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Abstract Top trophic level predators are at risk from

bioaccumulation of heavy metals from their prey. Using

nondestructively collected tissues as a method of assessing

metal concentrations in snakes is useful for populations

that are threatened or declining. This paper reports con-

centrations of arsenic (As), cadmium (Cd), chromium (Cr),

lead (Pb), mercury (Hg), and selenium (Se) in tissues of

Northern pine snakes (Pituophis melanoleucus) from the

New Jersey Pine Barrens, a relatively pristine, undisturbed

habitat. We also determined if skin is an appropriate

indicator of internal concentrations and identified the fac-

tors (tissue, year of collection, length, sex) that might

explain variations in metal concentrations. Because they

can grow to 2-m long and live for 25 years, we suggest that

these snakes might accumulate heavy metals. Multiple

regression models were significant, explaining 16% (lead)

to 61% (mercury) of variation by tissue type. For mercury

and chromium, size also was significant. The highest

concentrations were in liver and kidney for all metals,

except chromium and lead. Mercury concentrations in tis-

sues were within the range reported for other snakes and

were below effects concentrations in reptiles. The

concentrations in skin were correlated with all internal

tissues for mercury and for all internal tissues except heart

for cadmium. These data show that shed skin can be used

as an indicator of metals in pine snakes and that, at present,

concentrations of heavy metals in this population are

within the range of those found in other snake species from

uncontaminated sites.

Governmental agencies, public policy makers, eco-toxi-

cologists, conservationists, managers, and the public are

interested in concentrations of contaminants in the envi-

ronment that could have adverse effects on wildlife them-

selves, or for the organisms that consume them.

Environmental contamination is a global problem because

of the potential adverse effects of chemicals on humans and

the environment. Contaminants enter the food chain

through natural erosion, biogeochemical processes, and

industrial or other anthropogenic sources. While concen-

trations of chemicals often are examined in biota living in

aquatic and marine systems (Furness and Rainbow 1990;

Burger and Gochfeld 2002, 2016), there are fewer studies

in inland forested areas. Yet, chemicals are atmospherically

transported all over the world, including to relatively iso-

lated, inland regions (Fitzgerald 1989; Houghton et al.

1992; Hammerschmidt and Fitzgerald 2006). Airborne

metals are dispersed on land and water, and enter both

terrestrial and aquatic food chains. Plants take up metals

into their foliage and fruits that are consumed by inverte-

brates that are eaten by rodents, which form the prey base

for many predators, including snakes. Predators that are at

the top of their food web are more vulnerable, because they

typically accumulate higher concentrations of metals than

species at lower trophic levels (Niethammer et al. 1985;

Hopkins et al. 1999, 2001; Burger and Gochfeld 2016).
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Although there has been considerable attention devoted

to determining the concentrations and adverse effects of

metals in birds, mammals, and fish, and even for some

groups of reptiles, there has been relatively little attention

to metal concentrations in snakes (Delany et al. 1988;

Campbell and Campbell 2000, 2001; Marquez-Ferrando

et al. 2009) or to the toxic effects of contaminants on

behavior and reproduction of snakes (Burger 2006; Sch-

neider et al. 2013). Snakes have received little attention,

because they are solitary and secretive, sufficient numbers

may not be available for analysis, and because use of

reptiles is not part of the usual protocol of the Environ-

mental Protection Agency. Metals have been studied in

lizards (Marquez-Ferrando et al. 2009; Salice et al. 2009),

alligators (Camus et al. 1998; Burger et al. 2000), and

turtles (Stoneburner et al. 1980; Bishop et al. 1991, 1995;

Caurant et al. 1999; Burger 2002; Day et al. 2005; Kam-

palath et al. 2006; Gardner et al. 2006; Lam et al. 2006;

Talavera-Saenz et al. 2007; Bergeron et al. 2007).

Northern pine snakes are large constrictors that reach the

northern limit of their range in the New Jersey Pine Bar-

rens. They are among the top-level predators in the region

that can grow to more than 2-m long (Burger and Zap-

palorti, unpub. data). The genus Pituophis has four species:

Pine Snake (P. melanoleucus), Bull and Gopher Snakes (P.

catenifer and P. sayi), and Louisiana pine snake (P. ruth-

veni), which is a candidate for federally threatened status.

