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Abstract Shellfish and sediment invertebrates have been

widely used to assess pollution trends over space and time

in coastal environments around the world. However, few

studies have compared the bioaccumulation potential of

different test species over a range of sediment-contaminant

concentrations and profiles. The bioavailability of sedi-

ment-related contaminants was evaluated using sediments

collected from sites (n = 12) throughout the Salish Sea,

British Columbia, Canada. Two benthic marine inverte-

brates—the Baltic clam Macoma balthica and the poly-

chaete worm Neanthes arenaceodentata—were exposed

for 28 days in a controlled environment to these field-

collected coastal sediments. The congener-specific uptake

of legacy polychlorinated biphenyls (PCBs) and emergent

polybrominated diphenyl ethers (PBDEs) was determined

using high-resolution gas chromatography/mass spectrom-

etry in sediments and in invertebrates after the experi-

mental exposure. The polychaete Neanthes accumulated

lower concentrations of PCBs but higher concentrations of

PBDEs. The present study indicates that differences in

bioaccumulation between these two invertebrates shape the

accumulation of PCB and PBDE congeners, reflect differ-

ences in feeding strategies, and reveal the physicochemical

properties of the contaminants and sediment properties.

Because biota–sediment accumulation factor values are

often calculated for environmental monitoring or site-

specific impact assessments, our results provide insight into

potentially confounding factors and the need for caution

when selecting indicator species for coastal marine

pollution.

Marine environmental biomonitoring programs are typi-

cally designed to provide an integrated assessment of

contaminants over space and time, at times capturing bio-

chemical, physiological and morphological measures

(Tosti and Gallo 2012). Bivalves, such as mussels in the

‘‘Mussel Watch’’ program (Goldberg et al. 1978), and

polychaetes (Dean 2008), have been used as indicators for

monitoring coastal ocean pollution due to their wide dis-

tribution, easy sampling, and ready accumulation of a wide

range of contaminants. The use of invertebrates as indi-

cators of environmental quality has been typically assessed

by means of conventional life history or physicochemical

parameters (Zhou et al. 2008). The bioaccumulation of

pollutants by biota is also influenced by the chemical

properties of the compounds and the surrounding envi-

ronmental conditions, features that are not always fully

understood or incorporated into study design.

Estuarine and coastal waters receive contaminants from

a combination of inputs including local activities and

riverine inputs. Persistent organic pollutants (POPs), which

include legacy compounds such as polychlorinated
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biphenyls (PCBs) as well recent chemicals of concern such

as polybrominated diphenyl ethers (PBDEs), remain sig-

nificant management issues in Canada and around the

world. As a signatory of the Stockholm Convention (2004),

Canada has worked to eliminate the use and production of

POPs listed under the terms of the treaty. Disposal at Sea

(DaS) is one activity that is subject to scrutiny by Envi-

ronment and Climate Change Canada (ECCC), which

ensures that the Convention on the Prevention of Marine

Pollution by Dumping of Wastes and Other Matter, 1972

(London Convention) and its 1996 Protocol (London Pro-

tocol) is adhered to through a permitting system under the

Canadian Environmental Protection Act (CEPA 2001) and,

in particular, the Disposal at Sea Regulations (Porebski and

Osborne 1998). As part of its administration of DaS

activities, ECCC monitors sediment concentrations for

several contaminants of concern at dredging and disposal

sites. More recently, the Species at Risk Act (1999) has

documented threats to the recovery of listed wildlife spe-

cies, which in some cases include pollutants in aquatic food

webs and those found in adjacent sediments. The subject of

bioavailability of sediment-associated contaminants,

therefore, remains a question of concern.

Marine-bedded sediments tend to accumulate contami-

nants released through point-source and nonpoint-source

discharges into coastal waters over time and act as a long-

term sink of environmental pollutants (CCME 2001).

However, contaminants found in sediments can also be

made available to sediment-dwelling or -dependent biota,

thereby serving as a potential source of contaminants to

adjacent food webs. The bioavailability and bioaccumula-

tion of contaminants in an aquatic environment is mainly

dependent on the partitioning behaviour or binding strength

of the contaminant to the sediment (Voie et al. 2002).

Contaminants partition between aqueous (porewater, over-

lying water) and solid phases (sediment, suspended partic-

ulate matter, and biota) (Luoma 1983). Generally, only

dissolved fractions of lipophilic contaminants in the pore-

water and in the water overlying contaminated sediments are

considered to be bioavailable to aquatic organisms irre-

spective of their mode of life (Di Toro et al. 1991). How-

ever, with aqueous-exposure pathways, the bioavailability of

organic contaminants decreases with increasing octanol/

water partitioning coefficient (Kow) due to the hydrophobic

properties of the chemical. Ingestion of sediment particles

then becomes the major route for the uptake of lipophilic

contaminants (Ruus et al. 2005), and that uptake from dif-

ferent sources is additive (Landrum and Robbins 1990).

