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Abstract In this study, Poecilia sphenops (gold mollies)

were chronically exposed to low pH that mimic those

found in natural environments, e.g., rivers and lakes. The

Poecilia sphenops were placed in two separate aquaria with

pH levels of 5 and 6 and presented with a different

chemically mediated behavioral challenge of locating the

food source. The results indicated that under pH 5 the

Poecilia sphenops had difficulties in locating the odor

source of food and at the same time their swimming speed

were greatly reduced. The failure by the Poecilia sphenops

to locate the food source and their reduced swimming

speed can have a negative impact on the survival of the fish

by introducing a high probability of starvation. If the fish

are starved, it means that even their reproduction rate will

be reduced, while the juveniles growth will be arrested

under natural conditions of acidification. In addition to this,

since the fish’s swimming speed is also impaired, it means

that, they will be unable to run away from their predators

once found. The combination of starvation and failure to

run away from predators could negatively impact the gold

mollies severely. Their fitness would be compromised.

Acid rain is an anthropogenic phenomenon in which sulfuric

and nitric acids, derived from oxides of sulfur and nitrogen

produced by industrial activities, precipitate on the earth’s

surface (Ikuta et al. 2003). The rapidly expanding industrial

activities throughout the world due to globalization will

continue to cause a continued increase in the quantity of

these emissions (Japan Environment Agency 1997).

Human changes to global biogeochemical cycles of

nitrogen and sulfur have led to acidic deposition from the

atmosphere (Rodhe et al. 2002; Bouwman et al. 2003;

Holland et al. 2005; Lamarque et al. 2005; Dentener et al.

2006), which has impacted aquatic ecosystems. The

absorption of anthropogenic carbon dioxide and atmo-

spheric sulfur and nitrogen compounds into water bodies

has contributed to the acidification of rivers, lakes, and

oceans (Doney et al. 2007). Acid contamination of water

bodies is contributing to the decline in some aquatic spe-

cies (Blaustein et al. 2003). The mortality rates shown by

some species in experimental tests are not the only way that

water pollution could contribute to the decline of aquatic

organisms. Sublethal levels of several pollutants could

affect vital behavior, indirectly decreasing survival proba-

bilities of individuals and thus producing effects at a

population level (Manuel et al. 2007). Acute exposure to a

low pH directly kills the fish by means of discharge of

sodium and chloride ions from body fluids; aluminum ion

eluded from soil due to low pH exacerbates this effect on

gill membranes (Leivestad and Muniz 1976).

Researchers have focused on the laboratory-determined

lethal concentration effects of contaminants, but in reality,

the levels in their actual environments are sublethal.

Nominal (sublethal) concentrations can have a detrimental

effect on several aspects of the behavior of fish (Saglio and

Trijasse 1998; Scholz et al. 2000). Few researchers have

performed many experiments on the sublethal effects of

acid rain exposure on chemosensory-mediated behavior of

fish. Many fish perceive and respond to chemicals that are

found in their environments. This can be seen in a number

of behaviors, such as locating food (the focus of this study),

avoiding predation, and locating mates (Lemly and Smith

1985).When given an opportunity, fish avoid water of low

pH and high aluminum concentration (Christopher 1999;
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Johnson and Webster 1977; Jones et al. 1985). Other

studies have shown that behavior of aquatic organisms is

influenced by chemical signals such as pheromones (Dulka

and Stacey 1991; Sargent et al. 1998), food odors (Zipple

et al. 1993), and predator odors (Hazlet 1994; Brown and

Smith 1998). If the behavior of fish is influenced by

chemical signals and predator odor, then impairing the

chemoreception of fish will greatly impact their behavior.

In this study, Poecilia sphenops (gold mollies) were

chronically exposed to pH levels that mimic those found in

natural environments, e.g., rivers and lakes, with a view to

investigating the impact of exposure to low pH (pH 5 and

6) on chemosensory behavior of gold mollies.

Materials and Methods

Poecilia sphenops (gold mollies) were purchased from a

commercial supplier and housed in five aquaria

(76 9 31 9 47 cm) marked A, B, C, D, and E. Aquaria

were maintained at a temperature of 24–25�C. Aquaria A

and B contained six fish each, and aquaria C (used as a

control tank), D, and E had two fish each. Aquaria A and B

were a constant source of fish for aquaria C (control), D,

and E (experimental). Fish in aquaria A, B, and C were

kept at pH 7.9, which is the normal pH level of water at

Bowling Green State University. Experimental aquarium D

had a pH of 5, while aquarium E had a pH of 6 during the

testing period. The fish were fed once a day on fish flakes

(Tetrafin goldfish food), 0.20 g per aquarium. The fish

were allowed to acclimatize for 3 weeks before undergoing

experimentation. The experimental water was filtered and

left to stand for 3 days before it was poured into aquaria D

and E.