Pituophus melanoleucus has three subspecies: the Florida

black pine snake (P. m. mugitus), the black pine (P. m.

loding), which is federally threatened (Federal Register

2015), and the Northern pine snake (P. m. melanoleucus),

which is threatened in New Jersey. The New Jersey pop-

ulation of Northern pine snakes is isolated from other

populations living to the south by several hundred kilo-

meters (Burger and Zappalorti 2011, 2016). This species is

declining in many parts of its range and is common

nowhere.

Metal concentrations have been examined in snakes

near contaminated sites at the Savannah River site (South

Carolina, USA, Burger et al. 2006), at Mobile-Tensaw

River Delta (Alabama, USA, Albrecht et al. 2007), and at

South River (Virginia, USA, Drewett et al. 2013), as well

at uncontaminated sites in the Pine Barrens (New Jersey,

USA, Burger 1992), the Raritan Canal (New Jersey,

USA, Burger et al. 2007), and the northeast coast of the

Persian Gulf (Iran, Rezaie-Atagholipour et al. 2012;

Sereshk and Bakhtiari 2015). Metal concentrations have

been examined in whole bodies of snakes (Albrecht et al.

2007), in tail muscle tissue (Drewett et al. 2013), and in

shed skins (Jones and Holladay 2006; Wylie et al. 2009).

Although skin of snakes is regularly moulted, the present

study shows that metals are sequestered in the skin,

making them usable as a bioindicator, much as human

hair is used as an indicator of metal exposure (Burger

1992).

The present study examined the concentrations of

arsenic, cadmium, chromium, lead, mercury, and selenium

in 20 pine snakes from the Pine Barrens of New Jersey

(Fig. 1), ranging in size from 40 cm (hatchlings) to 159 cm

(adults) snout–vent length. These were found dead

(2010–2016), mainly killed by being hit by cars on roads.

Thus, these snakes did not die of natural causes. Blood

samples were obtained from an additional 29 live pine

snakes between 2013 and 2015. Objectives were to: (1)

examine concentrations in blood and other tissues as a

function of size and sex, (2) determine if concentrations of

metals are intercorrelated, and (3) determine if the levels

are high enough to suggest adverse effects and cause for

concern. Pine snakes (Pituophis melanoleucus) are

emblematic of New Jersey’s Pine Barrens habitats (Burger

et al. 2013). Pine snakes might be useful indicators of

contamination for the Pine Barrens of New Jersey, because

they are long-lived and top-trophic level predators (Burger

et al. 2013; Burger and Zappalorti 2016). It is rare that a

sample of large snakes, such as pine snakes, can be found

dead, allowing for examining different tissues in the same

individuals. The Pine Barrens are relatively pristine com-

pared with other urban areas of the Northeast, in that they

are protected as a national reserve, and have little industry

and no point sources of pollution, which suggests that

concentrations of metals will be low relative to other

snakes from urban areas of the Northeast with diverse

industries.

Materials and Methods

Pine snakes in New Jersey dig their own nests and modify

and dig their own hibernacula (Burger and Zappalorti

1992; Burger 2006). Both pine snakes and gopher snakes

are most active from early April to late October (Burger

et al. 1988; Rodriguez-Robles 2003). Pine snakes nest in

late June to early July, and incubation temperatures affect

behavior and survival of hatchlings (Burger and Gochfeld

1985; Burger et al. 1987; Burger and Zappalorti 1988a, b;

Burger 1989a, 1991a, 1998a, b). The hatchlings emerge

from the nests and follow chemical trails to find hiber-

nacula and to avoid predators (Burger 1989b, 1990, 1991b;

Burger et al. 1991). Northern pine snakes are vulnerable to

the usual threats of habitat loss, insufficient food supplies,

predators, inclement weather, and finding secure hiberna-

tion sites (especially hatchlings), but mainly they suffer

from killing, mortality on roads, and poaching (Schwartz

and Golden 2002; Sherwood et al. 2002; Golden et al.

2009; Burger and Zappalorti 2011, 2016; Smith et al.

2015). Examining whether concentrations of heavy metals
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Fig. 1 Map of New Jersey, indicating the location of the New Jersey Pine Barrens, where pine snakes were collected for metal analysis, mainly

from roads
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are sufficiently high to cause adverse effects that might

impact population levels needs to be determined before

metals can be ruled out as a potential cause of population

declines.

