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Abstract The Birama Swamp is the second largest wet-

land in the Caribbean region and it is inhabited by large

populations of waterbirds. Here we report, for the first time,

the foraging ecology and pollutant levels of three Ardeidae

species: Cattle egret (Bubulcus ibis), Snowy egret (Egretta

thula), and Tricolored heron (E. tricolor) breeding in this

wetland using stable-isotope (d15N and d13C) and trace

elements [mercury (Hg), lead (Pb), and selenium (Se)]

analysis of chick feathers. Our results showed that indi-

viduals from all species occupied similar trophic levels.

However, we found significant differences for d13C, with

the highest values in cattle egret indicating its use of ter-

restrial habitats and a generalist and opportunist behavior.

No significant differences were found for Pb among spe-

cies. Yet, Hg levels were greater and similar in tricolored

heron and snowy egret than in cattle egret, which was

associated with their greater use of aquatic environments.

Snowy egret had the lowest values of Se differing signifi-

cantly with the other two species suggesting a different

relative use of prey type. Modeling log-Hg concentration in

relation to d15N and d13C showed an independent and

significant relationship among species but without inter-

action with species level indicating that within a particular

species, higher Hg levels were associated with higher d15N

values. There was no interaction between d15N and d13C in

the general linear models for Se and Pb in all species. We

found an association between d15N and species in Pb for

snowy egret. The foraging habitat use of these species and

the low levels of pollutants, which are lower than in other

similar habitats in other areas of the world, indicated that

there is not risk of negative effects in juvenile birds of the

Birama Swamp colony that may impair their survival. Our

results can be used as a baseline to achieve management

regulations.

Tropical wetlands are among the world’s most productive

and biologically diverse ecosystems, comparable with

rainforests and coral reefs (Valiela et al. 2001). They

provide water and resources that support countless species

of microbes, plants and animals year round (Tavares et al.

2007; Yoon 2009). In addition, some anthropogenic sys-

tems (e.g., rice fields, fish ponds or salinas) can provide

complementary habitats for many of these species due to

the greater accumulation of resources during certain times

of the year (Elphick and Oring 1998; Connor and Gabor

2006; Eadie et al. 2008; Fujioka et al. 2010; McKinney

et al. 2011).

Natural ecosystems worldwide are suffering drastic

alterations due to intense habitat transformation linked to

human activities (e.g., agriculture, urbanization, coastal

development, tourism pressure and fisheries) (Mitsch and

Gosselink 2000; Valiela et al. 2001; Lee et al. 2006) and

climate change (Lemoine et al. 2007; Gell et al. 2007;

Montoya and Raffaelli 2010). As a result, species use of

alternative and human-altered sites has increased as they

become more abundant (Young and Chan 1997; Svazas and

Stanevicius 2000; Takekawa et al. 2001; Amano 2009;
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Fasola et al. 2010). With new habitats, exposure to dif-

ferent pollutants from several sources (e.g., runoff, point

source contaminant discharge, atmospheric deposition and

soil erosion due to rainfall) has increased, thus influencing

their bioavailability and entrance into the food webs (Birch

et al. 1996; Berg and Steinnes 1997; Wang et al. 2004;

Duman et al. 2007). As a result, some trace elements and

organic pollutants are accumulated into the biota and

transported to greater trophic levels through the food web

(Haukås et al. 2007; Green et al. 2010). High concentration

of pollutants is especially remarkable in long-lived organ-

isms such as top predators that occupy high trophic levels

and ultimately can affect their health and fitness (Burger

1993; Burger and Gochfeld 1995).

For these reasons the concern for the future of wetlands

has grow during the last years, as well as the use of wildlife

as bioindicators of ecosystem and human health (Peakall

1992; Burger and Gochfeld 2009; Perugini et al. 2011).

