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Abstract Tissue-specific responses against oxidative

stress and lipid peroxidation were analyzed in wild adult

mullet (Liza saliens) caught in the Portuguese coastal

lagoon Esmoriz-Paramos. Parameters measured were cata-

lase (CAT), superoxide dismutase (SOD), and glutathione-

S-transferase (GST) activities in liver and gill tissues and

lipid peroxidation. The enzyme activities were related to

gill histopathological alterations, as well as to heavy metals

(Cu and Zn) concentrations in these tissues. Gill epithelium

of L. saliens showed histological alterations, such as epi-

thelial hyperplasia resulting in lamellar fusion, epithelial

lifting, vasodilatation, and lamellar aneurisms, with a

prevalence ranging from 62% to 92%. The highest Cu

content was found in liver (379 mg�kg-1), while the highest

Zn content was observed in gill (119 mg�kg-1). SOD and

CAT activities showed differences between gill and liver.

The highest activities found were SOD in gill (10.1 U/mg

protein) and CAT in liver (39.2 mmol/min/mg protein). In

gill, CAT activity was negatively related to both Cu levels

and gill lifting, while a positive relationship was found

between SOD activity and fish age. The positive relation-

ship between Cu and CAT activity in liver suggests that an

increase in metabolic level is related to Cu-induced oxida-

tive stress. The decrease in gill CAT activity can be due to

osmotic stress caused by damaged gill epithelium. CAT

activity in liver is an appropriate biomarker of oxidative

stress in the Esmoriz-Paramos lagoon.

The effects of pollutants in fish can be properly evaluated if

bioaccumulation is complemented with other biomarkers.

Contaminants usually appear in the environment as very

complex mixtures that can cause interactive effects, thus

biomarkers offer an integrated measurement of these effects

(Orbea et al. 2002; Ferreira et al. 2005). Among pollutants

that can accumulate in fish, heavy metals are of great interest

because they could trigger oxidative stress in fish (Bláha

et al. 2004; Deviller et al. 2005), by reactive oxygen species

(ROS) generation (Durmaz et al. 2006; Lesser 2006).

Several studies revealed that exposure to contaminants

in aquatic ecosystems can enhance intracellular formation

of ROS, which could cause oxidative damage to biological

systems (Livingstone 2003; Ferreira et al. 2005). ROS can

be detoxified by an enzymatic defense system, which

includes superoxide dismutase (SOD), catalase (CAT), and

glutathione peroxidase (Halliwell and Gutteridge 1989).

SOD is the enzyme that catalyses dismutation of the

superoxide anion to O2 and H2O2, and CAT reacts with

H2O2 to form water and molecular oxygen (Livingstone
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2001; Lushchak et al. 2001; Ozmen et al. 2004). Gluta-

thione-S-transferases form a family of multifunctional

phase II biotransformation enzymes, present in cytosol of

most cells, that catalyze the conjugation of glutathione to a

variety of compounds (Livingstone 2003).

Recent data indicate that changes in the levels of anti-

oxidant enzyme activities can be used as contamination

biomarkers in different aquatic organisms (Livingstone

2003; Regoli et al. 2004). Lipid peroxidation is one of the

main manifestations of oxidative damage induced by var-

ious compounds, including metals (Ercal et al. 2001;

Livingstone 2003), and it has also been used as a biomarker

of pollution (Sayeed et al. 2003; Bláha et al. 2004; Alm-

roth et al. 2005).

The Esmoriz-Paramos is a coastal lagoon on the

Northwest coast of Portugal, which receives untreated

industrial and domestic sewage that promotes a decline in

water and sediment quality and a decrease in biodiversity.

Heavy metals can be up-taken by fish from water, sedi-

ments, and suspended particulate material (Hardersen and

Wratten 1998) and have been an important source of

contamination in this ecosystem.

The most used vertebrate model in ecotoxicological

studies is fish, which allows the evaluation of antioxidant

responses in tissues and the hepatic oxidative damage

caused by metal contamination (Orbea et al. 2002). The

liver plays a primary role in the metabolism of xenobiotic

compounds and it is a detoxification organ essential for

excretion of toxic substances in fish (Hinton and Laurén

1990; Figueiredo-Fernandes et al. 2006a). Gill is the

osmoregulatory surface tissue and it is the primary site of

uptake of waterborne pollutants (McDonald and Wood

1993; Monteiro et al. 2005). The leaping grey mullet (Liza

saliens) is the dominant species in the lagoon that comes

into contact with water and sediment pollutants, through its

detritus feeding behavior. Previous studies have shown Cu

and Zn bioaccumulation in liver and gill of L. saliens from

the lagoon and an increase in Zn in gill and Cu in both

tissues that were age dependent (Fernandes et al. 2007a).

