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Abstract Current marine oil spill detection and monitor-

ing methods using high-resolution remote sensing imagery

are quite limited. This study presented a new bottom-up

and top-down visual saliency model. We used Landsat 8,

GF-1, MAMS, HJ-1 oil spill imagery as dataset. A sim-

plified, graph-based visual saliency model was used to

extract bottom-up saliency. It could identify the regions

with high visual saliency object in the ocean. A spectral

similarity match model was used to obtain top-down

saliency. It could distinguish oil regions and exclude the

other salient interference by spectrums. The regions of

interest containing oil spills were integrated using these

complementary saliency detection steps. Then, the genetic

neural network was used to complete the image classifi-

cation. These steps increased the speed of analysis. For

the test dataset, the average running time of the entire

process to detect regions of interest was 204.56 s. During

image segmentation, the oil spill was extracted using a

genetic neural network. The classification results showed

that the method had a low false-alarm rate (high accuracy

of 91.42%) and was able to increase the speed of the

detection process (fast runtime of 19.88 s). The test image

dataset was composed of different types of features over

large areas in complicated imaging conditions. The

proposed model was proved to be robust in complex sea

conditions.

Oil pollution is one of the most common forms of marine

pollution. It is estimated that 706 million gallons of oil are

spilled into the ocean each year (Ivanovic 2012). Industrial

discharges and urban runoff, oil production, and ship rou-

tine maintenance during operation accounted for a signifi-

cant proportion. The remainder resulted from seepage,

shipping accidents, or atmospheric circulation (Zhao et al.

2014). Marine oil spills have become one of the most

serious ocean pollution problems, because they can

degrade ocean ecosystems and impact both the environ-

ment and economy (ESA 1998).

There are rich natural resources in the North Pacific

Ocean, but the continental shelf has been affected by oil

spill pollution (Burger and Fry 1993). When the oil drifts

into coastal areas, it degrades ocean resources, including

shellfish beds, saltwater marshes, coral reefs, and other

habitats (Garcia-Pineda et al. 2013).

To deal with oil spill pollution and to prevent expen-

sive environmental and economic costs, a rapid and

accurate response is necessary. The magnitude, location,

and drifting course of the oil spill need to be confirmed as

soon as possible. The coverage, continuity of observa-

tions, and rich data provided by remote sensing makes this

an efficient way to detect and monitor oil spills over a

broad area.

Synthetic Aperture Radar (SAR) is commonly used for

oil spill detection and monitoring. SAR can be divided into

single- and multi-polarization images. The main method to

detect oil using single-polarization SAR is image pro-

cessing, including image pre-processing, feature extraction,

image segmentation, and classification. Some methodology
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of machine learning and pattern recognition was introduced

during the process of single-polarized SAR detection of oil

(Keramitsoglou et al. 2006; Derrode and Mercier 2007;

Topouzelis et al. 2007). Recently, a growing number of

researchers have studied the use of multi-polarized SAR,

including four polarization modes (HH/VV/HV/VH)

(Migliaccio et al. 2009, 2011). Multi-polarized SAR can

take advantage of comprehensive electromagnetic charac-

teristics to identify energy and phase differences (Nunziata

et al. 2011; Zhang et al. 2011; Minchew et al. 2012).

However, the coverage, temporal resolution, and high cost

of SAR limits their practical application for an oil spill. In

addition, the speed and direction of the wind must be taken

into account to detect oil spills (Espedal 1999; Solberg

et al. 1999). However, the main difficulty of using SAR for

oil spill detection is distinguishing mineral oil slicks from

look-alikes (phenomena whose scatter characteristics are

very similar to those of real oil spills), such as low wind

areas, biogenic films, rain cells, oceanic internal waves,

and atmospheric gravity waves (Grimaldi et al. 2011).

Recently, robust satellite techniques to monitor oil spills,

which have evolved from robust AVHRR techniques, have

been proposed. The robust satellite technique is an automatic

monitoring method that regards the satellite images as a

space–time process. The robust satellite technique uses long-

term multi-temporal satellite records to obtain the charac-

teristics of signals and develop an index to identify signal

anomalies that discriminate oil spills (Casciello et al. 2007;

Grimaldi et al. 2009, 2010). However, the results need to be

confirmed by further analyses for different events and

extended to different satellite platforms.