One of the groups more widely used as biomonitors of

environmental hazards are birds (e.g., Furness and Green-

wood 1993; Burger 1993; Becker 2003; Piatt et al. 2007;

Hofer et al. 2010). Most colonial waterbirds are top pre-

dators and thus tend to accumulate contaminants ‘‘moving’’

through the food webs. Thus, these species can be used as

proxies of early environmental pollution. Pollutant moni-

toring programs of waterbirds are common and are

advantageous as sampling can be relatively easy and can be

performed with minimal invasiveness (using eggs, feathers,

and blood samples).This group can also be very sensitive to

pollutants displaying negative secondary effects at very

low concentrations (Nisbet 1994). Because of their

behavior, longevity and diet, members of the Ardeidae

family are especially useful for contaminant studies (Bur-

ger et al. 1992a; Stewart et al. 1997). Nestlings are espe-

cially amenable subjects for monitoring studies, as

bioaccumulation is minimal at this stage, and trace ele-

ments come mainly from food gathered by provisioning

adults from local food webs.

The relationship between diet and contaminants has

been analyzed through stable isotopes. Natural variation in

stable isotope ratios of several elements [e.g., carbon (C),

nitrogen (N)] has been increasingly used in trophic ecology

studies during the last 20 years (Michener and Schell 1994;

Jardine et al. 2006; Bucci et al. 2007; Inger and Bearhop

2008; Bond 2010). For example, nitrogen isotope (d15N)

has been effective in quantifying the trophic level of

organisms if adequate baselines are provided because

enrichment of this isotope occurs across trophic levels at a

constant rate (3.4 %) (Inger and Bearhop 2008). In con-

trast, the enrichment of carbon isotope (d13C) among dif-

ferent trophic levels is lower (i.e., approximately 1 %)

(Inger and Bearhop 2008). This isotope is considered a

valuable tracer for identifying different sources of primary

production (Hobson et al. 2002; Hoekstra et al. 2003) with

values being typically greater for aquatic than for terrestrial

environments. Simultaneous use of stable isotope and

trace-element analyses constitute a valuable tool in eco-

toxicological studies to elucidate contaminant exposure

through food webs (Borga et al. 2001; McIntyre and

Beauchamp 2007; Hobson 2011).

In Cuba, coastal wetlands occupy 77.6 % of the

14,724 km2 of total wetlands in the country (CNAP 2002).

It has been estimated that 41 % of species of Cuban birds

depend of these ecosystems for their survival (Acosta and

Mugica 2006), and most of them also breed in these areas.

In the island, foraging habitats of waterbirds include both

natural and artificial wetlands (e.g., rice fields). No previ-

ous dietary studies by stable isotopes analysis or pollution

assessment have been undertaken for Cuban birds. Here we

assess the foraging ecology and pollutant levels [trace

elements mercury (Hg), lead (Pb), and selenium (Se)] of

three Ardeidae species, Cattle egret (Bubulcus ibis), Snowy

egret (Egretta thula), and Tricolored heron (E. tricolor),

breeding at Birama Swamp (one of the largest Cuban

wetlands), an area far from the urban and industrial centers

but historically associated with large rice plantations.

Methods

The study was performed in Birama Swamp, which is sit-

uated in the delta of the Cauto River (the longest river in

Cuba), Granma province, (Fig. 1) in the eastern part of the

country (20�320N/77�010W). This swamp covers an area of

67,500 ha, is surrounded by rice fields, and provides

excellent conditions for several bird species, especially

ardeids, to breed.

During the 2001 breeding season (May–July), we col-

lected 5–10 fully grown scapular feathers from 67 2-week-

old nestlings (1 Chick for each nest sampled; all from the

same colony): 20 Tricolored heron, 26 Cattle egret, and 21

Snowy egret (Table 1). These feathers were kept in sealed

plastic zip bags. Samples were processed and analyzed for

trace elements and stable isotopes at the Serveis Cientı́fico

Tècnics of the University of Barcelona, Spain.

Stable Isotope Analysis

Surface contamination was removed by washing feathers

with 0.25 M sodium hydroxide solution. Feathers were

then oven-dried at 60 �C before being grounded into a

fine powder using an impact mill (6750 FREEZER/MILL,

Spex CertiPrep, Metuchen, NJ, USA) that was operated at

liquid nitrogen temperature (-195 �C). We weighed

subsamples of powdered feathers (0.36 mg for d15N and

d13C analysis), placed them into tin buckets, and crimped
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them for combustion for stable isotope analysis by ele-

mental analysis–isotope ratio mass spectrometry using a

Thermo Finnigan EA 1112 Series Flash Elemental Ana-

lyzer (Thermo Scientific, Lakewood, NJ, USA) coupled to

a Delta isotope ratio mass spectrometer by way of a

CONFLO III interface (Thermo Finnigan MAT, Bremen,

Germany).