The aim of the present study was to determine the

antioxidant enzyme activities in liver and gill of L. saliens

from the Esmoriz-Paramos coastal lagoon and lipid per-

oxidation as a measurement of liver oxidative damage.

Relationships among enzyme activities, gill histopatholo-

gical alterations, and metal levels were also investigated.

Materials and Methods

Study Area

The Esmoriz-Paramos lagoon, 1500 m long (N–S), 700 m

wide (W–E), and 2.5 m in maximum depth, with a

catchment area of 78 km2, is located on the northwest coast

of Portugal (Almeida 1998). It receives two main water

inflows, one from the north and another from the south, and

occasional effluents from local housing and small industry.

The lagoon communication with the sea is established

through a nonpermanent channel with small dimensions,

particularly on the shoreline. Major inputs of contaminants

into the lagoon are industrial or municipal, mostly

untreated sewage from its tributaries and runoff from

contaminated soils and surfaces (SIMRIA 2002).

Fish Sampling

Liza saliens were collected during April 2004 in the

Esmoriz-Paramos lagoon, using a gill net. Mullets from the

sea, 14 km northward from the lagoon, were also caught

during the same period, and CAT liver and gill activities

were measured and compared with equivalent activities in

lagoon mullets. Fish were anesthetized, and gill and liver

samples were removed, frozen in liquid nitrogen, and

stored at –80�C, until biochemical assay. Gill samples were

also randomly taken for histopathological examination and

metal analyses. Fish age was determined by reading the

annual ring structure of scales removed from the opercular

region (Muir and Den Haas 2003).

Biochemical Analysis

Livers were homogenized in ice-cold 50 mM sodium

phosphate buffer, 0.1 mM Na2EDTA, pH 7.8. Gills were

homogenized in ice-cold 50 mM imidazol buffer, 150 mM

sucrose, 10 mM Na2EDTA, pH 7.3 (homogenizer T 1500;

Ystral GmH). Mitochondrial fractions were obtained after

centrifugation at 15,000 g for 20 min at 4�C. SOD (EC

1.15.1.1) activity was determined by an indirect method

involving the inhibition of cytochrome c reduction and

spectrophotometric reading at 550 nm (McCord and

Fridovich 1969). The concentrations of the reactives were

50 mM buffer, pH 7.8, 50 lM hypoxanthine, 1.98 mU/mL

xanthine oxidase, and 10 lM cytochrome c (Ferreira et al.

2005). Enzyme activity is expressed as units per milligram

of protein (U/mg pr), where 1 U corresponds to 50%

inhibition of the xantine oxidase reaction.

GST (EC. 2.5.1.18) activity was determined according

to Habig et al. (1974) adapted to microplate by Frasco and

Guilhermino (2002). Concentrations of the reactive were as

follows: glutathione (GSH), 10 mM in 0.1 M buffer, pH

6.5, and 1-chloro-2,4-dinitrobenzene (CDNB), 60 mM in

ethanol, prepared just before the assay. The reaction mix-

ture was in proportions of 4.95 mL (buffer):0.9 mL (GSH

solution):0.15 mL (CDNB solution) (Ferreira et al. 2005).
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GST activity was measured every 20 s in a spectropho-

tometer at 340 nm during the first 5 min and quantified

using the period of linear change in absorbance. Enzyme

activity is expressed as nanomoles per minute per milli-

gram of protein.

CAT (EC 1.11.1.6) activity was determined by mea-

suring the consumption of H2O2 monitored

spectrophotometrically at 240 nm, according to Aebi

(1974). The reaction volume was 1 mL and contained

67.5 mM potassium phosphate buffer, pH 7.5, and

12.5 mM H2O2 (Ferreira et al. 2005). CAT activity is

expressed as millimoles of decomposed hydrogen peroxide

per minute per milligram of protein.

Oxidative Damage

The peroxidative damage of lipids creates free radicals that

result in malondialdehyde (MDA) production, which was

assessed by the thiobarbituric acid method (TBARS)

adapted to microplate (Ferreira et al. 2005). Absorbance

was measured at 532 nm and the concentration of MDA is

expressed as nanomoles of MDA per gram of liver. Total

protein was measured by the Lowry method adapted to

microplate (Ferreira et al. 2005).