Visible optical imagery has rich band information. Landsat

5 TM/Landsat 7 ETM? captured images of oil spill pollution

in Brazil (Bentz and De Miranda 2001), the Arabian Gulf

(Essa et al. 2005), and the Gulf of Mexico (MacDonald et al.

1993). With the development of high-resolution imagery,

visible remote sensing has been used in the field of automatic

oil spill detection and monitoring. The image features are

explored and a particle swarm optimization algorithmor other

algorithm is used to complete an object-oriented approach

(Fan et al. 2014). However, these methods can only locate the

presence of a known oil spill after an alert and require the

presence of prior knowledge (Grimaldi et al. 2011).

This paper proposes an automatic and efficient method

for image processing analysis of high/moderate-resolution

remote sensing images aimed at oil spill location and

monitoring on a large scale. First, a combination of bottom-

up and top-down saliency detection was proposed with the

objective of rapid location of oil spills. A modified graph-

based visual saliency (GBVS) model and a spectral simi-

larity match saliency model were jointly used to locate a

marine oil spill anomaly using computer vision, while other

interference targets were ruled out by spectra. Once the oil

spill saliency has been calculated, the region of interest

(ROI) can be rapidly located. Comparison and analysis of

the ROI image segmentation was performed to achieve the

goal of monitoring marine oil spills. The flow chart of the

paper is shown in Fig. 1.

Fig. 1 Flowchart of the proposed model
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Materials and Methods

Dataset

In the present study, Landsat 8, GF-1, MAMS, and HJ-1

data were analyzed. The satellite product characteristics are

shown in Tables 1, 2, 3 and 4. A 1566- 9 1585-pixel

Landsat 8 image was acquired on March 8, 2014, covering

an area from 101.54�E to 103.63�E and 7.61�N to 9.7�N for

the North Pacific Ocean. An 833- 9 570-pixel GF-1 satellite

image covering an oil spill in the Qingdao coastal area from

119.54�E to 121�E and 34�N to 37�N was acquired on

November 26, 2013. Another experimental dataset was for

Zhoushan airport (29.9 N, 122.3�E) using airborne MAMS

data (280 9 130 pixels) on September 16, 2008. In addition,

we chose the HJ-1 imagery as another dataset of oil detec-

tion experiment, including Penglai (hereinafter referred to as

PL) oil spill on June 11, 2011, Deepwater Horizon (here-

inafter referred to as DH) oil spill on April 20, 2010, and

Dalian Xingang (hereinafter referred to as XG) oil spill

accident on July 16, 2010. An 1414- 9 847-PL oil spill

imagery from 119�30400E -120�102800E, 38�10100N
-38�403800N acquired on June 13, 2010. Deepwater Horizon

oil spill dataset (4338 9 7272), covering from

87�702800W-88�601900W, 38�10100N-38�403800N, was

acquired on May 12, 2010. And a dataset for Xingang oil

spill using HJ-1 acquired on July 23, 2010 was from

121�402600E-122�4900E, 38�80700N-39�1200N, in 454 9 444

pixel. The remote sensing datasets are shown in Figs. 2, 3, 4,

5, 6 and 7.

ROI Detection

Optical satellite imagery has the advantages of lower costs,

rich band information, and large spatial observation scales,

which form good datasets for monitoring oil spills.

Although SAR is becoming open access, the amount of

Table 1 Landsat 8 (OLI)
Parameters Band Wavelength (lm) Resolution (m)

Spectral range Band 1 Coastal 0.433–0.453 30

Band 2 Blue 0.450–0.515 30

Band 3 Green 0.525–0.600 30

Band 4 Red 0.630–0.680 30

Band 5 NIR 0.845–0.885 30

Band 6 SWIR 1 1.560–1.660 30

Band 7 SWIR 2 2.100–2.300 30

Band 8 Pan 0.500–0.680 15

Band 9 Cirrus 1.360–1.390 30

Width 185 9 185 km

Revisit 16 d

Table 2 GF1 multispectral camera

Parameters Band Wavelength (lm) Resolution (m)

Spectral range Band 2 Blue 0.450–0.52 16

Band 3 Green 0.52–0.59 16

Band 4 Red 0.63–0.69 16

Band 5 NIR 0.77–0.89 16

Width 800 km

Revisit 4 d

Table 3 MAMS multispectral camera

Band Bandwidth (lm)

