4.24 ng/g 
dw) found in the present study.

ΣDienes were the second most abundant OCP class 
measured in Punta Xen and Isla Aguada. The average 
ΣDienes concentrations measured in hawksbill eggs 
(0.31 ng/g dw) and green turtle (2.07 ng/g dw) were lower 
than levels measured in loggerhead eggs samples in South-
ern Florida (10.12 ng/g dw) (Alava et al. 2006). Alava and 
collaborators found that the mean 4,4′-DDE concentration 
in loggerhead eggs (200.8 ng/g dw) was higher than the 
concentration found in green turtle eggs, concluding that 

Fig. 2   Principal coordinate 
analysis (PCA) scaling plot of 
the analysed contaminants in 
both sites (a) and years (b). In 
both analysis, vectors are also 
overlapping the scaling plot 
with Pearson correlations
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green turtles are herbivores, and as such, they do not accu-
mulate POPs to the same level as omnivorous loggerhead 
turtles (Alava et al. 2006). Nevertheless, average ΣDDTs 
concentrations found in the present study were higher in 
green turtle eggs (1.20 ng/g dw) than in hawksbill turtles 
(0.25 ng/g dw). Extreme caution must be exercised when 
comparing values with those of other studies’ different 
species because of the differences in feeding grounds.

Green turtle eggs exhibited relatively lower concentrations 
of ΣChlordane (1.90 ng/g dw) in relation to leatherback eggs 
(9.12 ng/g dw) from Eastern, Florida (Stewart et al. 2011), 
and higher concentrations than those found in green turtle 
eggs (0.24 ng/g dw) from Malaysia (van de Merwe et al. 
2009a). Observed results may indicate that different locations 
in the Gulf of Mexico seem to have a significant influence on 
OCP concentrations, as well as different years. The average 

Table 4   Mean concentrations for organochlorine contaminant concentrations (ng/g) in eggs collected from sea turtles from different locations

Loggerhead (Cc), green (Cm), leatherback (Dc), hawksbill (Ei) sea turtles; Mean (SD) in ng/g −1

dw dry weight, lw lipid weight, ww wet weight, ND not detected, B blood, E egg, WF Western Florida, EF Eastern Florida, NC North Carolina
a For only p,p′ -DDE
b Only yHCH
c Botany Bay Island, South Carolina

Location Species Matrix (n) ΣDDTs ΣChlordane ΣHCHs ∑OCPs References

Merritt Island, 
Florida

Cc, Cm Eggs (Cm-
2/Cc-9) ww

66a Clark and Krynit-
sky (1980)

Merritt Island, 
Florida

Cc Eggs (56) ww 99 Clark and Krynit-
sky (1985)

Heron Island, 
Queensland

Cm Eggs (15) ww 1.7 ± 0.3a Podreka et al. 
(1998)

Southern Florida Cc Eggs (22) ww 50.2 ± 92.4 25.5 ± 46.7 0.258 ± 0.508 Alava et al. (2006)
Australia Cm Eggs (10) ww trans 

0.02 ± 0.0004
endolsufan I - 

0.20 ± 0.005
van de Merwe 

et al. (2009b)
Malaysia Cm Eggs (55) ww 0.083 ± 0.018 0.057 ± 0.009 0.069 ± 0.009 0.39 ± 0.04 van de Merwe 

et al. (2009a)
French Guiana Dc Eggs (38)/blood 

(38) ww
B- 0.31 ± 0.22/E- 

1.44 ± 1.26
B- 0.15 ± 0.16/E- 

0.41 ± 0.26
Guirlet et al. 

(2010)
Malaysia Cm Eggs (33)/blood 

(11) ww
N.A. E- 0.17 ± 0.007b/

B- 0.50 ± 0.06
van de Merwe 

et al. (2010)
Eastern, Florida Dc Eggs (6) ww 1.87 ± 0.4 2.28 ± 1.71 N.A. Stewart et al. 

(2011)
Caribe Ei, Cm Eggs (Cm-

11/Ei-4) ww
Cm- 

0.17 ± 0.04/Ei- 
0.19

Cm- 
0.17 ± 0.007/Ei- 
0.47

Dyc et al. (2015)

Southeastern 
United States

Cc Eggs -WF-11/
EF- 24/NC-9 
lw

WF- 23.8 ± 7.1/
EF- 136 ± 56/
NC -694 ± 251

WF- 20.8 ± 9.6/
EF- 113 ± 31/
NC- 375 ± 146

WF- 
0.449 ± 0.017/
EF- 1.21 ± 0.49/
NC- 3.15 ± 1.39

Alava et al. (2011)

South Carolina Cc Eggs (10) lwc 325 ± 185 94.9 ± 41.2 Keller (2013)
Mexico Cm, Ei Eggs/blood (30) 

lw
Cm- B- 

2.087 ± 3.076/
E- 
38.72 ± 0//Ei- B 
-2.078 ± 3.525/
E- 
331.1 ± 379.7a

García-Besné 
et al. (2015)

Costa Rica Dc Eggs (18) lw De Andrés et al. 
(2016)

Northwest 
Florida

Cc Eggs (20) dw 753–800 Alam and Brim 
(2000)

Mexico Cm, Ei Eggs (Cm-
55/Ei-59) dw

Cm- 
1.19 ± 0.58/Ei- 
0.25 ± 0.05

Cm- 
1.90 ± 0.61/Ei- 
0.19 ± 0.04

Cm- 
4.24 ± 1.67/Ei- 
0.59 ± 0.11

Cm- 
1.81 ± 0.62/Ei- 
0.24 ± 0.5

Present study
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concentration of ΣHeptachlor, ΣEndosulfans, and methoxy-
chlor in Isla Aguada (1.73; 0.82; 0.76 ng/g dw respectively) 
was greater than that measured in the Punta Xen (0.12; 0.19; 
0.07 ng/g dw respectively).

In fact, in the species C. mydas most OCPs concentrations 
appear to have increased during the two analysed years. The 
differences in concentrations between species are likely attrib-
utable to differing foraging locales, on trophic differences, as 
well as different metabolic breakdown or elimination of con-
geners in reptiles inhabiting different climates. For example, 
leatherback turtles inhabiting waters both much further north 
and much deeper than the loggerhead.

Future studies should investigate this latter possibility 
(Alava et al. 2011). In addition, the comparisons between the 
present and previous studies are limited because of different 
analytical methodologies, sampling locations, and sample 
sizes used. Further investigations are necessary to evaluate 
long-term effects of OCPs and to understand if the concentra-
tions are decreasing or increasing on a temporal scale in green 
and hawksbill turtles nesting in south eastern Mexico in the 
Yucatan Peninsula.

Conclusions

The present study provides a foundation for future research 
and monitoring of sea turtle eggs for contaminant concentra-
tions. Were analysed OCP concentrations in eggs of green 
and hawksbill turtles, indicated differences between species, 
which are classified into different trophic levels. The concen-
tration of ΣDDTs was the only OCP group found at similar 
levels between species. Location and year of sampling were 
a significant factors influencing OCP concentrations in green 
turtles. Future studies should evaluate biological effects of 
contaminants in turtles and relationships with hatchling suc-
cess, embryonic abnormality rates, hatchling growth rates, and 
hatchling survival rates.
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