Tissue Metal Content

Gill soft tissue was lyophilized and digested overnight with

nitric acid (superpure grade) at 60�C. The digested samples

were analyzed in a graphite furnace atomic absorption

spectrometer (UNICAMP 939 AA-GF90). Blank determi-

nations were done using the same procedure with Milli-

Q50 water. Results are expressed as milligrams per kilo-

gram dry weight. Analytical accuracy and precision were

checked using certified reference materials, i.e., DOLT-3

and DORM-2 (National Research Council of Canada).

Light Microscopy

Gill tissue previously fixed in buffered formalin (10%)

fluid for 48 h was dehydrated in graded ethanol concen-

trations and embedded in paraffin wax. Sagittal sections

(5 lm thick) were stained with hematoxylin/eosin (H&E).

Changes observed in gill tissue were analyzed under a

Nikon light microscope.

A score system was used to rank the severity and

extension of the gill lesions, according to Fernandes et al.

(2007b). The severity of the lesions was scored as follows:

0 = no pathological alterations, 1 = focal mild pathological

alterations, 2 = moderate pathological alterations, 3 =

severe pathological alterations. The extent of affected

lamellae was scored as follows: 0 = 0%, 1 = B 10%,

2 = 11%–49%, 3 = 50%–69%, 4 = C70%. For each fish

and lesion, the product severity 9 extension was calcu-

lated to establish an assessment value per gill filament

varying between 1 and 12.

Statistical Analysis

Data are presented as mean ± standard deviation. Statis-

tical calculations were performed with SPSS software.

Differences among metals in tissues, enzymatic activities,

and assessment values of gill lesions were tested using the

Mann-Whitney U-test and the relationships between them

were tested with Spearman correlations. A 5% significance

level was employed throughout.

Results

The ranges of age and length of fish collected from the

lagoon were 7 to 13 years and 25 to 49 cm, respectively.

Gill lesion prevalence and gill histopathological assess-

ment are presented in Table 1. Gill epithelium of L. saliens

showed several histopathologic alterations; 77% of the fish

presented three or four lesions. The main lesions observed

were vasodilatation and epithelial hyperplasia, occasionally

resulting in lamellar fusion, both present in 92% of fish.

Epithelial lifting and lamellar capillary aneurisms were

observed in 69% and 62% of fish, respectively. These

histological alterations were observed at varying degrees of

extension and severity. Hyperplasia and vasodilatation

were scored as the maximum severity (grade 3), whereas

the maximum extent (grade 4) was scored for hyperplasia

and lifting. The highest mean assessment value of lesion

was found for hyperplasia, followed by lifting, while the

lowest was found for aneurisms and vasodilatation.

Gill and liver metal contents in L. saliens from the

lagoon are summarized in Table 2. The highest Cu content

was found in liver (p \ 0.01), ranging from 125 to

547 mg�kg-1, and the highest Zn content was observed in

Table 1 Lesion prevalence and histopathologic assessment in gill of

Liza saliens from Esmoriz-Paramos lagoon

Lesion Prevalence (%) Lesion assessmenta

Aneurysm 62 1.23 ± 1.73

Hyperplasia 92 3.17 ± 2.72

Lifting 69 2.37 ± 3.66

Vasodilation 92 1.76 ± 1.54

a Mean ± SD
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gill (p \ 0.05), ranging from 88 to 134 mg�kg-1. Branchial

and hepatic enzyme activities and lipid peroxidation in fish

from the lagoon are presented in Table 3. This table also

reports gill and liver CAT activities in fish from the sea.

Mullets collected in the lagoon showed similar GST

activity levels in liver and in gill, a higher CAT activity in

liver than in gill (p \ 0.01), and a higher SOD activity in

gill than in liver (p \ 0.01). Lipid peroxidation and total

protein content in liver ranged from 9 to 38 nmol MDA/g

and from 90 to 266 mg/g, respectively.

Fish from the sea (22–35 cm long) showed lower liver

CAT activity compared with lagoon fish (p = 0.03). In

contrast, gill CAT activity was higher in fish from the sea.

A negative correlation between gill CAT activity and both

copper levels and lifting assessment value was found in fish

from the lagoon (Fig. 1). Similar results were found between

gill CAT activity and severity of lifting (r = –0.618,

p = 0.032). Also, in gill, a positive correlation was found

between SOD and GST activities, as well as between SOD

activity and fish age (Fig. 1). Figure 2 shows the two sig-

nificant positive correlations between liver Cu and CAT

activity and between liver Cu and lipid peroxidation.