Ultraviolet 0.26–0.37

Visible/near infrared 0.40–0.42

0.43–0.45

0.48–0.50

0.51–0.53

0.56–0.58

0.67–0.69

0.73–0.77

0.84–0.88

Infrared 3.0–5.5

5.5–12.5

IFOV 5 mrad

Table 4 HJ-1 A/B CCD

Parameters Band Wavelength (lm) Resolution (m)

Spectral range Band 2 Blue 0.43–0.52 30

Band 3 Green 0.52–0.60 30

Band 4 Red 0.63–0.69 30

Band 5 NIR 0.76–0.90 30

Width 700 km

Revisit 4 d
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data are still limited, and it is still difficult to get multi-

polarized SAR images. In large-scale optical images, the

ROI of an oil spill can be too small to be detected, and most

of the image is irrelevant to the target. This makes it time-

consuming to match and recognize the target directly

Fig. 2 Landsat 8 data

Fig. 3 Gf-1 data

Fig. 4 MAMS data

Fig. 5 PL data

Fig. 6 DH data

Fig. 7 XG data
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within the scope of a whole image. A method to target ROI

positioning quickly and accurately from a high-resolution

remote sensing image will play an important role in

improving the efficiency of monitoring oil spills.

Research into visual psychology has shown that the

human visual system is capable of confirming the ROIs

before a detailed analysis of the visual scene. Computers

can simulate the human visual attention mechanism using a

specific algorithm for ROIs. ROI detection based on the

visual attention mechanism uses low-level visual features

of images, such as color, orientation, and brightness, to

simulate the visual attention model and generate a saliency

map. The different saliency represents the importance of a

position within an image. A salient region in the image is

highly important to human visual attention.

The saliencymap is calculated in this paper where there are

features, such as sea water, clouds, islands, ships, or oil. Most

of these features (except for the sea) in the saliency map must

be of local importancewithin the context of an ocean to attract

visual attention. Shadows andwaves do not form strong visual

features. As described above, a GBVSmodel was modified to

implement bottom-up saliency detection in this paper.

It is then essential to distinguish between oil and other

significant features (including clouds, islands, and ships).

Another saliency map based on the spectral similarity is

proposed. A spectral similarity match model was used to

measure the sample oil spectra (extracted from experiments

or from the images) and the pixel spectra in the image. The

regions of similar oil spectra are extracted and used to

derive a simple frequency spectra saliency map. Thus, a

spectral similarity match saliency map is created. This step

is called top-down saliency detection.

Bottom-Up Saliency Map Using a Simplified GBVS Model

There are a number of ways to generate saliency maps.

Center-surround mechanisms are modeled by primary

visual cortex cells (Itti et al. 1998; Walther and Koch

2006). Context-aware saliency detection is based on the

detection of backgrounds indicating the object (Jiang et al.

2011; Goferman et al. 2012). Frequency saliency detection

includes a spectral residual approach and phase spectrum

(Hou and Zhang 2007; Guo et al. 2008). Information

maximization suggests that the rarity of significant features

could be used to measure visual saliency, as the informa-

tion is dynamic enough to attract attention (Bruce and

Tsotsos 2005; Luo et al. 2012). Another method was based

on graph structure, which can simulate the neuron con-

nections in the cerebral cortex and use this to extract sal-

iency. A GBVS model was proposed with better outcomes.

The equilibrium state was used as a measurement for sal-

iency by considering the saliency difference of each pair of

Markov nodes globally and dynamically. The model was

better adapted to the background but was rather fast to run.

A typical GBVS model is shown as below.

Step 1. For the input image I, the color, brightness, and

orientation (Gabor filters) channels are constructed by

several low-pass filters and 1/2 down-sampling to obtain a

multi-Gaussian pyramid. Each level is decomposed into red

(R), green (G), blue (B), yellow (Y), brightness intensity

(I), and local orientation (O) channels. From these chan-

nels, a center-surround feature map is calculated from the

across-scale differences (Sun et al. 2010).

FI;C;S ¼ N I Cð Þ�I Sð Þj jð Þ; ð1Þ

Fh ¼ N Oh Cð Þ�Oh Sð Þj jð Þ; ð2Þ
FRG;C;S ¼ N R Cð Þ�G Cð Þ � R Sð Þ�G Sð Þð Þj jð Þ; ð3Þ

FBY;C;S ¼ N B Cð Þ�Y Cð Þ � B Sð Þ�Y Sð Þð Þj jð Þ; ð4Þ

where � denotes the difference of different scales between

the center (C) and the surround (S) in the feature pyramid.

h refers to the orientation. N is a map normalization

operator, which is used to normalize the values in the map,

find the location of the map’s global maximum, and

compute the average of all its other local maxima at last

globally multiply the map (Itti et al. 1998).