In this study, we examined metal concentrations in

blood of 29 pine snakes (collected from live snakes during

hibernation studies in 2012–2013), and tissues from 20

different pine snakes killed by vehicles, predators, fires, or

freezing from 2006 to 2015). Blood was taken from snakes

that lived in the interior of the Pine Barrens, mainly from

snakes living in state forests where there are no houses, no

paved roads, and no farming. These snakes were sampled

and released, and only blood was collected from these

individuals. The 20 snakes that were found dead also were

from the Pine Barrens but were from areas with paved

roads, houses, and light industry, as well as protected pine

forests. The same tissues were collected from each of the

20 snakes and included skin, muscle, liver, kidney, and

heart, except in rare cases where these were unavailable

(e.g., due to damage). Because the species is threatened in

New Jersey, we did not kill snakes for analysis, nor did we

take tail clips. Concentrations in the liver, kidney and heart

are indicative of internal exposure that might affect the

health and well-being of the snakes themselves, concen-

trations in muscle reflect exposure of predators that might

eat the pine snakes, and skin was examined as a potential

indicator of internal exposure.

Metal analyses were conducted at the Environmental

and Occupational Health Sciences Institute of Rutgers

University in Piscataway, New Jersey. Using Atomic

Spectrophotometer with Zeeman correction (Burger 2002;

Burger et al. 2006, 2007). For quality assurance, all anal-

yses reported here were done in 2016 (to avoid any

methodological issues if tissues were analyzed in different

years). All results are reported as ppb (ng/g) on a wet

weight basis. All laboratory equipment and containers were

washed in 10% nitric acid solution and rinsed with

deionized water before each use. A 0.2-g (wet weight)

sample of tissue was digested in 4 ml of 70% Fisher

TraceMetal nitric acid and 2 ml of deionized water in a

microwave (MDS 2000 CEM), using a digestion protocol

of three stages of 10 min each under 50, 100, 150 pounds/

in2 (3.5, 7, and 10.6 kg/cm2) at 70% power. Digested

samples were subsequently diluted to 10 ml with deionized

water. Detection limits were: 0.02 ppb for arsenic,

0.01 ppb for cadmium, 0.08 ppb for chromium, 0.15 ppb

for lead, 0.2 ppb for mercury, and 0.7 ppb for selenium.

All specimens were analyzed in batches with known

standards, calibration standards, and spiked specimens.

Recoveries ranged from 88 to 102%. The coefficient of

variation on replicate, spiked samples ranged up to 10%.

Multiple regression models were used to determine the

best models explaining variations in metal concentrations

as a function of tissue, year of capture, length, weight, and

sex (SAS 2005). Kruskal–Wallis nonparametric analysis of

variance was used to compare tissues for each metal.

Kendall tau correlations were used to examine the rela-

tionships between skin concentrations and tissue concen-

trations, among organs for each metal, and between length

and metal concentrations. A probability level of 0.05 was

accepted as significance, but because of the sample size we

present all values\ 0.1 to allow the reader to assess the

significance themselves.

Results

For all metals, there was substantial variation in metal

concentrations among tissues (p\ 0.004 for all metals).

The multiple regression models explained 16% to 61% of

the variation in metal concentrations, with tissue type

entering all models (Table 1). Most models explained less

than 50% of the variation. The model for variations in

mercury concentrations explained 61% of the variation in

terms of tissue type and snout–vent length. Year and

weight might have entered the models significantly if there

were larger sample sizes.

Although metal concentrations varied significantly by

tissue for all metals (Table 2), the same tissue type did not

always have the highest concentrations. Of the 20 snakes for

which we had internal tissues (except blood), skin had the

lowest concentrations of arsenic, cadmium, mercury, and

selenium. Liver and kidney had the highest mean concen-

trations of arsenic, cadmium, mercury, and selenium.

Surprisingly, size as measured by snout–vent length,

was negatively related to metal concentration for chro-

mium in heart muscle (s = -0.46, p = 0.02) and skin

(s = -0.29, p\ 0.07). For mercury in blood the rela-

tionship was also negative (s = -0.25, p\ 0.04), whereas

for mercury in liver there was a significant positive rela-

tionship (s = 0.30, p\ 0.05).