Experimental Setup

The aquaria were each three-quarters filled with (83 L)

municipal dechlorinated water. Analytical-grade sulfuric

acid (1 N) with 96.3% purity (J. T. Baker) was used to

lower the pH to the desired value of either pH 5 or pH 6. A

buffer, MES (morpholinoethanesulfonic acid), was added

to maintain a constant pH. Two fish were put in aquarium

C (control, pH 7.9), two in aquarium D (experimental, pH

5), and two in E (experimental, pH 6). In each trial a dif-

ferent pair of fish was used. All data obtained in every trial

and for every parameter was for one pair of fish. The food

stimulus was prepared fresh for each trial by homogenizing

2 g of fish flakes in 1 L of filtered tank water. Thereafter,

the food stimulus was strained through a USGS 60-lm-

mesh sieve to remove large pieces of food flakes. Filtered

food stimuli were poured into 1-L bottles with a spout at

the base and were clamped 80 cm above the control and

experimental aquaria. Flow of the food stimuli from the

1-L bottle into the aquaria were regulated by using ma-

nostat Rite flowmeters, set at a constant flow rate of

1.0 mL/s. The fish in each aquarium (C [control] and D and

E [experimental]) were allowed to acclimate for 24 h

before trials began and during this period they were not

fed. The food odor was administered in the center of the

aquarium about 30 cm below the water surface (at X in

Fig. 1). After the acclimatization period, 5-min trials were

begun by opening the manostat flowmeters to allow the

food stimulus into the aquaria (Fig. 1).

Behavioral Data Acquisition

All trials, control and experimental, were recorded using a

Sony HI 8-mm videocamera, which was mounted a meter

above the aquaria. Spatial parameters were established to

determine changes in the behavior of the fish. These

parameters were swimming forward (i.e., swimming of the

fish toward the food odor source), swimming backward

(swimming movements of the fish away from the food odor

source), stopping (i.e., when the fish remained motionless),

stopping right on food (i.e., when the fish were observed to

stop directly on the food odor source in an apparent attempt

to eat), swimming directly on food (without zigzag

swimming), the time taken in each trial for the fish to locate

the food source for the first time, and the fish’s swimming

speed. Movements were quantified by dividing the distance

the fish covered in swimming by the time it spent to swim

from one point to another in front of or away from the food

odor source for each frame of video analyzed. Thus the

distance covered by the fish while swimming was calcu-

lated for each segment of the path. The distance per second

values were then averaged for each trial, giving a mean for

video
camera Dissolved Filtered

Food Solution

Flow Meter

31cm
76cm

47cm

Fig. 1 Diagram of the setup of aquaria during trials. X: the point at

which the food odor source was found
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each parameter. Swimming toward the odor source can be

a positive or negative vector (Moore et al. 1991; Moore

and Grills 1999). In this food-oriented experiment, fish that

came within 5 cm of the flow input were deemed to have

been successful in locating the food odor source.

The time the fish took to cover the distance for each

parameter in every trial was calculated as seconds. The

calculated data were statistically analyzed using two-way

MANOVA and differences between parameters were

obtained using an LSD post hoc comparison test (Zar 1999)

(STATISTICA 5.1 97; Statsoft, Tulsa, OK). Data were

analyzed independently for each pH value, and differ-

ences were considered significant at probabilities \5%

(p \ 0.05).

The swimming speed was calculated using a peak Motus

Bioengineering motion analysis system (to obtain X and Y

spatial coordinates of the fish’s movement), 8 s before the

food source was introduced, to ensure that the fish’s

swimming speed was not affected by the presence of food.

The percentage success in locating the odor source was

analyzed using a chi-square test.

Results

Backward Swimming

Fish in the pH 5 treatment spent significantly more time

swimming away from the food odor source compared to

fish in the control treatment and fish in the pH 6 treatment

(Fig. 2; p \ 0.05, two-way MANOVA). Fish in the pH 5

treatment spent 19.1 ± 9.06 (SE) s swimming away from

the odor source, whereas fish in the control treatment spent

10.58 ± 1.21 s) swimming away from the food odor

source (Fig. 2).

Forward Swimming

Fish in both treatments (pH 5 and pH 6) spent the same

time swimming toward the food odor source (Fig. 3). Fish

in the pH 5 treatment spent 14.35 ± 2.91 (SE) s swimming

toward the food odor source, whereas fish in the control

and pH 6 treatment spent 15.27 ± 1.73 and 8.46 ± 1.15 s,

respectively, swimming forward in front of the food odor

source (Fig. 3).

Stopping/Remaining Motionless

Fish in the pH 5 treatment spent significantly more time

stopping compared to fish in the control treatment and

fish in the pH 6 treatment (Fig. 4; p \ 0.05, two-way

MANOVA). Fish in the pH 5 treatment spent 29.76 ±

17.54 (SE) s remaining in one position, whereas fish in the

control and pH 6 treatments spent 7.60 ± 4.21 and

6.8 ± 3.40 s, respectively, motionless (Fig. 4).