Step 2. An activation map is generated from these fea-

ture maps. The dissimilarity of M (i, j) and M (p, q) of the

feature map are defined as:

d i; jð Þjj p; qð Þð Þ, log
M i; jð Þ
M p; qð Þ

�
�
�
�

�
�
�
�

ð5Þ

The fully connected directed graph GA is obtained by con-

necting every node of the latticeM, labeling every node with

all other n - 1 nodes. The weight of the edge from node (i, j)

to node (p, q) is defined as below (Harel et al. 2006):

w i; jð Þ; p; qð Þð Þ, dð i; jð Þjj p; qð Þ � F i� p; j� qð Þ ð6Þ

where

F a; bð Þ, exp � a2 þ b2

2r2

� �

ð7Þ

Here, r is a free parameter of the algorithm.

Step 3. Markov transition matrix is defined on GA. A

state vector with the same dimension is initialized ran-

domly to the nodes (Dan et al. 2015). The equilibrium state

vector is the activation measure of each node.

Step 4. Finally, GBVS map is generated by normalizing

the activation map. A graph GA is constructed from A. The

weight of the edge from node (i, j) to node (p, q) is defined

below.

W i; jð Þ; p; qð Þð Þ,Að i; jð Þjj p; qð Þ � F i� p; j� qð Þ ð8Þ

Again, the resulting graph is treated as a Markov chain.

The final saliency map is generated by computing the

equilibrium state vector over the nodes of GA.
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Here, the original GBVS has an orientation channel to

detect saliency. For the detection of oil spills, the channel

was modified to a texture-entropy channel. The distinction

highlighted between the oil and water was the entropy, not

orientation. The shape of the oil spill was fluid, and the

channels of the feature map were simplified in a single and

optimized scale to improve the processing speed

significantly.

Top-Down Saliency Map Using a Spectral Similarity

Match Model

The saliency region obtained through the model calculation

above may not only include the possible oil spill but also

ships, islands, or other salient interference features. This

paper proposed a top-down saliency detection model that

used the spectral similarity measure of the spectra between

oil and the pixel in the image—the greater the similarity,

the greater the possibility of oil. The region with a spectral

feature similar to oil was extracted using this method, so a

second saliency map of the spectral similarity match was

generated.

There are two main categories of measures of spectral

similarity: uncertainty measures and randomness measures.

The geometric measures (spectral distance (Wei et al.

2000), spectral angle (Yuhas et al. 1992), and spectral

polygon) and the encoding measures (binary encoding

(Paola and Schowengerdt 1995) and quad-encoding)

belong to the former, whereas the latter includes spectral

information divergence (Chang 2000) and the correlation

coefficient measure. However, theoretical analysis and

experimental results have shown that spectral similarity

cannot be characterized by a single index, and we need to

consider a comprehensive spectral similarity measure to

identify differences between spectra.

This paper adopted the spectral pan-similarity measure

(SPM), which integrated the magnitude of spectral vector,

the shape of spectra, and the information of the spectra

based on spectral distance, the correlation coefficient, and

the relative entropy (Shu and Gong 2011). The smaller

the SPM value, the more similar the spectra. Suppose

ri = (ri1, ri2, ri3,���, riN,)T were the oil spectra from the

image or from the measured data, and rj = (rj1, rj2, rj3, ���,
rjN,)

T were the pixel spectra extracted in the image, where

N denoted the band, and rik denoted the value of the

k band.

(a) Spectral vector

This refers to the geometrical distance between two

spectra. The Euclidean distance characterizes the differ-

ence between the spectra vectors (Granahan and Sweet

2001):

SBD ri; rj
� �

¼
ffiffiffiffi

1

N

r

ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

k¼1

rik � rjk
� �2

v
u
u
t ; ð9Þ

where N denotes the spectral dimension. A smaller SBD

reflects similar spectra, with a range from 0 to 1.

