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Abstract. Within their aquatic habitats, larval amphibians are
often subjected to multiple natural and anthropic stressors.
Among these, predation and waterborne pollution represent two
types of stressing factor that frequently co-occur. In this con-
nection, the present laboratory studywas designed to investigate
the effects of amitrole, a commonly used triazole herbicide, on
the predator–prey relationship between common frog tadpoles
(Rana temporaria) and larval spotted salamander (Salamandra
salamandra). Tadpoleswere exposed for 3 days to 0, 0.01, 0.1, 1,
and 10 mg/L amitrole, either in the absence or in the presence of
larval salamanders. Tadpole behavior (refuge use, movements)
was monitored every day, and the predation efficiency was as-
sessed at the end of the experiment by counting the number of
surviving tadpoles. In the absence of the predator, amitrole-
exposed tadpoles (at 0.01, 0.1, and 1 mg/L) increased their ref-
uge use and decreased their rate of movements. In the presence
of the predator, amitrole contamination did not affect tadpole
behavior, except on the first day, where tadpoles exposed to 10
mg/Lwere found to be significantly more active than unexposed
control tadpoles. Throughout the experiment, control tadpoles
were the only group to show significant reductions of activity
and visibility in response to the predator�s presence. In contrast,
tadpoles exposed to 0.01 and 0.1 mg/L amitrole increased their
refuge use in response to the predator, whereas their rate of
movements remained unaffected. Furthermore, exposures of
tadpoles to the two highest amitrole concentrations (1 and 10
mg/L) resulted in the loss of both behavioral responses to the
predator�s presence. Interestingly, the lack of antipredator
behavior in amitrole-exposed tadpoles did not enhance their
vulnerability to predation by the larval salamander. Moreover,
tadpoles exposed to the two highest herbicide concentrations
showed a better survival than unexposed controls, indicating that
amitrole contamination also had detrimental effects on the
predatory behavior of the larval salamander. These findings
emphasize the need to consider the effects of contaminants on

both predator and prey before drawing conclusions about the
possible consequences of prey behavioral modifications on the
predation risk.

In aquatic environments, organisms can be confronted with a
high diversity of environmental stressors, of both natural and
anthropogenic origins. In many cases, these factors do not
operate independently, but rather interact to induce combined
impacts on organisms and communities. Surprisingly, re-
search in aquatic ecology and ecotoxicology has long been
focused on the effects of single factors, and it is only in the
recent years that the importance of considering the combined
effects of multiple stressors has been recognized (Hatch and
Blaustein 2000; Boone and James 2003; Bridges and Boone
2003; Chen et al. 2004; Rohr et al. 2004; Metts et al. 2005;
Relyea 2006).

Among natural and anthropogenic stressors, predators and
toxicants represent two major threats that frequently co-occur
in aquatic ecosystems. In this regard, the potential interactions
between these two environmental factors has been investigated
in some aquatic animals, including invertebrates (Dodson et al.
1995; Ham et al. 1995; Clements 1999; Preston et al. 1999;
Lefcort et al. 2000; Schultz and Dabrowski 2001; Wolf
and Moore 2002; Maul et al. 2006), fishes (Weis and Khan
1991; Weis and Weis 1995a, 1995b; Gregg et al. 1997; Scherer
et al. 1997; Smith and Weis 1997; Carlson et al. 1998;
Scholtz et al. 2000) and amphibians (Lefcort et al. 1998;
Raimondo et al. 1998; Bridges 1999a; Verrell 2000; Boone
and Semlitsch 2001; Relyea and Mills 2001; Broomhall 2002;
Ingerman et al. 2002; Relyea 2003; Broomhall 2004; Mills and
Semlitsch 2004; Relyea 2004a, 2005). According to these
studies, exposure to waterborne contaminants (mainly pesti-
cides and heavy metals) and predators may affect prey
organisms in two ways. First, exposure to a chemical con-
taminant can increase the subsequent vulnerability to predation
(Dodson et al. 1995; Weis and Weis 1995a; Smith and Weis
1997; Carlson et al. 1998; Raimondo et al. 1998; Clements
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1999; Verrell 2000; Broomhall 2002; Broomhall 2004) and
alter the antipredator behaviors (Lefcort et al. 1998, Bridges
1999a; Preston et al. 1999; Scholtz et al. 2000; Wolf and
Moore 2002). Second, exposure to a predation stress can en-
hance the toxicity of the contaminants (Relyea and Mills 2001;
Relyea 2003, 2004a, 2005; Maul et al. 2006). For example,
Relyea (2003) found that waterborne carbaryl (carbamate
insecticide) became more deadly to green frog (Rana
clamitans) and bullfrog (Rana catesbeiana) tadpoles when
combined with predator cues. On the other hand, contaminants
may have a more negative effect on predators than on preys,
resulting in a release from predation (Weis and Khan 1991;
Weis and Weis 1995b; Gregg et al. 1997; Scherer et al. 1997;
Smith and Weis 1997).

In amphibians, very few studies have investigated the
impacts of chemical contaminants on both preys and preda-
tors (Bridges 1999b; Ingerman et al. 2002; Boone and
Semlitsch 2003; Mills and Semlitsch 2004). This recent re-
search clearly demonstrates that the outcome of the predator–
prey relationship depends on the relative sensitivity of each
of the protagonists to the pollutant in question. When con-
taminants modify the prey�s defensive mechanisms but not
the predator�s feeding behavior, this can enhance the vul-
nerability of the prey (Ingerman et al. 2002). Conversely,
contaminants can decrease the predation risk due to the
greater sensitivity of the predator (Boone and Semlitsch
2003; Mills and Semlitsch 2004). Such differences in the
relative toxicity of contaminants to preys and predators may
have serious consequences at the community level (Boone
and Semlitsch 2001, 2002).