Stopping on Food

Fish in the pH 5 treatment spent almost the same time

stopping on the food odor source as fish in the control

treatment and the pH 6 treatment (Fig. 5). Fish in the pH 5

treatment spent 7.1 ± 6.26 (SE) s stopping on food,

whereas fish in the control and pH 6 treatments spent

6.85 ± 1.63 and 9.05 ± 1.53 s, respectively, stopping on

food (Fig. 5).

Swimming on Food

Fish in the pH 5 treatment spent significantly less time

swimming on the food odor source than fish in the control

and the pH 6 treatments (Fig. 6; p \ 0.05, two-way MA-

NOVA). Fish in the pH 5 treatment spent 3.0 ± 1.59 (SE) s
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Fig. 2 Average (?SE) time spent swimming backward by mollies in

the control (black) and experimental (gray) treatments when stimu-

lated by a food odor source. n = 10 mollies for each trial
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Fig. 3 Average (?SE) time spent swimming forward by mollies in

the control (black) and experimental (gray) treatments when stimu-

lated by a food odor source. n = 10 mollies for each trial
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swimming on the food odor source, whereas fish in the

control and the pH 6 treatments spent 8.33 ± 1.17 and

7.77 ± 1.41 s swimming on the food odor source (Fig. 6).

Time Taken to Locate the Food Odor Source

Fish in the pH 5 treatment took significantly more time to

locate the food odor source compared to fish in the control

treatment and the pH 6 treatment (Fig. 7; p \ 0.0001, two-

way MANOVA).Fish in the pH 5 treatment spent

279.8 ± 15.32 (SE) s locating the food odor source,

whereas fish in the control and the pH 6 treatments spent

15.27 ± 1.73 and 8.46 ± 1.15 s, respectively, to locate the

food odor source (Fig. 7).

Success in Locating the Odor Source

Success in locating the odor source was determined by

observing the fish in each trial that stopped right on the

food odor source. In the pH 6 treatment (control and

experimental), all 10 pairs of fish (100%) located the food

odor source, but in the pH 5 treatment, only 2 of 10 pairs of

fish (20%) located the food odor source (Fig. 8).

Swimming Speed

Fish in the control group had an average swimming speed

of 6.0 ± 1.43 (SE) cm/s. Fish in the pH 6 treatment had an

average swimming speed of 3.7 ± 0.63 cm/s, while fish in

the pH 5 treatment had an average swimming speed of
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Fig. 4 Average (?SE) time spent stopped by mollies in the control

(black) and experimental (gray) treatments when stimulated by a food

odor source. n = 10 mollies for each trial. *Significant difference

using a two-way MANOVA: p \ 0.05
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Fig. 5 Average (?SE) time spent stopped on food odor source by

mollies in the control (black) and experimental (gray) treatments

when stimulated by a food odor source. n = 10 mollies for each trial
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Fig. 6 Average (?SE) time spent swimming on food by mollies in

the control (black) and experimental (gray) treatments when stimu-

lated by a food odor source. n = 10 mollies for each trial
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Fig. 7 Average (?SE) time taken to locate the food odor source by

mollies in the control (black) and experimental (gray) treatments

when stimulated by a food odor source. n = 10 mollies for each trial.

*Significant difference using a two-way MANOVA: p \ 0.001
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2.2 ± 0.52 cm/s. This shows that experimental pH levels

of both 5 and 6 affected swimming speed (Fig. 9).

Discussion

Acidification significantly affected the chemosensory

behavior of Poecilia sphenops. The results of this study

indicate two important findings. First, the gold mollies’

ability to detect and respond to a chemical stimulus of food

was impaired. The results show that the fish took more time

to find the food odor source. In addition, the fish found the

food less often in the pH 5 treatment than in the other

treatments. The pH 5 treatment negatively impacted the

chemosensory behavior of the fish toward the food odor

source. The results demonstrate that under sublethal acidic

conditions, the ability of gold mollies to acquire recogni-

tion of food odor from chemoreception was impaired. The

results agree with the findings of Leduc et al. (2007).

Second, the gold mollies’ swimming speed was reduced

in the lower-pH treatments (pH 5), the average swimming

speed per fish was much lower than in the control treat-

ment. This explains why, in the pH 5 treatment, the fish

took a longer period of time on average to locate the food

odor source than in the pH 6 and control treatments. Fish

exposed to a conspecific alarm signal or predator odor stop

feeding, decrease their swimming speed, and avoid the area

where the odor is being emitted (Chivers et al. 1995;

Brown and Smith 1998; Chivers and Brown 2005). This

means that exposure of Poecilia sphenops to sublethal

acidification must have caused an impairment in the ability

of the fish to locate the food odor source in time.