Negative correlations between GST activity and lipid per-

oxidation and between total liver protein content and fish

length (Fig. 2) and fish age (r = -0.572, p = 0.04) were

observed. No significant relationship was observed with Zn.

Discussion

Oxidative stress is defined as an adverse reaction resulting

from the exposure of molecules, cells, or tissues to excess

levels of free radical oxidants, especially ROS (Li et al.

2005; Lesser 2006). ROS produced in biological systems

are detoxified by antioxidant defenses. One of the features

of these antioxidant enzymes is their induction under

conditions of oxidative stress, and such induction can be an

important adaptation to pollutant-induced stress (Living-

stone 2001). It is generally recognized that ROS production

is associated with exposure to several metals (Ercal et al.

2001; Livingstone 2003), which can lead to induction of

certain antioxidant enzymes (Ozmen et al. 2004).

This study reveals tissue-specific changes in SOD and

CAT activities. However, no significant differences were

observed between gill and liver GST activities. Induction

of antioxidant enzymes is a common mechanism of adap-

tive response in fish that vary among tissues (Oruc et al.

2004). CAT activity was high in liver, where the Cu con-

tent was high. Paris-Palacios et al. (2000) reported an

increase in hepatic CAT activity in fish, Brachydanio rerio,

exposed to sublethal concentrations of Cu. The hepatic

CAT activity in fish from the Esmoriz-Paramos lagoon was

higher than in fish from the sea and higher than that

reported in Mugil cephalus caught in polluted environ-

ments (Orbea et al. 2002; Ferreira, et al. 2005). The high

CAT activity may be a response to increased H2O2 pro-

duction (Ritola et al. 2002), to protect biological systems

against ROS (Romeo et al. 2000). The high hepatic CAT

activity found in this work suggests that a metabolic

increase was triggered to cope with Cu-induced oxidative

stress. In contrast, CAT activity in gill was lower in fish

from the lagoon compared with fish from the sea and was

negatively correlated with Cu concentrations and gill lift-

ing. The lifting of filamentar and lamellar epithelium

constitutes a typical defense mechanism that increases

the diffusion distance between blood and waterborne

pollutants. Previous studies revealed osmoregulatory dis-

turbances as a consequence of gill permeability and cell

integrity changes (Fernandes et al. 2007c) that could have

affected CAT activity.

SODs are a group of metalloenzymes that plays a

crucial antioxidant role and constitutes a defense system

against the natural or chemically induced production of

ROS (Roche and Bogé 1996; Livingstone 2001). Several

studies using different species exposed to several pollu-

tants showed an increase in SOD activity (Palace et al.

1996; Figueiredo-Fernandes et al. 2006b), namely, when

fish were exposed to Cu (Sanchez et al. 2005). The

induction of hepatic SOD activity was also described in

some studies carried out in field polluted sites (Deviller

et al. 2005; Ferreira et al. 2005). Liver SOD activity in

Table 2 Copper and zinc concentrations in liver and gill of Liza
saliens from Esmoriz-Paramos lagoon

Metal and tissue mg�kg -1 dry wta

Cu

Liver 378.9 ± 122.5

Gill 9.6 ± 1.6

Zn

Liver 99.9 ± 30.9

Gill 118.8 ± 26.5

a Mean ± SD

Table 3 Enzymatic activities, liver lipid peroxidation, and liver

protein levels in Liza saliens from Esmoriz-Paramos lagoon and the

sea

Parameter Liver Gill

Enzyme

activity

GST (nmol/min/mg pr) 85.8 ± 33.3 91.4 ± 33.00

SOD (U/mg pr) 3.8 ± 0.9 10.1 ± 4.3

CAT (mmol/min/mg pr)

Lagoon 39.2 ± 16.6 2.9 ± 2.6

Sea [21.6 ± 5.3] [9.8 ± 4.5]

Lipid peroxidation (nmol MDA/g liver) 18.5 ± 7.5

Protein (mg/g liver) 146.1 ± 49.7

Note. pr, protein. Data are presented as mean ± SD
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our study was low compared to that in M. cephalus

caught in polluted environments (Orbea et al. 2002;

Ferreira et al. 2005). These results suggest that the

decrease in hepatic SOD activity could be due to the high

copper content found in livers of fish from the lagoon.

Previous experimental studies in Oreochromis niloticus

also reported decreased SOD activity in liver (Peixoto

et al. 2006). The increase in hepatic CAT activity and the

decrease in hepatic SOD activity agreed with the results

observed in Geophagus brasiliensis caught in a polluted

area (Filho et al. 2001). Porte et al. (2002) also reported

an increase in CAT activity and that there is no rela-

tionship between pollutants and hepatic SOD activity in

wild mullet, Mullus barbatus.