Recent studies have characterized spatial and temporal

variation in the sediment concentrations of PCBs and

PBDEs in the Salish Sea in southern British Columbia,

Canada (Grant et al. 2011; Johannessen et al. 2008). PCBs

were banned in Canada in 1977, but their legacy persists in a

number of environmental compartments. Flame retardants,

notably PBDEs, represent another threat to the marine

environment. Although some PBDE formulations have been

banned or are no longer used in Canada, they are persistent

and are transported atmospherically from areas that continue

to use them. A prolonged period of exponential increases in

PBDEs in biota in the Northeast Pacific region has been

observed (Rayne et al. 2003, Ross et al. 2013). Risks to

endangered southern resident killer whales (Ross 2006)

resulting from the uptake of sediment-associated PCBs by

marine food webs were recently evaluated using a combi-

nation of measurements and food web-modelling tools

(Alava et al. 2012; Lachmuth et al. 2010; Ross 2010).

To strengthen the utility of using marine invertebrates as

indicators of habitat and sediment quality, we performed a

study of PCB and PBDE uptake from sediment samples

collected from sites in the Salish Sea. A standard 28-day

laboratory bioaccumulation procedure was used to derive

biota-sediment accumulation factors (BSAFs) which rep-

resent a ratio of the concentration of a given contaminant in

tissue relative to that in the sediment (Nendza 2002). Two

marine benthic organisms currently used in sediment

monitoring programs were selected for study: the Baltic

clam (Macoma balthica), a facultative deposit-feeding

bivalve living in the sediment, and the polychaete (Nean-

thes arenaceodentata), a deposit feeder living in the sedi-

ment. Macoma burrows below the sediment surface and

feeds on particles of small size, low specific gravity, and

high organic content (Hylleberg and Gallucci 1975). This

clam has been determined to be a facultative feeder,

switching between suspension-feeding and deposit-feeding

modes depending on the food quality and quantity in the

water phase (Lin and Hines 1994). The nereid polychaete

Neanthes ingests large quantities of sediment/food relative

to its body weight and is often used as a marine test

organism for sediment-quality assessments. This species is

a widely distributed annelid found in shallow marine and

estuarine environments throughout the world. It deposit-

feeds on sediment particles B 70-lm diameter with a

preference for sediment particles of approximately 12 lm
(Bridges and Farrar 1997). Polychaetes represent 30–75%

of benthic macro-invertebrates and serve as food for higher

trophic organisms.

Our objectives were to characterise the presence and

availability of PCB and PBDE congeners in sediments

from coastal British Columbia (Canada) in order to (1)

explore the influence of contaminant and sediment prop-

erties on bioavailability to two marine benthic invertebrates

used routinely in monitoring efforts; (2) characterise con-

gener-specific uptake profiles for PCBs and PBDEs by

these indicator organisms; and (3) evaluate the influence of

normalization procedures for organic carbon (OC) and

lipid on results.
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Materials and Methods

Organisms

The two benthic invertebrate species selected for sediment

bioavailability evaluation are recommended in the Inland

Testing Manual [United States Environmental Protection

Agency/United States Army Corps of Engineers (USEPA/

USACE) 1998] and the Ocean Testing Manual (USEPA/

USACE 1991) and used routinely in the North Atlantic

Region.

In the first sediment-bioavailability evaluation, the test

organisms consisted of Baltic clams (Macoma) collected

by Harris Industrial Testing Services at Walton, Nova

Scotia, Canada. They were held at 15 ± 2 �C in the col-

lection sediment with overlying seawater until used for

testing 5 days later. No mortality was observed at the start

of the test.

In the second sediment-bioavailability evaluation, the

test organisms were cultured juvenile marine polychaete

(Neanthes) purchased from Aquatic Toxicology Support.

The organisms were placed in pails of aerated seawater and

adjusted to and held at 20 ± 2 �C until used for testing

2 days later. No mortality was observed on holding.

Sediment Sampling and Characterization

Sediment samples were collected from 12 sites in or near 3

marine harbours in coastal British Columbia, Canada

(Fig. 1). Samples were collected using a Petit Ponar grab

sampler deployed from a small vessel between September

28 and December 8, 2011. Sample penetration was

typically 7–12 cm with the entire sediment sample

retrieved used for this study. Each of the sediment samples

was homogenized before use in each assay using a drill

with a stirring attachment. Samples were stored at -20 �C,
shipped frozen by ground transport to the evaluation

facility in Nova Scotia, and thawed before bioavailability

evaluation.

A sediment sample was collected from the same location

as the Baltic clams at Walton Wharf, Nova Scotia, Canada.

This sediment was stored at 4 �C until used for testing.

This was used as the control sediment for both tests. A

portion of this sediment was also spiked with PCB 153

(2,20,4,40,5,50-hexachlorobiphenyl). A 500-mg/L stock of

PCB 153 was prepared in isooctane. Four milliliters of this

solution were added to 20 kg of sediment and thoroughly

mixed to five a 0.1 mg/kg PCB 153 in sediment.

Bioaccumulation-Evaluation Setup

This method is based on ASTM E1688-10 the Standard

Guide for Determination of the Bioaccumulation of Sedi-

ment-Associated Contaminants by Benthic Invertebrates

(ASTM International 2010). Both bioaccumulation evalua-

tions took place at the Atlantic laboratory for Environmental

Testing (ALET; Moncton, New-Brunswick, Canada).