A strong response to the feeding stimulus and swimming

ability were almost entirely eliminated upon exposure to

acidified water, pH 5. Variability in food intake is con-

sidered a primary factor governing fecundity for many

different fish (Hoar and Randall 1969). The impairment of

foraging demonstrated by the reduced chemosensory abil-

ity would have a negative impact on the ecology of these

fish.

Studies on rainbow trout (Salmo gardineri) and brown

trout (Salmo trutta) have shown that a reduction in pH of

water bathing the olfactory epithelium from 6.5 to 5.5 can

completely inhibit a normally strong neuroelectrical

response to amino acids within 10 min (Thommesen 1978,

1983; Moore 1994). The sensory cells of olfaction and

gustation are in constant contact with the aquatic media

and can also be inhibited by low-pH exposure (Brown et al.

1982; Klaprat et al. 1992; Kasumyan and Doving 2003). It

has been shown that acidic pollutants affect fish taste

reception by both destroying the taste buds and reducing

the sensitivity to the taste stimuli (Klaprat et al. 1992). A

neurosensory impairment of the fish could affect the sys-

tems used to detect potential threats and to forage and feed

(Wolf and Moore 2002). Damaging the fish’s ability to

swim fast and their ability to respond to odor would create

a higher probability of their being preyed on. The ability to

detect, avoid, and escape predators is of prime importance

for the survival of fish (Sih 1987; Lima and Dill 1990). The

impairment of normal behavioral functions of fish exposed

to acidic conditions may compromise their ability to adapt

and survive in natural systems (Buckler et al. 1995). Sub-

lethal acidic conditions also affect the physiological

processes in fish, including reproduction (Klaprat et al.

1992; Ikuta et al. 2000; Ikuta and Kitamura 1995; Parker

and McKeown 1986; Weiner et al. 1986; Tam et al. 1990).

If fish’s reproduction is affected, this would lead to a
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reduction in recruitment and a decline in fish fitness. Fish

need to be able to detect conspecific predators that occur in

their habitat and be able to escape once given the chance to

do so. The fish in the pH 5 treatment spent more time

searching for food or took longer to find the food odor

source. When fish take longer to locate the food odor

source, they spend more time exposed to potential threats

or predators (Wolf and Moore 2002; Lemly and Smith

1985; Chivers and Smith 1998; Smith 1999). It is known

that predator avoidance in the estuarine environment is

affected in physiologically stressed fish (smolts) (Jarvi

1989; Handeland et al. 1996; Mccormick et al. 1998) and

that estuarine movements are delayed (Magee et al. 2003).

This would definitely have a negative impact on the life-

style and population of gold mollies.

Low pH significantly altered the feeding and swimming

behavior of Poecilia sphenops. In nature, foraging or

feeding includes a series of activities including searching,

capture, acceptance, or rejection (Lemly and Smith 1985).

All these processes constitute the feeding behavior in most

species. Chemical stimuli are often used at different levels

during an organism’s life (Lemly and Smith 1985). A low

threshold response to food odor in the water may initiate a

visual search and capture response. Chemicals from food in

the mouth may lead to the food’s being accepted and then

swallowed or rejected and spat out.

The results of this study reveal that the first two pro-

cesses of feeding behavior (search and capture) would

suffer greatly as a result of impaired chemoreceptors.

Interference with chemoreceptors implies interference with

other chemically mediated behavior patterns such as mat-

ing pheromones, predator odors (or recognition of

individual conspecific and predators), homing behavior,

and orientation (Lemly and Smith 1985). Previous research

on sublethal exposure to pollutants has suggested that

sensory impairment could have occurred as a result of

inhibition of neurotransmitter receptors necessary for pro-

cessing of information (Moore and Waring 1996; Hanazato

1999; Scholz et al. 2000). In this case a neurosensory

impairment could have occurred which affected the system

used to detect food and foraging. Moore (1994) showed

that exposure of salmon to water of pH 5.5 significantly

reduced the ability of the olfactory epithelium to detect

relevant odors. The results show that a short exposure to

water with a low pH can induce drastic changes in the

ability of fish to respond to the smell of substances (Ka-

sumyan and Sidorov 1995). Such findings might explain

the misbalance of biotic communities in acidified water.

Acid rain is occurring at sublethal concentrations, but

biological effects that lethal-concentration values do not

address still exist (Shebra et al. 2000). These results also

reveal that human-induced environmental change due to

acidification may affect organisms in ways that are not

immediately apparent. In addition, despite the obvious effect

at pH 5, in this experiment pH 6 did not show a significant

difference from the control. This does not mean that pH 6 has

no effect; it probably would have impacted the gold mollies

if they had been kept in that environment a bit longer.
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