Interyear differences were significant only for chromium

and lead in blood (s = 0.38, p\ 0.01; s = 0.40, p\ 0.40,

p\ 0.009, respectively), and for selenium in skin (s
-0.46, p\ 0.02). Thus, in general, year was not a signif-

icant variable for many metal-tissue combinations.

Sex did not enter any of the models as a significant con-

tributor to variability, and there was only one significant

difference when means were compared (nonparametric

ANOVA, SAS, 2005). Females had lower concentrations of

mercury in the kidney than did males (Table 3).

Because some investigators use skin as an indicator of

internal tissue concentrations, we examined the relation-

ship between concentrations of metals in skin and con-

centrations in other tissues (Table 4). For mercury, the

concentrations in skin were significantly correlated with all
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internal tissues, and for cadmium they were significant for

all tissues except the heart. Chromium concentrations in

skin were significantly correlated in muscle and liver tis-

sue, and selenium concentrations in skin were significantly

correlated in liver and kidney. The concentrations of

arsenic in skin were not correlated with internal tissue.

In this paper, we report concentrations as wet weights.

However, in the literature some studies report wet weight

and some report dry weight. Thus, we provide the wet to

dry conversion factors for our data (Table 5).

Discussion

Tissue, Size and Sex Differences

There were significant differences among tissues types

for all metals, although the differences were not great.

Nearly all studies with reptiles find tissue differences

(Campbell and Campbell 2001, 2002), which is not

surprising given the structure and function of different

tissues. There were few differences as a function of

snout–vent length and sex, although mercury was sig-

nificantly correlated with snout–vent length for liver,

and negatively correlated in blood. The positive corre-

lation of mercury in liver was expected as mercury is

usually correlated with size and age in a variety of

vertebrates, indicating biomagnification (Schneider et al.

2013; Burger and Gochfeld 2016). The negative

correlation of mercury in blood with size was unex-

pected and bears further comment. Similarly, the

negative correlation of snout–vent length with mer-

cury concentrations in skin was unexpected. It may

be that with increasing size and internal tissues,

larger animals have greater compartments for disposi-

tion of mercury. Females had significantly lower

Table 1 Multiple regression models on metal levels in pine snakes collected from New Jersey

Arsenic Cadmium Chromium Lead Mercury Selenium

Model

F(p) 5.0 (\0.0001) 4.2 (0.0001) 5.7 (\0.0001) 2.2 (0.03) 17.0 (\0.0001) 10.4 (\0.0001)

df 9 9 9 9 9 9

r2 0.31 0.27 0.34 0.16 0.61 0.48

Factors entering F (p)

Tissuea 4.76 (0.0006) 6.3 (\0.0001) 3.9 (0.003) 2.7 (0.02) 26.4 (\0.0001) 15.7 (\0.0001)

Yearb NS NS NS NS 3.0 (0.09) 11.9 (0.0008)

Snout–Vent lengthc NS NS 11.9 (0.0008) NS 5.8 (0.02) NS

Weight NS NS NS NS 3.3 (0.07) NS

Sexd NS NS NS NS NS NS

NS not significant
a Tissue includes blood, muscle, kidney, heart, skin, and liver
b Years are from 2001 to 2016
c Size range from hatchling (43 cm) to adult (158 cm)
d Sample includes 13 females and 7 males

Table 2 Metal levels (ppb, ng/g wet weight) in pine snakes collected from New Jersey

Tissue n Arsenic

Mean ± SE

Cadmium

Mean ± SE

Chromium

Mean ± SE

Mercury

Mean ± SE

Lead

Mean ± SE

Selenium

Mean ± SE

Liver 17 156 ± 27.3 128 ± 30.2 45.0 ± 8.7 459 ± 78.1 140 ± 38.6 985 ± 141

Kidney 15 167 ± 53.2 95.1 ± 31.9 51.0 ± 19.6 120 ± 35.0 352 ± 129 1213 ± 240

Muscle 20 125 ± 31.3 27.2 ± 8.2 150 ± 21.8 75.8 ± 11.9 393 ± 131 217 ± 40.7

Skin 20 91.4 ± 21.7 19.8 ± 3.4 161 ± 46.0 41.5 ± 7.1 172 ± 57.0 182 ± 35.8

Heart 15 145 ± 47.3 51.0 ± 28.4 72.9 ± 32.1 41.3 ± 9.5 86.7 ± 23.3 305 ± 68.8

Blood 29 7.0 ± 3.3 4.3 ± 2.7 42.5 ± 7.8 26.9 ± 5.5 88.8 ± 15.1 502 ± 46.9

Kruskal–Wallis v2 42.3 (\0.0001) 46.6 (\0.0001) 32.3 (\0.0001) 62.0 (\0.0001) 17.5 (0.004) 44.0 (\0.0001)