One day before placing the organisms into the sedi-

ments, the sediments were homogenized and added to the

test chambers to allow settling. The aquaria and bottles

were precleaned and rinsed with seawater three times

before use. Any indigenous organisms and large twigs or

rocks were removed. The tests were performed in 8-L glass

aquaria (Macoma) or 2-L glass bottles (Neanthes). To each

aquarium or bottle, 5 cm of sediment was added, then

carefully filled with 5 lm filtered seawater with a salinity

of 28–32 ppt.

There were 3 (Macoma) and 4 (Neanthes) replicates for

each treatment. The treatments consisted of 12 test sedi-

ments, control sediment (from the Macoma test collection

site used for both Neanthes and Macoma), and a positive

control (the control sediment spiked with PCB 153). The

aquaria or jars were placed in a controlled bath at

20 ± 1 �C using a randomized block design. The overlying

water was aerated through the test with an airline fitted

with a glass pipette tip. The tip was secured so the airline

tubing was not in the water. Fluorescent lighting of 100 to

500 lx with a 16 to 8-h light-to-dark phase, including a

30-min transition phase, was used.

Twenty-Eight-Day Organism Exposure

A water sample was taken from 1 replicate of each treat-

ment to measure for ammonia, salinity, dissolved oxygen,

temperature, and pH at the start of the evaluation. For the

Fig. 1 Surficial sediment samples for contaminant analysis were

collected at stations in coastal British Columbia (Canada) near

Vancouver (VA), Nanaimo (NA), and Victoria (VI) harbours

258 Arch Environ Contam Toxicol (2017) 73:256–269

123



first laboratory exposure, the clams were removed from

their holding sediment by filtering through a 60-lm sieve.

The clams were rinsed in seawater several times to remove

collection-site sediment and sorted into plastic trays. The

clams were held under seawater to minimize exposure to

air. Twenty-two clams were added to each replicate with a

total of 66 clams per treatment. For a random sample, the

shell size and weight of 20 clams were measured to

determine average size of the population at the start of the

test (19.8 ± 1.8 mm; 3–10 years old Cardoso et al. 2006).

The next day, each tank was checked to ensure that the

clams had buried, and any that had not were replaced. For

the second laboratory exposure, 35 polychaetes were added

to each replicate, which allows for a total of 140 worms/

treatment. The average weight of the worms at the start of

the test was 0.01 g.

Each day the temperature in one replicate of each

treatment was measured. Daily observations were made of

animals at surface, mortality, and aeration. Three times a

week (Monday, Wednesday, and Friday), a sample of the

overlying water was measured for: dissolved oxygen, pH,

and salinity. The overlying water was renewed twice a

week on Mondays and Fridays; approximately 80% was

siphoned and replaced with fresh seawater. Before

replacing the water, 200 ml (Macoma) or 75 ml (Neanthes)

of new sediment was added to the surface at least once a

week as per the recommendation of the test method, and

then refilled with seawater, in order o reduce the depletion

of target analytes during the exposure duration (28 days).

To provide nutrition for the animals, six (Macoma) or five

(Neanthes) additions of sediment were made throughout

the experiment. After 28 days of exposure, each treatment

was sieved through a 100-lm (Macoma) or 500-lm
(Neanthes) sieve, and the clams or worms were removed.

For the first exposure test, the clams were rinsed several

times in seawater and then placed into clean prerinsed

mason jars with approximately 1L of fresh seawater and

aerated overnight to permit gut purging of sediment. After

the 24-h gut purging, the animals were removed from the

seawater. The length of the shell and weight of each clam

was measured. The clams were opened and the tissue

removed. The tissue was transferred into a tared glass vial,

and the weight of the tissue was recorded. All tissues from

the three replicate tanks were combined. Throughout the

experiment every effort was made to ensure there was no

cross contamination between treatments by using only new

or cleaned (solvent-rinsed) glass or metal apparatus. No

plastic devices were used. Tissue samples were frozen at

-20 �C after collection and shipped to the former Labo-

ratory of Expertise for Aquatic Chemical Analysis

(LEACA; Fisheries, Oceans & the Canadian Coast Guard,

Sidney, BC) on dry ice.

For the second exposure test, the worms were rinsed

several times in seawater and placed into tared vials. The

total weights of the worms were recorded. A depuration

period was planned; however, with the difficulties in

recovering the worms and the stress this caused on the

animals, it was decided this step would not happen due to

potential of loss of the tissues. All tissues from the four

replicate tanks were combined. Every attempt was made

to ensure there was no cross-contamination between

treatments. No plastic devices were used; all of the

equipment was metal or glass and appropriately cleaned.

The tissue samples were frozen and shipped to LEACA

on dry ice.

Tissue Analysis

A total of 28 biota samples (14 Macoma and 14 Neanthes)

exposed to sediments from the Salish Sea were submitted

to LEACA. Samples were analysed for congener-specific

PCBs (n = 182 congeners) and PBDEs (n = 66 con-

geners). A typical analytical batch consisted of 9 and 10

samples, respectively; one replicate; two laboratory pro-

cedural blanks; and one certified reference material (CIL

Herring EDF-2524e). Detailed analytical methods are

described elsewhere (Ikonomou et al. 2001). One sample

(Neanthes VA-03) was lost during the extraction.