Stable isotope ratios were expressed in parts per thou-

sand according to the following conventional equation

(Eq. 1):

dX ¼ Rsample=Rstandard

� �
� 1

� �
� 1000; ð1Þ

where X (%) is d13C or d15N; Rsample is the corresponding

ratio of 13C/12C or 15N/14N in the analyzed tissue; and

Fig. 1 Study area map showing

the position of the ardeids

colony in Birama Swamp

Table 1 Descriptive statistics for d15N and d13C, Hg, Pb, and Se concentrations in feathers of nestlings of Cattle egret, Snowy egret, and

Tricolored heron in Birama Swamp, Cuba, 2001

Variables Species N Mean SD CV Minimum Maximum

d13C (%) B. ibis 26 -18.06 1.35 0.07 -20.5 -14.9

E. thula 21 -20.06 1.81 0.09 -22.7 -17.0

E. tricolor 20 -21.08 1.63 0.08 -23.3 -15.4

d15N (%) B. ibis 26 ?11.55 1.23 0.11 8.7 14.8

E. thula 21 ?11.70 0.64 0.05 9.7 12.7

E. tricolor 20 ?11.27 0.76 0.07 10.1 12.9

N Median IQR Minimum Maximum

Hg (ng g-1) B. ibis 26 200.0 69.2 103.7 894.6

E. thula 21 922.5 319.0 156.8 1,450.8

E. tricolor 20 916.5 329.4 483.6 1,303.4

Pb (ng g-1) B. ibis 26 247.7 106.8 103.1 709.3

E. thula 21 279.6 271.6 130.1 4,032.8

E. tricolor 20 296.1 248.7 133.8 768.8

Se (ng g-1) B. ibis 26 1,357.4 376.2 932.1 2,322.4

E. thula 21 1,144.0 193.5 782.2 1,588.2

E. tricolor 20 1,521.7 427.8 1,027.7 2,580.2

Mean arithmetic, SD, and coefficient of variation are shown for isotopes, whereas median and interquartile range are used for trace elements.

N denotes sample size
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Rstandard is the corresponding ratio of 13C/12C or 15N/14N

related to the standard values. Rstandard values for d15N and

d13C were those of Pee Dee Belemnite and atmospheric

nitrogen. We used international standards in each batch of

12 samples to calibrate the system. The precision of mea-

surements were 0.1 % for d13C and 0.3 % for d15N.

Trace-Element Analysis

We performed chemical determination of Se and heavy

metals, such as Hg, and Pb, in feathers according to the

following acid digestion protocol: 0.1 g of each sample

was digested with 2 ml of HNO3 (70 %) and 1 ml of H2O2

(30 %) using a Teflon reactor for 12 h at 90 �C. The

digested product was then diluted in 15 ml of distilled

water, and the determination of Se and heavy metals was

performed using a Optima 6000 ICP-MS (Perkin Elmer,

Norwalk, CT, USA) induction coupled plasma-mass spec-

trometer. Accuracy of the analysis was checked by mea-

suring certified reference tissue (human hair CRM 397 for

feathers analysis). Mean recoveries were 101.9, 97.3, and

105.3 % for total Hg, Se, and Pb, respectively, and no

corrections were applied to the original results. All con-

centrations are expressed in nanograms per gram on a dry-

weight basis.

Statistical Procedures

Before data analysis, we used normal q–q plots to check

the distributional characteristics of the analyzed variables.

Those data that not fit to a normal model were normalized

by logarithmic transformation, and standard parametric

analyses were used. Homogeneity of variances was

checked using Levene’s test. Standard one-way analysis of

variance F test was used to compare results among species,

and Student–Newman–Keuls procedure was used to make

a posteriori comparisons between pairs. Welch’s approach

and Tamhane test were used accordingly when variances

were not homogeneous. We used Pearson’s correlation

coefficient to evaluate the relationship between trace ele-

ments. To explore the relationship between isotopes and Se

or Hg concentrations, we fitted a general linear model with

species as a factor and isotopic values of C and N as

covariates. PASW v18.0 (SPSS Inc., Chicago) statistical

software package was used to carry out data analysis with

a = 0.05.