Given are arithmetic means ± SE, and non-parametric oneway analysis of variance using the Kruskal–Wallis Chi-square (p). Blood samples

were from different snakes than the other tissues, which were from the same individuals. All values are for total metal without speciation
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concentrations of mercury in the kidney, compared with

males, which might reflect the deposition of mercury in

eggs.

Comparisons of Metal Concentrations with Other

Snakes

Of the reptile studies on mercury concentrations, only 9%

were on snakes, and there are many more studies with

organic contaminants (Campbell and Campbell 2001; Sch-

neider et al. 2013). There are few studies of concentrations of

metals in snakes under uncontaminated conditions. How-

ever, Wylie et al. (2009) examined trace elements in Giant

Garter Snakes (Thamnophis gigas) in California, and

Albrecht et al. (2007) reported on metals in Ribbon Snakes

(Thamnophis sauritis) in Alabama; levels were very low in

these studies from uncontaminated sites. Most studies have

used snakes as indicators of environmental pollution, com-

paring metal levels in snakes from a contaminated site with

those living in a reference site (Hopkins et al. 1999; Burger

et al. 2006, 2007), or comparing bioaccumulation by dif-

ferent snake species inhabiting a contaminated site (Drewett

et al. 2013). In these studies, snakes from contaminated sites

had higher concentrations than those from the reference sites

(often twice the concentration or more). The concentrations

from contaminated sites were also higher than those found in

the present study for pine snakes. For example, mercury and

selenium were three times as high in snakes from Poplar

Creek (OakRidge, a contaminated site) than in pine snakes in

the NJ Pine Barrens (Campbell et al. 2005). Recently, Sch-

neider et al. (2013) reported the concentrations of metals

from 11 species of snakes (including 5 of our studies), and

concentrations from these studies were generally similar to

those reported for pine snakes in this paper.

The only other study of metal concentrations in snakes

from New Jersey examined concentrations in Northern

Water Snakes (Nerodia sipedon) living in the Raritan River

that flows into the Atlantic Ocean. Although pine snakes

live on land and Water Snakes live in the water, both obtain

their contaminants primarily from their prey (the Raritan

River water is not contaminated as it is the local source of

drinking water and contaminant levels are assessed regu-

larly). The concentrations in the skin of water snakes, for

example, were very similar to those in pine snakes from

2010 to 2016, except for mercury and selenium (Burger

et al. 2007). Mercury concentrations in skin of water

snakes averaged 159 ± 23 compared with 41 ± 7 for pine

snakes. Selenium concentrations in skin of water snakes

averaged 725 ± 71 compared with 182 ± 36 for pine

snakes. These higher levels may reflect external contami-

nation (Burger 2002).