(b) Spectral shape

The spectral shape (SSD) can be measured by the

Pearson correlation coefficient (Sweet 2003):

SSD ri; rj
� �

¼
1� SCM ri; rj

� �

2

� �2

; ð10Þ

where SCM is the Pearson correlation coefficient ranging

from -1 to 1, SSD ranges from 0 to 1. The greater the

absolute value of SCM and the smaller the SSD, the more

similar a spectral shape is obtained.

SCM ri; rj
� �

¼
PN

k¼1 rik � �rið Þ rjk � �rj
� �

PN
k¼1 rik � �rið Þ2

� 	1=2 PN
k¼1 rjk � �rj

� �2
� 	1=2

ð11Þ

(c) Spectral information divergence (SID)

SID represents the relative entropy between the spectra

using the KL distance calculation (Chang 2003). The

smaller the SID, the more similar the spectral information:

SID ri; rj
� �

¼ DðrijjrijÞ þ DðrjjjriÞ; ð12Þ

where D denotes the relative entropy.

(d) Spectral pan-similarity measure (SPM)

SPM can be defined as shown below—the smaller the

SPM, the more similar the spectra.

SPM ri; rj
� �

¼ SID ri; rj
� �

� tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SBD ri; rj
� �2þSSD ri; rj

� �2
q� �

ð13Þ

The procedure of spectral similarity match model is as

follows.

Step 1. Get the average spectral vector of the oil

extracted from the image as the reference spectra

ri = (ri1, ri2, ri3,���, riN,)T.
Step 2. Calculate the SPM of the reference spectra and

the spectra extracted from each pixel, mark the calcu-

lation as C.

Step 3. Define an appropriate threshold to extract the

regions that have similar spectra to oil.

Step 4. Use the simple frequency-based saliency detec-

tion to produce the top-down saliency map.
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Fusion of Saliency Maps

The gray value of the two saliency maps is multiplied point

by point and normalized to form the final saliency map. A

seed point with a maximum saliency value is selected to

start the four-neighborhood region growing. Finally, the

ROI with a possible oil spill is extracted and further

analyzed.

Image Segmentation

After the regions of interest detection, a neural network

using a genetic algorithm was used to do further accurate

oil extraction. In most cases, the neural network classifier

has proved its superiority to traditional classifiers. What’s

more, the global stochastic optimization ability of genetic

algorithm could optimize neural network. In return, the

neural network could promote evolution of genetic algo-

rithm (Liu et al. 2004).

In this paper, the genetic algorithm was firstly utilized to

optimize the initial weights of neural network to deal with

the segmentation problem. A better search space could be

located in the solution space; then, the algorithm was used

to search the optimal solution in these tiny little solution

spaces. In fact, the whole network was divided into two

parts firstly the genetic algorithm was utilized to optimize

the initial weights of neural network and then the BP

algorithm was utilized to finish the network training.

The flow of combining neural network and GA for

classification is as follows.

Step 1. The initial neural network is established. The

topological structure of the neural network is determined

to define the important parameters of the network, such

as network weights, bias, generations and initial popu-

lation size, crossover probability, and mutation

probability.

Step 2. To encode the solution space, each string

represents a solution for the solution space. The initial

population is formed according to the initial and random

genetic algorithm individuals.

Step 3. Each individual (genotype) is decoded and put

into the neural network. The output is then converted

to the corresponding adaptive value, and each set of

the connection weights is evaluated by constructing

the corresponding neural network and computing the

total mean square error between the actual and target

outputs.

Step 4. According to individual fitness, the individuals

are used for selection, crossover, and mutation.

Step 5. A new generation of groups is generated, a new

generation of individuals in the group is decoded, the

new adaptive value is computed, and if the optimal

solution has met the conditions, the algorithm is ended.

Otherwise, step 4 is repeated.

Step 6. Repeat steps 3–5. One generation will evolve into

another generation until the biggest evolution algebra

reached to the original biggest evolution settings.

Step 7. Solutions are chosen from the biggest evolution-

ary population to complete the training level.

Step 8. The evolutionary solutions serve as the initial

solution, and the connection weights and bias are set to

the corresponding gene segments in turn. The fitness

function is computed and compared again to obtain a

reliable neural network.

Results and Discussion

The proposed method was tested on the remote sensing

image dataset. Two scenes of each data source would be

used to verify the effectiveness of the method for oil spill

detection. One included oil spill and another did not. The

oil scenes may be composed of ocean, haze, clouds,

islands, ships, shadows, etc.