Results

In the analysis of normality, isotope data showed a rea-

sonable fit to the normal model. Conversely, Se and heavy

metals concentrations showed skewed distributions. The

descriptive statistics for d13C and d15N signatures—as well

trace elements analyzed in feathers of nestlings of Tricol-

ored heron, Cattle egret, and Snowy egret—are listed in

Table 1. We found significant differences among d13C

values (F2,64 = 24.67; p \ 0.001) with all pairwise dif-

ferences being significant. The highest d13C values corre-

sponded to Cattle egret followed by Snowy egret and the

lowest values to Tricolored heron. No significant differ-

ences were found in mean value among the three species

for d15N (F2,64 = 1.10; p = 0.34). The relative variability

of isotopes samples for each species, evaluated through

coefficients of variation, was relatively low (suggesting a

small degree of individual segregation) and ranged

between 7 and 9 % for d13C and 5 and 11 % for d15N

(Table 1).

The relationship between foraging habitat (through

d13C) and trophic level (through d15N) occupied by the

three species confirmed that most individuals sampled used

similar trophic levels. No significant relationship was

found between d13C and d15N, although greater variability

was observed in Cattle egret (Fig. 2).

Hg concentrations in feathers of Tricolored heron and

Snowy egret were similar, but levels were significantly

lower in Cattle egret (F2,64 = 79.88; p \ 0.001) (Fig. 3).

The geometric mean values of this heavy metal in the two

egrets species were four-fold greater then those found in

Cattle egret (95 % CI for the ratio 2.97–5.08). Pb con-

centration showed heterogeneity of variances, with greater

variability among individuals of Snowy egret, but no sig-

nificant differences were found among species

(F2,64 = 1.61; p = 0.21). Se concentration had the highest

values in Tricolored heron and Cattle egret and the lowest

Fig. 2 Differences among species and relationship between d15N and

d13C isotopic values for Cattle egret (white), Snowy egret (light gray),

and Tricolored heron (dark gray) in Birama Swamp, Cuba, 2001

(d13C: F2,64 = 24.67, p \ 0.001; d15N: F2,64 = 1.10, p = 0.34)
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values in Snowy egret with a significant differences

between these two groups (F2,64 = 13.9; p \ 0.001).

There was no significant relationship between Hg and Se

log concentrations in any of the species [Cattle egret

r = 0.18 (p = 0.4); Snowy egret r = 0.05 (p = 0.8); Tri-

colored heron r = 0.30 (p = 0.17)]. A significant and

independent relationship was found when we modeled log-

Hg concentration in relation to the isotopic signals of d15N

and d13C without interaction with the species level (Fig. 4).

Thus, within a particular species, greater Hg levels were

associated with greater d15N values (slope = 0.066,

p = 0.04). This relationship was especially strong in Cattle

egret, the species that presented the wider range for d15N

(Fig. 4).

In the case of general linear models of both Se and Pb,

there was no interaction d15N * d13C and no effect over the

d13C signature; thus, both elements were adjusted for d15N.

The results for Se showed no significant interaction of d15N

by species. Higher mean values of this metal were detected

for Tricolored heron followed by Cattle egret with Snowy

egret showing the lowest mean value. In the case of Pb, we

found an association between d15N and species just for

Snowy egret (F2,67 = 4.97; p = 0.01) with a negative

slope.

Discussion

Wading-bird feeding strategies are broad and are related

with a variety of factors that include prey availability,

foraging behaviors, and habitat characteristics among

others. The results obtained for d13C support reported

differences in relation to foraging area and prey use among

the three Ardeid species. Although Tricolored heron,

Snowy egret, and Cattle egret are top predators (Palmer

et al. 1997; Vander Zanden et al. 2006) and showed similar

d15N values, each of them has a unique position in the

community foraging structure. The lowest d13C values of

Tricolored heron responds to their aquatic habits because

they feed mainly on fishes (Denis and Jiménez 2009). Post

(1990) and Frederick (1997) consider it a typical coastal

piscivores species feeding mainly on poecilids (guppies,

mollies, and platies) and ciprinodontiforms (rivulids, kil-

lifishes, and pupfishes) in all of its distribution range. For

example, in the south center of Cuba,[90 % of the diet of

this species consists of fishes (Acosta et al. 1990a; Denis

and Jiménez 2009). The Snowy egret, with similar values

of d13C signature, can also include crustaceans in its diet

(Parnell et al. 2000). The work on conventional diet

Fig. 4 Hg concentration and d13C (a) and d15N (b) levels in feathers

of nestling Cattle egret (B. ibis, white), Snowy egret (E. thula, light

gray), and Tricolored heron (E. tricolo, dark gray) from Birama

Swamp, Cuba, 2001 (for d15N: slope = 0.066, p = 0.04)