A positive relationship between heavy metals (Cu and

Zn) in gill and fish age in L. saliens caught in the Esmoriz-

Paramos lagoon was demonstrated in a previous study

(Fernandes et al. 2007a). An increase in SOD gill activity

with fish age was found in the present work, and the higher

SOD activity in gill than in liver could be an indicator of

compensatory tissue response to face metal exposure. Oruc

et al. (2004) also showed higher SOD activity in gill

compared with other tissues as a result of pollutant

exposure.

The conjugation of phase I metabolites with GSH is

catalyzed by GST, one of the most widely studied con-

jugation enzymes in vertebrates. GST is involved in

detoxification and excretion of foreign compounds and it

may also show peroxidase activity (Paris-Palacios et al.

2000; Chung et al. 2004). This might explain the negative

relationship between hepatic GST activity and lipid per-

oxidation found in the present study. The effects of

pollutants on GST activity have been somewhat incon-

clusive, showing induction, no change, or inhibition of

this enzyme (Stephensen et al. 2000). Some studies

showed that exposure to pollutants can lead to an increase

of hepatic GST activity (Sen and Kirikbakan 2004;

Camargo and Martinez 2006), whereas others reported no

variation (Porte et al. 2002) with respect to copper

(Sanchez et al. 2005) and even decreased activity (Filho

et al. 2001). Martinez-Lara et al. (1996) found a decrease

in GST activity in gilthead seabream (Sparus aurata)

exposed to pollutants and suggested that these results

could be due to inactivation by ROS generated by pol-

lutants. The values of hepatic GST activity of L. saliens

caught in a reference site in Turkey (Sen and Kirikbakan

2004) are similar to those found in the present work. In

addition, hepatic GST activities in M. cephalus collected
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in a polluted site (Ferreira et al. 2006) were high com-

pared to our data. A positive relationship between gill

SOD and gill GST activities was found, which may reflect

a reinforced response against oxidative stress in this

organ.

No relationship between Zn content and oxidative stress

enzymes activities was found in gill or liver of L. saliens.

This could be related to the fact that Zn is apparently

regulated in liver and its increase in gill over time is kept

within a range (Fernandes et al. 2007a).

Malondialdehyde (MDA) production is a well-known

oxidation product of polyunsaturated fatty acids, influenc-

ing cell membrane fluidity as well as the integrity of

biomolecules (Ercal et al. 2001; Almroth et al. 2005), and

is an important indicator of lipid peroxidation (Freeman

and Crapo 1981). The present study revealed a positive

relationship between lipid peroxidation measured as MDA

and Cu liver content. The induction of hepatic lipid per-

oxidation caused by chronic dietary exposure to Cu was

confirmed in grey mullet Chelon labrosus (Baker et al.

1998). Our results suggest that antioxidant enzymes were

not able to prevent the hepatic lipid peroxidation induced

by chronic metal exposure.

The decrease in hepatic total protein was related to fish

age and fish length, suggesting that it is age dependent.

These data can be related to a metabolic activity reduction

in older fish, as well as protein degradation due to ROS

production.

In conclusion, the present study revealed that fish

developed tissue-specific enzyme responses, such as

increase in CAT activity in liver and SOD activity in gill,

to cope with pollution exposure. CAT activity in liver is an

appropriate biomarker of oxidative stress against copper

exposure in the Esmoriz/Paramos lagoon. The fact that L.

saliens lives in the lagoon for its entire life span enabled

long-term evaluation of the stress responses, which are

more realistic than acute laboratory toxicity tests. Fur-

thermore, data obtained in this study may be useful to

compare biomarker fish responses from other polluted

sites.
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triazinas em fase sólida e identificação por cromatografia lı́quida

de alta eficiência com detecção por Diodo Array. MSc thesis,

ICBAS, Oporto University, Portugal

Almroth BC, Sturve J, Berglund A, Förlin L (2005) Oxidative damage

in eelpout (Zoarces viviparous), measured as protein carbonyls

and TBARS, as biomarkers. Aquat Toxicol 73:171–180

Baker RTM, Handy RD, Davies SJ, Snook JC (1998) Chronic dietary

exposure to copper affects growth, tissue lipid peroxidation, and

metal composition of the grey mullet, Chelon labrosus. Mar

Environ Res 45(4/5):357–365
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