The hardware configuration of the test was Intel� Cor-

eTM i5-4590 CPU @ 3.30 GHz 3.30 GHz, with 8 GB of

RAM. The software Matlab R2010b was running in Win-

dows 7 environment.

Bottom-up saliency map using a simplified GBVS

model results

The saliency maps were calculated as below. The high

saliency value means the greater information. It was

shown that because of the haze in the image of Landsat 8,

the GBVS oil saliency detection was not very accurate

(Fig. 8). The oil spill area saliency could be detected to a

Fig. 8 GBVS (Landsat 8)
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certain extent with a low value. Therefore, it was neces-

sary to perform further saliency detection to exclude

cloud and haze. The GF-1 GBVS oil saliency detection

was accurate due to the high quality of this image

(Fig. 9). The oil spill beside the shore has a high saliency

value, and thus coastal waters were not a challenge for

this model. However, some ships or human-made objects

also contributed to the saliency. The GBVS saliency map

of MAMS data showed a clear oil region, whether the low

reflectivity of the thin film region or high reflectivity of

the thick oil film area (Fig. 10). The GBVS saliency map

of PL data could clearly show high value of the oil

region. However, the sun glitter in the left center also

showed a little higher saliency (Fig. 11). The oil spill

region in the DH image was large enough, so the saliency

was detected very well. Also, the cloud in the top left

corner also had high saliency (Fig. 12). In the GBVS

saliency map of XG, the shore and the clouds contributed

a high value. Because of the thin thickness, the oil in this

image contributed low saliency (Fig. 13).

Fig. 9 GBVS (GF-1)

Fig. 10 GBVS (MAMS)

Fig. 11 GBVS (PL)

Fig. 12 GBVS (DH)

Fig. 13 GBVS (XG)
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Top-down saliency map using a spectral similarity

match model results

We compared various top-down saliency models to iden-

tify the detection effect, including a SID model, spectral

angle model, and Euclidean distance model. The saliency

map was transformed to a binary map and compared with

the human interaction interpretation results to obtain the

recognition rate and false-alarm rate. The performance of

the models is shown in Table 5.

Our proposed model has advantages over the alternative

models. For example, the Euclidean distance model tended

to mix water and oil. The SPM performed better in

identifying oil spills on a large scale than the SID and

spectral angle models. Moreover, the SPM model could be

improved if the type of oil spill was known and a spectral

sample of the oil spill was collected for comparison. Our

model made the detection of oil spills rapid and precise.

The computation of the spectral similarity match model

demonstrated that the SPM model was robust. Only a little

light cloud was wrongly highlighted in the Landsat 8 image

(Fig. 14). The weakness of the GF-1 SPM output was a

misclassification of a wide area of dark water. The GBVS

model could make up the shortage of SPM model, as the

light cloud, shadow, and water were not with high visual

saliency (Fig. 15). The SPM model of MAMS detected

almost the whole outline of the oil spill, although some sea

water with a low GBVS value also was detected (Fig. 16).

The SPM model of PL detected most oil spill, but the sun

glitter in the left and right bottom corner showed much

saliency. GBVS model result could almost complement the

Table 5 Comparision of different models

Model Landsat 8 GF-1 MAMS

Recognition rate

(%)

False alarm rate

(%)

Recognition rate

(%)

False alarm rate

(%)

Recognition rate

(%)

False alarm rate

(%)

SID 79.2 10.5 83.8 13.5 82.51 20.6

Spectral angle 82.3 12.2 84.3 14.3 80.23 16.2

Euclidean

distance

70.5 18.8 80.8 15.8 75.51 19.6

SPM 90.5 8.0 92.2 9.2 88.55 18.3

Model HJ-1(PL) HJ-1(DH) HJ-1(XG)

Recognition rate

(%)

False alarm rate

(%)

Recognition rate

(%)

False alarm rate

(%)

Recognition rate

(%)

False alarm rate

(%)

SID 62.3 25.5 83.6 12.8 84.0 7.5

Spectral angle 53.5 22.5 87.8 10.5 84.7 8.3

Euclidean

distance

40.6 20.2 82.3 13.5 78.2 9.6

SPM 73.4 18.0 89.0 8.4 87.7 8.3

Fig. 14 SPM saliency map (Landsat 8) Fig. 15 SPM saliency map (GF-1)
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SPM model (Fig. 17). As shown Fig. 18, the oil spill in DH

could be almost detected because of the thick oil, but there

also was some thick cloud with high SPM saliency in the

edge of the image. Compared with the GBVS model, the

cloud with high GBVS model just had low value with

SPM. The XG oil spill detection was almost completely

correct. Because the oil was thin in this image, there was a

big difference between the cloud and oil (Fig. 19).