Tissues samples were analysed according to USEPA

protocols 1668 and 1614, and analytes were identified only

when high-resolution gas chromatography/mass spectrom-

etry (HRGC/HRMS) data satisfied all quality assurance/

quality control (QA/QC) criteria described elsewhere

(Ikonomou et al. 2001). Briefly, samples were spiked with
13C-labelled surrogate standards and then ground with

anhydrous sodium sulphate. Samples were transferred to a

Soxhlet thimble; surrogate standard was added; and sam-

ples were refluxed for 16 h with dichloromethane (DCM).

The extract was eluted through a gel permeation column

with 1:1 DCM and hexane. The extract was applied to a

partially deactivated Fluorisil column and eluted with

hexane followed by 15:85 DCM and hexane. Eluates were

then combined and eluted with 1:1 DCM and hexane and

each fraction concentrated. Samples were analyzed using

an Ultima HRMS (Micromass, Manchester, UK) equipped

with a Hewlett Packard 5890 gas chromatographer (Agi-

lent, Wilmington, Delaware, USA) and a DB-5 Durabond

capillary column (60 m 9 0.25 mm, 0.10-lm film). Per-

cent lipid in samples was determined using the gravimetric

lipid determination by weight-of-extract method with

dichloromethane.

Due to the small amount of available tissue, it was only

possible to obtain lipid and moisture determinations for 14

biota samples (13 Macoma and only 1 Neanthes). For

Arch Environ Contam Toxicol (2017) 73:256–269 259

123



Neanthes, the lipid percentage obtained for a single sample

was applied to other samples (a minimal variation was

assumed between samples).

Sediment Analysis

A total of 12 sediment samples from Salish Sea were

submitted to LEACA. Samples were analysed for con-

gener-specific PCBs (n = 182 congeners) and PBDEs

(n = 66 congeners). A typical analytical batch consisted of

8 samples, 1 replicate, 2 laboratory procedural blanks, and

1 certified reference material (UMEA B sediment). In each

class of analytes, the 10th batch included re-extractions

along with two procedural blanks.

Sediment-sample analyses were performed according to

USEPA protocols 1668 and 1614 (USEPA 2003, 2007),

and analytes were identified only when HRGC/HRMS data

satisfied all QA/QC criteria described elsewhere (Ikono-

mou et al. 2001). Samples were spiked with 13C-labelled

surrogate standards and then ground with anhydrous

sodium sulphate. Samples were transferred to a Soxhlet

thimble; surrogate standard was added; and samples were

refluxed for 16 h with DCM. The extract was eluted

through a gel permeation column with 1:1 DCM and

hexane. The extract was applied to a partially deactivated

Fluorisil column and eluted with hexane followed by 15:85

DCM and hexane. Eluates were then combined and eluted

with 1:1 DCM and hexane and each fraction concentrated.

Samples were analyzed using an Ultima HRMS (Micro-

mass) equipped with a Hewlett Packard 5890 GC (Agilent)

and a DB-5 Durabond capillary column (60 m 9 0.25 mm,

0.10-lm film). Sediment-particulate OC was determined

with a Leemans Elemental analyzer after removal of car-

bonates by acid-fuming with HCl for 24 h in a closed

container.

QA/QC Measures

LEACA analyses were performed using the USEPA pro-

tocols 1668 and 1614 (USEPA 2003, 2007). Each batch of

nine samples included one procedural blank. Procedural

blanks were run in each of analytical batches. Procedural

blank values were subtracted from the analytical values of

all of the samples. Analytes were identified only when the

HRGC/HRMS data satisfied all criteria reported elsewhere

(Ikonomou et al. 2001).

To reduce the influence of the nondetected congeners on

the total analyte concentrations, the following substitutions

were applied (see Table 1):(1) congeners that were detec-

ted in\70% of the samples were not included in the cal-

culations; (2) where congeners were detected in C70% of

the samples, a limit of detection subtraction was applied.

No substitutions were made for PCB and PBDE congeners

detected in all samples at all times.

Data-Analysis Methods

Both congener-specific and total concentrations (sum of all

detected congeners) for PCBs and PBDEs are presented.

BSAFs, which is a ratio of the concentration of a con-

taminant in tissue relative to that in the sediment, were

calculated for each species-contaminant-sediment combi-

nation. PCB and PBDE concentrations in tissues and sed-

iment were normalized to lipid (lipid-normalization was

performed based on wet weight) and TOC content,

respectively. However, BSAFs were also calculated based

on wet- (biota) and dry-weight (sediment) concentrations

(not normalized) to assess the influence of normalization

procedures on outcomes.

Results

Survival, Weight, and Lipid

Survival of Macoma was[80% in all sediment tests except

for the positive control (Table S1). There was only 6%

survival in the positive control; either the concentration of

PCB-153 was too high, or there was an effect of the

associated solvent. All clams buried themselves on the first

day, with six being replaced after 24 h. Aside from the

positive control, survival rates were high, and there was no

difference in size (Table S2). Water-quality parameters

were satisfactory throughout the experiment, and the

ammonia levels were low at the start of the test (Table S3).

Approximately 11–16 g of wet-tissue weight was obtained

for each of the treatments. Survival was not affected at the

highest concentrations of RPCBs or RPBDEs bioaccumu-

lated by Baltic clams (Fig. 2a, b).

Neanthes survival varied across the different sediment

tests ranging from 31 to 87% (Table S4). There was low

survival in samples VA-01, VA-06, NA-08, and VI-10.