Fig. 3 Distribution of Hg, Pb, and Se concentrations in feathers of

nestling Cattle egret (B. ibis, white), Snowy egret (E. thula, light

gray), and Tricolored heron (E. tricolor, dark gray) from Birama

Swamp, Cuba, 2001. *Outliers (Hg: F2,64 = 79.88, p \ 0.001; Pb:

F2,64 = 1.61, p = 0.21; Se: F2,64 = 13.9, p \ 0.001)
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analysis performed by Denis and Jiménez (2009) for chicks

in the same colony of Birama Swamp found that 99, 85,

and 3.6 % of the number of prey consumed by Tricolored

heron, Snowy egret, and Cattle egret, respectively, came

from aquatic environments. Based on our results for d13C,

i.e., the two species (Tricolored heron and Snowy egret)

that fed mainly on aquatic prey showed strong trophic

similarities, whereas Cattle egret showed a more terrestrial

preference. Acosta et al. (1990a) found the same tendency

based on stomach content analysis in adults of these Ardeid

species that fed in Cuban rice paddies, an alternative for-

aging place.

Some birds shift their diets during breeding season

either in response to physiological needs or to the growth

requirements of their offspring (Newman and Unger 2009).

For example, coastal nesting laughing gulls (Leucopha-

eusatricilla) and White ibis (Eudocimusalbus) shift from a

diet of primarily salt or brackish water preys to freshwater

prey because their nestlings are salt intolerant (Johnston

and Bildstein 1990; Dosch 1997). This can influence dif-

ferent d13C signatures between seasons even in the same

species.

Although no differences in mean d15N values were

found among species, it is important to highlight that these

values respond to distinct strategies. d15N values for Cattle

egret span [6 %, approximately two trophic levels. The

wide dispersion of d15N and d13Cvalues in this species can

be attributed to its generalist and opportunist behavior

(Telfair II 2006). They feed on a wide variety of animal

prey, preferably in dry areas and rice fields, where they

consume mostly terrestrial prey, e.g., orthopterans, adult

and larvae lepidoptera, arachnids, small rodents, and also

some aquatic insects (Acosta et al. 1990b, 1994; Mugica

et al. 2005). These results are consistent with those

reported by Bryan et al. (2012) in individuals of Cattle

egret of the southeastern United States.

In contrast, Snowy egret is mostly an aquatic feeder of a

variety of prey (dragonflies, shrimp, and fish). Neverthe-

less, terrestrial preys (spiders and orthopterans) have also

been found in its diet (Acosta et al. 1990a). We should also

point out that there is a tendency in Tricolored heron and

Snowy egret for certain feeding specialization (Frederick

1997; Parnell et al. 2000). However, frequent intraspecific

variation may be related to physical condition, age, sex, or

hierarchic position at the feeding site.

Because the bioaccumulation process is minimal in

chick feathers, their Hg content is likely to reflect mostly

local dietary inputs (Boncompagni et al. 2003; Sanpera

et al. 2007; Abdennadher et al. 2010). The levels of this

heavy metal differ according to the food source, being

relatively greater for aquatic environments (Chen et al.

2009; Grigal 2002). It is known that inorganic Hg is most

readily converted to methylmercury under anaerobic con-

ditions in marine or freshwater systems, such as wetlands,

lakes, and reservoirs; therefore, Hg can be easily incorpo-

rated in the diet aquatic organism and biomagnify at

greater trophic levels (Rimmer et al. 2005; Driscoll et al.

2007). Still, the Hg values obtained in our study are lower

compared with data from feathers of the same species in

other parts of the world (see Table 2).