The dataset without oil spills may have high GBVS

saliency, but SPM saliency value was almost zero. So the

fusion of saliency should not be detected. Because of the

limitation of length, there were no more tautology results

without oil spill.

ROI results

After the fusion of saliency maps, the ROI detection by

growing a four-neighborhood region was completed as

shown in Figs. 20, 21, 22, 23, 24 and 25. We also tested an

image where there was no oil spill, and the detection result

was correct. The whole processing time of the process is

listed in Table 6. Despite the very large size of the HJ-1

image for the DH spill, the processing time was only

20 min. The fastest processing time was for the MAMS

image at 7.6 s.

Genetic neural network segmentation results

Finally, based on the ROI, a genetic neural network was used

to compute image segmentation and complete the extraction

of the oil spill. The genetic neural network method was

compared with fuzzy clustering (Yao et al. 2013; Chuang

Fig. 16 SPM saliency map (MAMS)

Fig. 17 SPM saliency map (PL)

Fig. 18 SPM saliency map (DH)

Fig. 19 SPM saliency map (XG)
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et al. 2006) and a level set based on the active contours

method (Zhang et al. 2010). Kappa index and overall accu-

racy were regarded as the quantitative evaluation criterion.

Although compared with the fuzzy clustering, the genetic

neural network method was slower. Taken the accuracy and

runtime together, it has more precise segmentation and more

time savings (Table 7).We chose the genetic neural network

to complete the image segmentation.

Sample data acquisition

Taking the images of gf-1, for example, 30 oil film feature

areas and 30 non-oil film feature areas were selected as

training samples, of which each area size was 15*15. If those

region’s four band average values were calculated, a total 60

sets of 60*4 dimensional matrix could be the input of the

neural network, so every training sample has 4 elements.

Each feature included 20 test samples. If the network error of

training sampleswere very small, but the network error of the

test sampleswere very large, then the network generalization

ability was poor and need to be retrained. If both network

errors were very small, the network training was successful

and could be used for classification.

Genetic algorithm evolution of network structure

and weight

A three-layer BP neural network was utilized in this paper:

the input layer neuron number was four, the output layer

neuron number was two, and the hidden layer was deter-

mined to be five through experimentation.

It could be determined by the empirical formula 14.

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p
þ a ð14Þ

Wherein m is hidden layer node; n1 is input layer node; n2
is output layer node; a is adjustable parameters, its value is

between 1 and 10.

Fig. 20 ROI (Landsat 8)

Fig. 21 ROI (GF-1)

Fig. 22 ROI (MAMS)

Fig. 23 ROI (PL)

164 Arch Environ Contam Toxicol (2017) 73:154–169

123



Change the value of the adjustable parameter a, to

change the value of m. Taking same samples for training,

the optimal hidden layer node could be found when the

neural network error was the minimum.

In this study, GA evolution algorithm was utilized to

find the optimal hidden layer node when the neural network

error was the minimum. The following neural network,

with hidden layer node number was five, was taken as

example to illustrate the specific process of GA evolution.

The fitness values of different number of hidden layer

neuron were calculated by genetic algorithm (Table 8).

The smaller the fitness value was, the better the indi-

vidual was. It is shown in the upper table that the fitness

value was the minimum when the hidden layer neuron

number was 5. So, the corresponding network weights were

selected as the network initial weight matrix.