Sediment samples had some gravel for both VA-06 and

NA-08. For the positive control, there was high survival

(78%), which compares dramatically with the very low

survival for the clams in the same treatment. Water-quality

parameters were satisfactory throughout the experiment,

and the ammonia levels were within an accepted range at

the start of the test (Table S5). Only approximately 1–2 g

of wet weight was obtained for each of the treatments. We

observed a negative correlation between PBDEs and sur-

vival of Neanthes, but this was not true for PCBs (PBDEs

R2 = 0.58, p\ 0.05, Fig. 2c, d).

In both Macoma and Neanthes, weight was similar

between exposed and control organisms after the 28-day
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exposure. The lipid contents of Macoma were in the range

of 0.7–0.94% (Table 2). The lipid content of Neanthes was

analyzed for only one sample due to the low-weight sam-

ples of Neanthes (tissue weight range = 0.58–2.06 g; tis-

sue average weight = 1.5 ± 0.4 g) and was 0.76%

(Table 2).

Bioaccumulation of PCBs and PBDEs

PCB residues in all sediment tests were highest in Macoma

and lowest in Neanthes whether or not concentrations were

normalized (TOC basis for sediment and lipid basis for

organisms) (Fig. 3a, b). PBDE residues, in contrast, were

highest in Neanthes and lowest in Macoma for most sedi-

ment tests whether or not concentrations were normalized

(TOC basis for sediment and lipid basis for organisms)

(Fig. 3c, d). Tissue and sediment concentrations were

correlated for PCBs but not for PBDEs. Interestingly,

PBDEs increased in Macoma until a threshold was

attained, and the organisms did not continue to accumulate

the chemical.

The concentrations of PCBs and PBDEs in all samples

are listed in Table 2, and the overall concentration com-

parisons are shown in Fig. 4. The PBDE concentrations

were lower—i.e., Student t test: sediments = 2384 ±

1009 ng/g PCB TOC basis and 196 ± 57 ng/g PBDE TOC

basis (p = 0.04); Macoma = 3029 ± 807 ng/g PCB lipid

basis and 92 ± 8 ng/g PBDE lipid basis (p = 0.001);

Neanthes = 1116 ± 336 ng/g PCB lipid basis and 348 ±

112 ng/g PBDE lipid basis (p = 0.04)—than those of PCBs.

CB-153 was the most dominant PCB congener in both

species (Figure S1; Neanthes 32% vs.Macoma 22%) except

in two samples (VA-02 and VA-06). The congener pattern in

Table 1 PCB and PBDE congeners were detected at varying frequencies in sediment, Macoma, and Neanthes

Congeners detected Sediment Macoma Neanthes

PCBs (%) PBDEs (%) PCBs (%) PBDEs (%) PCBs (%) PBDEs (%)

0% 13 (7.1) 15 (22.7) 22 (12.1) 23 (34.8) 42 (23.1) 41 (62.1)

0 B 70% 36 (19.8) 20 (30.3) 42 (23.1) 25 (37.9) 95 (52.2) 21 (31.8)

70 B 100% 47 (25.8) 18 (27.3) 86 (47.3) 17 (25.8) 37 (20.3) 3 (4.6)

100% 86 (47.3) 13 (19.7) 32 (17.5) 1 (1.5) 8 (4.4) 1 (1.5)

Total no. of congeners analysed 182 66 182 66 182 66

Fig. 2 Survival of M. baltica in

each experiment against their

RPCB (a) or RPBDE (b) tissue
concentrations. Survival of

N. arenaceodentata in each

experiment against their RPCB
(c) or RPBDE (d) tissue
concentrations
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both invertebrates was similar to the pattern observed in the

sediments. BDE-47 dominated the PBDE profile in both

species (Figure S2; Neanthes 44% vs.Macoma 57%) except

in three Neanthes samples (VA-01, VA-05, and VI-12) fol-

lowed by congeners BDE-99 and BDE-100.

BSAFs were calculated as the ratio of tissue (lipid

weight-corrected) to sediment concentrations (TOC-

corrected) RPCBs and RPBDEs (Tables S6 and Table S7).

The BSAFs calculated with dry-weight sediment and wet-

weight biota concentrations are also presented in those

tables. Some PBDE congeners in Neanthes samples NA-07

and NA-08 were excluded as outliers (Table S6). In those

cases, BSAFs were very high due to the low concentrations

and many nondetects in the Neanthes.

Table 2 Sample characteristics and concentrations of total PCBs and PBDEs in surficial sediments and two organisms coincubated with these

sediments for 28 days (M. balthica and N. arenaceodentata)

Sediment

sample ID

Sediments Macoma balthica Neanthes arenaceodentata

TOC

(%)

PCBs (ng/g

dw)

PBDEs (ng/g

dw)

Lipid

(%)

PCBs (ng/g

ww)

PBDEs (ng/g

ww)

Lipid

(%)

PCBs (ng/g

ww)

PBDEs (ng/g

ww)