Concentrations that Cause Effects

Mercury is the metal contaminant of most concern in

vertebrates because mercury bioaccumulates as vertebrates

age and is usually higher in large, top trophic level

Table 3 Sex differences in metal levels (ppb, wet weight) (ng/g) of

pine snakes

Male Female v2 (p)
n = 6 n = 14

Snout–Vent length (cm) 112 ± 15.6 115 ± 9.8 NS

Weight (g) 797 ± 238.0 577 ± 103.0 NS

Skin

Arsenic 94 ± 47 90 ± 25 NS

Cadmium 15 ± 5.2 22 ± 4.3 NS

Chromium 79 ± 18 196 ± 64 NS

Lead 103 ± 40 201 ± 79 NS

Mercury 29 ± 8.6 47 ± 9.3 NS

Selenium 207 ± 66 171 ± 44 NS

Muscle

Arsenic 111 ± 44 131 ± 42 NS

Cadmium 26 ± 18 28 ± 9.4 NS

Chromium 136 ± 42 156 ± 26 NS

Lead 327 ± 177 421 ± 175 NS

Mercury 48 ± 11 87 ± 16 NS

Selenium 243 ± 68 205 ± 52 NS

Liver

Arsenic 145 ± 44 162 ± 36 NS

Cadmium 125 ± 42 130 ± 42 NS

Chromium 57 ± 16 39 ± 10 NS

Lead 166 ± 73 126 ± 47 NS

Mercury 287 ± 89 553 ± 102 NS

Selenium 1197 ± 293 870 ± 147 NS

Kidney

Arsenic 273 ± 143 115 ± 34 NS

Cadmium 103 ± 89 91 ± 24 NS

Chromium 100 ± 54 26 ± 7.3 NS

Lead 294 ± 167 380 ± 180 NS

Mercury 48 ± 12 156 ± 49 6.0 (0.01)

Selenium 980 ± 267 1329 ± 337 NS

n = 14 n = 15

Blood

Snout–Vent length (cm) 127 ± 3.9 129 ± 2.9 NS

Weight (g) 930 ± 84 845 ± 52 NS

Arsenic 6.8 ± 4.0 7.1 ± 5.3 NS

Cadmium 6.0 ± 5.3 2.7 ± 1.8 NS

Chromium 48 ± 14 37 ± 7.8 NS

Lead 118 ± 27 62 ± 12 NS

Mercury 30 ± 10 24 ± 5.1 NS

Selenium 522 ± 64 483 ± 70 NS

Given are arithmetic means ± SE with Kruskal–Wallis Chi-square

values and p values
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predators (reviewed in Schneider et al. 2013; Burger and

Gochfeld 2016). Metal concentrations in snake tissues are

usually obtained through the food chain from their prey

(Campbell and Campbell 2001; Burger et al. 2006; Sch-

neider et al. 2013). In some cases, snakes exhibit higher

metabolic rates (Hopkins et al. 1999), which might make

themmore vulnerable to a rapid exposure to contaminants in

prey. Reviews by Campbell and Campbell (2001) and Sch-

neider et al. (2013) indicated that there were no laboratory

studies with snakes that determined the concentrations at

which adverse effects occur. Laboratory studies examining

adverse effects are not usually completed, because the U.S.

Environmental Protection Agency does not require testing

on snakes (Campbell and Campbell 2001).

Use of Pine Snakes as Indicators of Metals

in the Environment

Snakes can be useful indicators of environmental contam-

ination, because many are large predators that can live up

to 25–30 years (Burger and Zappalorti 2011; W. Brown,

personal communication), providing an opportunity for

bioaccumulation (Campbell and Campbell 2001). Con-

centrations in the tissues of sakes reflect the concentrations

in the prey items that they consume, and when a larger

predator eats them, the snakes reflect the concentrations

obtained by the predator. Because large snakes are gener-

ally carnivorous, examining concentrations of metals in

snakes can provide information about contaminant con-

centrations in the prey that they consume (small mammals)

for potential risks to consumers who eat them (mammals,

other snakes, hawks) and the potential risks to pine snakes

themselves. The variation in metal concentrations both

within a species and among different species living in the

same geographical area can provide information on

bioaccumulation patterns and exposure.

Some snakes, such as water snakes or garter snakes, are

sufficiently common that they can be collected specifically

for contaminant analysis without impacting the stability of

populations (Burger et al. 2006). Both are aquatic gener-

alists. Other species, however, such as pine snake and the

giant garter snake, are threatened or endangered and cannot

justifiably be collected for metal analysis. Scientists rely on

finding dead snakes to examine metal concentrations

(Wylie et al. 2009). Snakes found dead may not be a ran-

dom sample of the population if metal toxicity affects

behavior, snakes exposed to contaminants may be less able

to avoid predators, or they spend more time on roads.

In the present study, the concentrations of mercury in

skin were significantly correlated with the concentrations

in internal tissues for all metals. Because mercury is the

main contaminant of concern for wildlife and for reptiles

(Schneider et al. 2013), it is important that skin can be used

as an indicator, because it reflects concentrations in other

tissues. Because snakes, particularly large snakes, such as

Table 4 Correlation between tissues for metal levels in pine snakes from New Jersey

Skin and Muscle and Liver and Heart and

Kidney
Muscle Liver Kidney Heart Liver Kidney Heart Kidney Heart

Arsenic NS NS NS NS -0.32

(0.08)

NS NS NS 0.59

(0.005)