In contrast, d13C and d15N values showed an indepen-

dent and significant relationship with Hg, although the

effect did not vary among species. Individuals with more

terrestrial feeding habits tend to show lower Hg levels than

individuals with more aquatic foraging habitat preferences

(see Fig. 4b). We already detected this trend at species

level, where greater Hg values belongs to Tricolored heron

and Snowy egret. Higher Hg levels were observed in the

two species that feed on aquatic prey, which agrees with

the results of Bloom (1992), who found that methylmer-

cury is the dominant form found in fishes, accounting for

C95 % of the total Hg burden. Because bioavailability is

Table 2 Hg, Se, and Pb levels in feathers of nestlings of three Ardeid species in Cuba (this study) and other countries

Species and locality Hg Se Pb References

B. ibis Birama (Cuba) 210.5 1,386.3 249.9 Current study

Taunsa (Pakistan) 410 7,740 Boncompagni et al. (2003)

Arthur Kill, NY (USA) 280 1,166 132 Burger et al. (1992b)

Pea Patch, DE (USA) 970 1,391 1,000 Burger et al. (1992b)

Cairo (Egypt) 228 308 4,289 Burger et al. (1992b)

Aswan (Egypt) 2,887 993 6 Burger et al. (1992b)

Humacao (Puerto Rico) 233 1,236 1,163 Burger et al. (1992b)

E. tricolor Birama (Cuba) 829.6 1,573.5 316.3 Current study

E. thula Birama (Cuba) 806.5 1,111.6 342.8 Current study

Florida (USA) 2,400 Beyer et al. (1997)

Values refer to geometric mean and are expressed as parts per billion (ng g-1) on a dry-weight basis
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greater for birds feeding on aquatic prey, the Hg values

were lower in Cattle egret.

Se is an essential trace element in animals because it

forms part of some enzymatic systems (Spallholz and

Hoffman 2002); however, it becomes toxic at concentra-

tions only slightly greater than the normal level (Heinz

1996; Lam et al. 2005). In our study, the concentrations of

this element were slightly greater in Tricolored heron than

in Snowy egret. Although these two species have similar

diets, they can have different proportional use of each type

of prey. Therefore, feeding on different prey classes in the

aquatic environment can result in different Se levels. Our

results presented more variation in mean values than in

other studies, at least in Cattle egret, with some values in

the literature lower than in Cuba (Table 2).

Pb has been responsible for incidents of acute bird

poisoning, including neurobehavioral effects (Dey et al.

2000; Burger & Gochfeld 2005). In our study, Pb con-

centrations in feathers were similar among species and had

lower values than reported by other studies (Table 2)

(Burger et al. 1992b). These levels fall within background

levels of Pb in wild birds (Clark and Scheuhammer 2003);

therefore, there is probably no risk of lethal and sublethal

effects of this heavy metal in juvenile birds of the Birama

Swamp colony that may impair their survival.

Our results may also be influenced by the fact that the

three species share feeding sites most times, i.e., rice and

other cultures surrounding nesting colonies, mainly those

fields prepared for sowing. In these fields, there is a sudden

increase in prey availability through exposure during

mechanical tilling, and many subterranean prey are

exposed and easily captured with low energy cost (Mugica

et al. 2006). As a result, we can find some individuals with

opportunistic behavior feeding on prey that are not com-

mon in the species diet. Our study period was also limited

to 1 year and is indicative of the climatic conditions

associated with this specific breeding season. It has been

reported that annual differences in rainfall can greatly

affect wetland availability and avian use of this site (Gaines

et al. 2000; Gariboldi et al. 2001).

In general, the species analyzed showed low pollutant

levels compared with natural standards and with data from

other studies. All values obtained are lower than sublethal

values reported for Hg, Se, and Pb (Burger and Gochfeld

1997, 2000; Boncompagni et al. 2003). This is not sur-

prising because in Cuba, many agricultural activities, such

as rice culture, are performed without excessive contami-

nant charge, such as chemical fertilizers, pesticides, and

herbicides. Moreover, Birama Swamp is a natural and

isolated area in remote eastern Cuba far away from sites

with greater industrialization. Our results could be con-

sidered as a baseline for trace-element levels in

conservation efforts in similar habitats, and managers can

use these as a tool to achieve management regulations.
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