VA-01 1.16 10.17 1.49 0.81 9.47 0.87 0.76 2.77 1.02

VA-02 2.16 133.24 4.97 0.88 68.49 0.97 0.76 13.24 0.11

VA-03 1.01 0.51 0.54 0.81 11.52 0.46 0.76 N/A N/A

VA-04 3.17 3.06 0.46 0.89 8.81 0.67 0.76 2.49 0.03

VA-05 2.00 21.20 5.42 0.91 22.83 1.07 0.76 3.35 0.07

VA-06 3.03 130.19 9.87 0.91 30.88 1.14 0.76 20.23 4.18

NA-07 2.14 8.01 1.63 0.94 11.91 0.62 0.76 1.89 8.50

NA-08 17.22 118.05 1.26 0.88 12.00 0.40 0.76 7.25 5.09

NA-09 0.81 3.10 0.34 0.73 7.37 0.65 0.76 3.75 1.76

VI-10 1.26 5.94 1.40 0.79 15.01 0.84 0.76 3.43 5.19

VI-11 2.65 310.44 11.66 0.87 74.25 1.11 0.76 27.68 0.04

VI-12 5.94 143.93 38.74 0.70 20.81 0.62 0.76 7.22 3.08

Control 0.41 0.33 0.94 15.05 0.51 0.76 0.56 0.81

Positive control 189.69 0.35 0.84 171.3 0.16 0.76 234.7 1.01

Fig. 3 Accumulated

concentrations in Macoma

(closed circle) and Neanthes

(open circle) after 28-day

exposure to sediments with

different levels of PCBs and

PBDEs. Concentrations were

expressed as not normalized

(a PCB; c PBDE) or TOC/lipid

normalized (b PCB; d PBDE)

262 Arch Environ Contam Toxicol (2017) 73:256–269

123



The influence of physicochemical properties of the two

contaminant classes in shaping uptake and accumulation is

evident when plotting BSAFs against log Kow values for

the individual PCB and PBDE congeners (Figs. 5, 6).

BSAFs of PCBs versus log Kow in Neanthes showed a peak

at a log Kow of 6. The BSAFs for PCBs (range 0.01–30)

were similar to those for PBDEs (range 0.01–30).

PCB and PBDE BSAFs differed between Macoma and

Neanthes (Fig. 7). PCBs exhibited higher bioaccumulation

in Macoma than Neanthes. For PBDEs, BSAF differences

between species were less obvious due to the low number

of detected congeners in Neanthes.

Discussion

Benthic invertebrates have been widely used in the

assessment of coastal contamination around the world, but

different species-specific factors (choice of test species,

feeding ecology, age/size, growth rate), sampling proto-

cols, and analytical instrumentation severely constrain the

ability to compare results across studies and regions. In the

case of PCBs and PBDEs, where both contaminant classes

have as many as 209 theoretically possibly congeners in

environmental mixtures, interpretation and reporting is

subject to considerable variation among studies. Budget-

conscious monitoring programs may opt for total concen-

trations for these two contaminants of concern. However,

congener-specific concentrations using high-resolution

instrumentation offer valuable opportunities to inform

source, transport, fate, and biological uptake functions

through the use of fingerprinting techniques such as

multivariate statistical models (Grant et al. 2011; Ross

et al. 2004). Characterizing the congener-specific uptake of

PCB and PBDE congeners by invertebrates using real

world sediment samples (mixtures) here can enable guid-

ance on the design of marine pollution indicators.

Sediment samples were taken near or in urban harbours,

which represent hot spots for both PCBs and PBDEs (Grant

et al. 2011), whereas PBDEs are also found at high con-

centrations near municipal outfalls (DeBruyn et al. 2009).

Sediment concentrations were in the range of PCB and

PBDE concentrations from the same area (Grant et al.

2011). Hot spots observed in Victoria and Vancouver

harbours are influenced by local waste discharges, thus

reflecting direct input pathways by way of urban and

industrial runoff (Johannessen et al. 2008). The PCB and

PBDE concentrations in the Victoria area (VI-11 and VI-

12) were higher than those in the Vancouver area.

This study was designed to look at biological uptake of

PCB and PBDE congeners and not biological end points,

but basic aspects of biological condition were noted.

Higher relative mortality of Neanthes versus Macoma may

be due to higher concentrations of RPBDEs bioaccumu-

lated by Neanthes. Interestingly, the low survival observed

in Neanthes (31%), occurred in the sample with the higher

TOC concentration (17.22%). A possible explanation is

that this sample generated sufficiently high sulphide in

porewater during the test to affect the survival of Neanthes

(Vismann 1990). Dillon et al. (1993) showed that survival

of juvenile worms may be adversely affected if test con-

ditions involve exposure to C0.7 mg/L unionized ammonia

or C5 mg/L hydrogen sulfide. The same investigators have

also observed that the grain size had no significant effect,

whereas the number of worms placed in each exposure

vessel was critical. Polycyclic aromatic hydrocarbons

(PAHs) are among the contaminants of concern in indus-

trial harbours (Yunker et al. 2011) and near marine

municipal-sewage discharge (Chapman et al. 1996).

Chapman et al. (1996) observed that some of the gravel

found in sediments actually consisted of coal and coke. In

two sediment samples associated with low survival of

Neanthes, gravel was present. It is therefore, possible that

other parameters (e.g., PAHs) affected the survival of

Neanthes. The high mortality observed in the Macoma

positive control test may have initially triggered PCB-153-

associated toxicity (or its solvent) but subsequently exac-

erbated by the release of ammonia by dead clams.