Fig. 24 ROI (DH)

Fig. 25 ROI (XG)

Table 6 Processing time
Landsat 8 GF-1 MAMS HJ-1

PL DH XG

GBVS 5.08 s 14.18 s 1.34 s 2.38 s 357.8 s 2.21 s

SPM 10.25 s 36.26 s 5.11 s 13.58 s 484.52 s 5.88 s

ROI detection 3.48 s 9.75 s 1.15 s 2.06 s 269.96 s 2.39 s

Total runtime 18.81 s 60.19 s 7.6 s 18.02 s 1112.28 s 10.48 s

Table 7 Accuracy of classification

Landsat 8 GF-1 MAMS

Genetic neural network

Overall accuracy 83.70% 90.94% 64.76%

Kappa index 0.7533 0.8925 0.5226

Runtime 22.23 s 19.88 s 5.85 s

Level set

Overall accuracy 81.58% 83.02% 68.58%

Kappa index 0.7055 0.7349 0.6745

Runtime 25.66 s 22.50 s 6.89 s

Fuzzy clustering

Overall accuracy 65.48% 78.15% 66.86%

Kappa index 0.5535 0.6854 0.5677

Runtime 15.33 s 10.16 s 3.20 s

HJ-1(PL) HJ-1(DH) HJ-1(XG)

Genetic neural network

Overall accuracy 92.34% 85.40% 73.77%

Kappa index 0.8057 0.7596 0.6903

Runtime 20.15 s 59.65 s 18.60 s

Level set

Overall accuracy 84.15% 80.96% 68.08%

Kappa index 0.7232 0.6532 0.6852

Runtime 28.43 s 66.50 s 23.09 s

Fuzzy clustering

Overall accuracy 87.33% 77.11% 64.68%

Kappa index 0.7893 0.5580 0.5970

Runtime 18.83 s 55.60 s 19.05 s
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For the neural network algorithm, the learning rate was

0.01, learning rate incremental was set to 1.20, and the

training performance was set to 0.02669. When the hidden

layer neuron number was 5, the value of population num-

ber, fitness ratio, selection parameter, regeneration

parameter, mutation parameter, intersection parameter

were shown in Table 9. The algorithm was trained by 100

generations.

Image segmentation results

Input training sample pair to the network, and set the

network weights achieved by GA evolution as the initial

weights. Read the images and finally get the pixel matrix of

the image. Then, the input vector was obtained by the

image matrix. Using the training GA neural network to

train the input vector, the final output vector was the image

classification result.

The genetic neural network computations are shown

in Figs. 26, 27, 28, 29, 30 and 31. Overall, the classifi-

cation result showed the genetic neural network classi-

fied the oil and water correctly and quickly. Although

the patch number and the fragmentation index were quite

large, the oil extraction of MAMS had low accuracy

Table 8 Fitness values of

different hidden layer neuron

numbers

No. of hidden layer neurons 2 3 5 7 9 11

No. of weight 16 23 37 51 65 79

Evolution generations 80 90 100 110 120 130

Optimal fitness value 0.59987 0.50285 0.44662 0.46597 0.49680 0.53248

Table 9 Parameters of the genetic algorithm

First order parameter Second order parameter Parameter value

Population Population size 50

Initial population Empty(random)

Initial scores Empty(random)

Initial range [-7,7]

Selection function Stochastic uniform

Reproduction Elite count 5

Crossover fraction 0.6

Mutation function 0.1

Crossover function Scattered

Migration Migration direction Forward

Migration fraction 0.2

Fig. 26 Oil extraction (Landsat 8)

Fig. 27 Oil extraction (GF-1)

Fig. 28 Oil extraction (MAMS)
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because of different oil film thickness. Also, the frag-

mentation degree of XG imagery was a little big. The

overall accuracy of network segmentation also was

acceptable.

Conclusions

It is important to acquire rapid location information of oil

spills for awide range of remote sensing images following an

accident to take urgent remedial measures. In the present

study, the ROI was detected rapidly based on the remote

sensing characteristics. Both the visual spatial information

and spectral information were used. After several compar-

ison tasks, a bottom-up saliency map-simplified GBVS

model and a top-down saliency map-spectral similarity

match model were built to detect the ROI rapidly. This

method should be applicable using hyperspectral image

detection. Finally, image segmentation was used to extract

the exact extent of the oil spill. In this way, marine oil spill

monitoring can be achieved successfully and efficiently.

The best overall accuracy similar oil spill detection

approach was 87.41% (Fan et al. 2014). The proposed

methodology presents even better classification results. The

main disadvantage of the method developed is that sig-

nificant computational time is required for ROI processing

(Karathanassi et al. 2006). The whole processing time for a

4338 9 7272 pixel HJ-1 imagery was 1112.28 s.

Further research on this issue may be validation of the

method on more images with various sea states and

thickness of oil spills. Moreover, the other information of

imagery (shape, texture, etc.) should be used to improve

the methodology.
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