NS

Cadmium 0.41 (0.02) 0.41 (0.03) 0.48

(0.01)

NS 0.32

(0.08)

NS NS 0.39

(0.04)

NS NS

Chromium 0.34 (0.04) 0.39 (0.03) NS NS 0.39

(0.03)

NS NS 0.45

(0.02)

NS NS

Lead 0.41 (0.01) NS NS 0.35

(0.07)

0.36

(0.05)

0.46

(0.02)

0.45 (0.02) 0.59

(0.003)

0.38

(0.06)

0.52 (0.01)

Mercury 0.56

(0.0006)

0.37 (0.04) 0.50

(0.009)

0.58

(0.003)

0.50

(0.005)

0.58

(0.003)

0.66

(0.0006)

0.50

(0.009)

NS 0.41 (0.05)

Selenium NS 0.64

(0.0004)

0.35

(0.07)

NS NS NS NS NS NS 0.38 (0.07)

Given are Kendall tau correlations (p values)

Table 5 Mean moisture content of pine snake samples, and con-

version factor for converting metal levels from wet weight to dry

weight (wet weight 9 CF = dry weight)

Tissue %Moisture Conversion factor (CF)

Skin 74.1 3.85

Muscle 73.1 3.72

Liver 74.6 3.94

Kidney 76.8 4.31

Heart 73.8 3.82

Samples were dried at 40� for 48 h and then reweight
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pine snakes, are top-level predators, they eat prey that also

accumulate metal concentrations. In the Pine Barrens, pine

snakes are one of the primary predators. This suggests that

pine snakes (shed and skin) can be used as an indicator of

internal concentrations.

Further, these results provide a nondestructive method

for scientists and managers to track regularly the concen-

trations of metals in snakes in the Pine Barrens. Strategies

for assessing contaminants in snakes can be developed that

rely on the public to collect snakes found dead along

highways as a way of both tracking mortality and tracking

metal levels. Programs that (1) allow people to collect

snakes on highways, recording dates, times, and conditions,

(2) encourage freezing of specimens for later analysis, (3)

and reward cooperators with periodic information on the

program might allow state agencies to accumulate infor-

mation on snake mortality and morphometric, as well as

samples for biomonitoring of heavy metals.

Methodological Considerations

Some comments onmethodological issues with contaminant

concentrations in biota are warranted. One of the major

difficulties with contaminant studies is the lack of unifor-

mity in the tissue samples collected, as well as the metals

examined, making comparisons among species and geo-

graphical regions difficult. While some tissues can be col-

lected noninvasively (e.g., feathers and hair), others require

invasive collection (e.g., blood) or even lethal collection

(e.g., liver). However, examining different tissues is the only

method to determine what is happening internally and to

provide an indication of potential harm to the snakes. Such

studies are essential before any noninvasive tissues can be

used routinely and interpreted with confidence. With large,

rare snakes that may be threatened or endangered, killing

healthy individuals is unwise (in terms of possible effects on

populations), but collection of recently killed snakes from

paved roads provides an alternative. Most studies that

examine concentrations of metals are conducted with snakes

from known contaminated sites to determine if there is

bioaccumulation, and then investigators usually collect only

blood and tail clips (Drewett et al. 2013). Furthermore, metal

concentrations in marked snakes also can be examined by

using either blood or tail clips (Burger et al. 2006) and could

be examined over many years.

One of the commonest methods currently used to assess

contamination is to either examine blood or to examine

muscle from tail clips. Blood represents acute exposure,

whereas tail clips represent cumulative exposure. One of

the difficulties with tail clips is the consistency of sam-

pling, because the amount of tail material (e.g., the length

of the clip) will determine the quality of the tissue and the

relative amount of skin/muscle/bone, and perhaps the

amount of infused blood remaining may vary. Because skin

tissue has higher concentrations of metals than muscle

(Burger 1992), this may be an important consideration. We

were unable to examine the relationship between blood

concentrations and internal tissues because the blood

samples were taken from different snakes. Snakes found

freshly dead do not have usable blood, and all blood

samples in this study were taken from live snakes at the end

of hibernation.

In conclusion, the data from this study indicate road-

killed pine snakes can be used to assess the metal exposure

of pine snakes and that these data can be used to assess both

temporal and spatial patterns of metal exposure without

needlessly killing snakes. Shed skins are also useful for

bioindication.
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