Our bioaccumulation findings are consistent with those

of others who have documented the general nature of

sediments as a source of benthic-invertebrate contamina-

tion (Foster et al. 1987; Janssen et al. 2010; Josefsson

2011). In all of our tests, PCBs and PBDEs were readily

accumulated by both species, but differences in bioaccu-

mulation patterns between species were evident. The

Fig. 4 Box-plots of RPCBs and sum RPBDEs for all sediment at all

locations and both species exposed to all sediments on TOC-weight

basis (sediment) and lipid-weight basis (biota). Whiskers indicate 5th

to 95th percentile; box indicates 25th to 75th percentile; line shows

the median; dots represent outliers
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Fig. 5 BSAFs normalized to

lipid and OC in Macoma for

PCBs (open circle) and PBDEs

(closed circle) against log Kow.

The log Kow values of the

congeners were taken from

selected literature (from

Braekevelt et al. 2003 for

PBDEs and from Hawker and

Connell 1988 for PCBs)
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Fig. 6 BSAFs normalized to

lipid and OC in Neanthes for

PCBs (open circle) and PBDEs

(closed circle) against log Kow.

The log Kow values of the

investigated POPs congeners

were taken from selected

literatures (from Braekevelt

et al. 2003) for PBDEs and from

Hawker and Connell 1988 for

PCBs)
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polychaete Neanthes acquires food by bulk deposit feed-

ing; this invertebrate accumulated the lowest concentration

of PCBs but the highest concentration of PBDEs. PCB

concentrations in lipids were approximately three times

lower, whereas PBDE concentrations in lipids were

approximately 5 times higher in this deposit feeder com-

pared with the facultative deposit-feeding clam Macoma.

Interestingly, the biodynamic model developed by Janssen

et al. (2011) suggested that Neanthes accumulates

approximately 20 times more PCBs in its lipids than Ma-

coma. In our study, contaminants associated with retained

sediment in the gut of Neanthes may have led to an over-

estimate of the concentration in tissue.

Limited correlations observed between sediment- and

biota-contaminant concentrations in our study may be in

part due to the differences in sediment conditions (e.g.,

granulometry, OC, and black carbon) from the different

sites from which the samples were collected. Age and sex

may also affect uptake. Lotufo et al. (2000) showed that

sex had a large influence on contaminant uptake kinetics in

N. arenaceodentata with mature males having a more

efficient uptake clearance rate and faster elimination rate

than mature females. Differential bioaccumulation between

the two invertebrates may be attributed to differences in

functional feeding groups and in feeding rates. Exposure

and uptake can vary widely among filter versus deposit

feeders based on their relative interaction with the supra-

sediment water and the extent to which they consume

sediment. The high absorption efficiencies by polychaetes

is due to the strong surfactancy in deposit-feeder guts

(Ahrens et al. 2001). In addition, the presence of a barrier

(e.g., shell) can limit the organism’s passive exposure to

contaminated environments.

The importance of bioturbation by biorrigator/gallery-

diffusor species on the remobilization of POPs from sedi-

ment has been described previously by Josefsson (2011).

The presence of tubes created by Neanthes could increase

the sediment-water interface area and facilitate the move-

ment of colloids with associated POPs (Bosworth and

Thibodeaux 1990). Because more hydrophobic POPs are

more resistant to desorption from the sediment particles

and the distribution to colloids (and particles) generally

increases with increased hydrophobicity, Neanthes would

be more exposed to more hydrophobic POPs. In contrast,

the bivalve Macoma has a limited effect on POP flux

between water and sediments. This invertebrate lives few

centimetres beneath the water-sediment interface, extend-

ing its two siphons to the surface where it can switch

between surface deposit- and suspension-feeding. The

clams can mix particles from the surface into the sediments

when they feed and move around, thus causing particles to

fall into the space created around their shells. In addition,

species-specific differences in the uptake and elimination

of certain congeners could also be occurring. Magnusson

et al. (2006) showed that the interspecific variations in

bioaccumulation of PCB congeners in marine benthic

infauna did not correlate with differences in feeding

strategies but rather may be caused by differences in bio-

transformation and in the age and size of the analysed

specimens.

Our results show that PCB accumulation in both Ma-

coma and Neanthes is related to concentrations in sedi-

ment. However, the variation in accumulated levels

between both species is important. Although the

driver(s) of this variation remains unclear, one factor that

might have played a role is the time of year in which the

different experiments were performed. Seasonal variation

in PCB content has been observed in mussels, with highest

levels found in February, because this species is a spring

spawner (Hummel et al. 1990). Macoma is also a spring

spawner (Philippart et al. 2003). The 28-day exposure

Fig. 7 Comparison of BSAF (ratio of normalized to lipid and OC)

for a PCBs and b PBDEs for Macoma and Neanthes derived from

28-day laboratory exposure
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experiment started in February, so it is reasonable to

assume that this species will concentrate highest levels

during this period of time. However, the seasonal vari-

ability in uptake by mussels in situ involves many factors

(e.g., temperature), which may vary during laboratory

testing of bioaccumulation. Lipid-normalization of tissue

PCB and PBDE concentrations, therefore, reduces only

part of the variation between species. Differences observed

between PCB and PBDE congener BSAF values between

Neanthes and Macoma may be most likely due to differ-

ences in feeding behaviour. However, it is also possible

than the presence of sediment in Neanthes affected the

comparison between the two species. The Macoma were

depurated, whereas the Neanthes were not. For example,

depuration experiments showed that the larger part of the

BDE209 content in mussels was associated with ingested

particles (Booij et al. 2002). Macoma showed a PCB dis-

tribution that was dominated by less-chlorinated congeners

compared with Neanthes (Figure S1). Aside from the shift

to a lower molecular-weight distribution, Macoma did not

appear to be selectively depleted in the concentrations of

individual congeners. This indicates a lack of metabolism

of PCB congeners and is consistent with what has generally

been reported for bivalves (Boon et al. 1989).

BSAF calculated with TOC-normalized sediment and

lipid-normalized biota concentrations appeared to provide

a clearer evaluation of resultant data because the relation-

ships became significant compared with uncorrected val-

ues. Consequently, we subsequently relied on BSAFs

derived from normalised PCB and PBDE concentrations. It

has previously been shown that refractory nonpolar trace

contaminants concentrate in the OC fraction of sediments

and in animal lipids (Hartley and Graham-Bryce 1990).

The use of lipid- and OC-normalized concentrations makes

the BSAF an approximate fugacity ratio (Burkhard et al.

2005). When bioaccumulation was examined on a con-

gener-specific basis, BSAFs between different sediments

differed. This consolidates our view that variation in

BSAFs among sediments are shaped by such sediment

properties as granulometry or type of OC. It has been

recently shown that in benthic invertebrates near submarine

municipal outfalls, uptake of individual PBDE congeners

was determined by sediment properties (OC, grain size),

whereas PCB congener uptake was governed by physico-

chemical properties (Dinn et al. 2012). It has been

demonstrated that although the distribution of hydrophobic

organic contaminants increases in the small-particle size

fraction (particles \63-lm diameter), the BSAF is often

negatively correlated with the fraction of organic size

carbon in fine particles (Kukkonen et al. 2005). This pat-

tern shows that as OC increases in the fine material, which

is in the size range ingested by the organisms, bioavail-

ability decreases (Menone et al. 2006). Interestingly, in

Neanthes, the lower relative BSAFs for PCB congeners

along with high log Kow values suggest that those com-

pounds may be more strongly adsorbed to organic matter

and may therefore be less bioavailable. Different TOC

fractions, black carbon being a notable example, have been

shown to enhance sorption and reduce the bioavailability of

contaminants. A recent study showed that bioaccumulation

rates of PCBs in N. arenaceodentata were reduced after the

addition of a highly sorbent activated carbon (Janssen et al.

2010).

Because estimates of bioaccumulation, such as those

reflected in BSAFs, can be both species- and site-specific,

this study highlights the need for and use of standardised

approaches to correction factors and an understanding of

factors affecting bioaccumulation by invertebrates. The

expression of BSAFs using lipid-normalized concentration

in tissue and OC-normalized concentrations in sediment

appears preferable to noncorrected data. This likely reflects

the fact that the transport, bioavailability, and bioaccu-

mulation of PCBs and PBDEs are governed by thermo-

dynamic relationships of these chemicals in the marine

environment.

We did not seek to determine a steady-state equilibrium

for PCBs and PBDEs in this study, which would allow a

more complete evaluation of the partitioning of these con-

taminants from sediment to tissues. Some congeners may

require more than the 28 days used here to achieve steady-

state tissue residue (functionally defined as at least 80% of

the actual equilibrium concentration). Meloche et al. (2009)

suggested that after a 28-day exposure, higher log Kow PCB

congener concentrations in M. balthica had not reached

steady state with concentrations in sediments. Determina-

tion of steady-state equilibrium is important in the context

of risk estimation because tissue concentrations that have

not attained steady-state with sediments may underestimate

risk. Tissues should be sampled at various time points to

determine the uptake and elimination kinetics of multiple

contaminant classes of concern (PCBs and PBDEs). The

uptake rates of contaminants into test organisms should be

directly measured, and a kinetic model should be used to

indirectly determine elimination rates. This kinetics infor-

mation could be then used to derive useable information

such as the time (in days) required for analytes to reach

steady state, the fraction of steady state acquired after the

standard 28-day exposure duration, and BSAFs.

In this study, bioaccumulation was evaluated using two

commonly employed test organisms during an exposure

time of 28 days. Our results suggest that exposure time

required to attain steady state is organism- and compound-

specific and that Neanthes seemed take longer than Ma-

coma to reach stable tissue residues for PCBs but not for

PBDEs. Our study suggests that species-specific differ-

ences in bioaccumulation and bioavailability from
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sediments vary with contaminant properties and sediment

type. To improve sediment-based evaluation of food-web

bioavailability and/or toxic risk, the collection of detailed

information on sediment properties should be undertaken

in addition to high-resolution analysis. The value, rele-

vance, and comparability of invertebrate monitoring data

are therefore highly dependent on site- (sediment proper-

ties) and species-specific (feeding ecology) features. The

more complete incorporation of such features into con-

taminant assessments will contribute to the possibility of

expanded comparative evaluations across disparate regions

and enable more meaningful pollution indicator assess-

ments using invertebrates.
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