The overall objective of the present study was to determine
whether a short-term exposure to sublethal concentrations of
a widely used herbicide affects the predator–prey relationship
between larval spotted salamanders, Salamandra salamandra,
and tadpoles of the common frog, Rana temporaria. These
amphibian larvae are highly suitable models to carry out this
type of study. First, both species carry out their early
development in small temporary forest ponds, where they
commonly represent the main predator–prey complex visible
on site. As a result of their relatively low complexity, these
aquatic habitats can be easily reproduced under controlled
conditions. Second, as with many other amphibian species,
common frog tadpoles can exhibit an important behavioral,
morphological, and life-history plasticity in response to the
predation risk (Laurila and Kujasalo 1999; Van Buskirk and
Schmidt 2000; Laurila et al. 2001; Relyea 2001, 2002;
Lafiandra and Babbitt 2004; Relyea 2004b; Kraft et al. 2005;
Schmidt and Van Buskirk 2005). Third, with their permeable
skins and their close dependence on the aquatic environment,
larval amphibians appear particularly vulnerable to the
presence of waterborne contaminants. In this context, the
extensive use of pesticides in both aquatic and terrestrial
environments is receiving increased attention as a potential
cause of amphibian declines (Davidson et al. 2001; Sparling
et al. 2001; Davidson et al. 2002; Mandrillon and Saglio
2005). The pesticide used in our study was amitrole, a non-
selective triazole herbicide that inhibits chlorophyll formation
and regrowth from buds (Tomlin 1997). This highly soluble
herbicide can contaminate freshwater habitats either directly
when applied for the control of aquatic weeds, or indirectly
through runoff from adjacent treated fields (World Health

Organisation 1994). Despite its widespread occurrence, little
attention has been paid to the sublethal toxicity of waterborne
amitrole in amphibians (Johnson 1976), with no data con-
cerning its possible behavioral toxicity in aquatic organisms.
In our study, common frog tadpoles were kept either unex-
posed or exposed for 3 days to four sublethal amitrole con-
centrations, either in the absence or in the presence of larval
spotted salamander. Effects of herbicide exposure were as-
sessed on both antipredator behavior of tadpoles and preda-
tory ability of larval salamander, through the monitoring of
tadpole behavior and survival rate every day and at the end
of the experiment, respectively.

Materials and Methods

Experimental Animals

Four egg masses of common frog were collected from forest tempo-
rary ponds at the National Institute for Agronomic Research (INRA)
station near Rennes, France on January 27, 2005. Then, each clutch
was split into four equal masses that were housed in four identical
glass aquaria (50 · 30 · 20 cm) filled with 30 L of aged tap water,
with macerated dead leaves and an airstone on the bottom. Hatching
occurred on January 31, 2005 (stage 20, Gosner 1960).

Twenty-five larval spotted salamanders (total length = 3.72
cm € 0.27 cm, weight = 411.73 mg € 61.8 mg) were collected from
the same site as R. temporaria eggs on January 28, 2005. After col-
lection, larvae were housed in the laboratory and kept in two glass
aquaria (50 · 25 · 30 cm), each filled with 25 L of aged tap water,
with macerated dead leaves and an airstone on the bottom. The larvae
were fed ad libitum on common frog tadpoles derived from supple-
mentary clutches collected at the same site as the other experimental
animals.

The laboratory was maintained on a cycle of 11 hours light:13
hours dark (dawn at 08:00; dusk at 19:00), and the physical and
chemical characteristics of the water used throughout the experi-
mental period were as follows: temperature 10–12�C; pH 7–7.2; NO3

)

20–24 mg/L; NO2
) < 0.01 mg/L; NH4

+ < 0.01 mg/L; PO4
3) < 0.01 mg/L.

Experimental Design

We experimentally manipulated two factors in a fully crossed design
with five replicates: predator treatment (absence or presence of
one larval salamander) and herbicide treatment (0, 0.01, 0.1, 1, and
10 mg/L amitrole). Groups of 15 free-swimming tadpoles (stage 25,
Gosner 1960, total length = 1.99 cm € 0.068 cm, weight = 92.55
mg € 12.08 mg) were introduced (at 16:00) into a set of 50 plastic test
aquaria (25 · 16 · 15 cm), each filled with 4 L of aged tap water, with
macerated dead leaves on the bottom. All aquaria were lined with
black plastic sheeting on the outer parts of the bottom and glass walls.
Larval salamanders were introduced into the appropriate aquaria just
before the tadpoles. Contamination with amitrole was performed a
few minutes before the introduction of organisms into the aquaria.
Amitrole (1H-1, 2, 4-triazol-3-amine, 99.9 % purity) was purchased
from Cluzeau Info Labo (France). Because amitrole is readily soluble
in water, an organic solvent was not used. The two lowest amitrole
concentrations tested in this study (0.01 and 0.1 mg/L) have been
commonly reported in surface waters adjacent to treated fields,
whereas a concentration of 1 mg/L can be detected after direct
spraying to control aquatic weeds (World Health Organisation 1994).
The other amitrole concentration tested (10 mg/L) exceeded
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environmentally realistic levels, albeit far below the 96 hour-LC50

documented in tadpoles of another anuran, the tusked frog, Adelotus
brevis (3 g/L, Johnson 1976). To our knowledge, there are no data
concerning the lethal toxicity of amitrole to larval salamander or other
caudate amphibians. Amitrole concentrations were determined in the
aquaria immediately after contamination with 1 mg/L amitrole, and
then at the end of the 3-day exposure (Ecole National de la Sant�
Publique, Rennes, France). These analyses show that more than 95%
of the amitrole initially present in the aquaria remained at the end of
the experiment.

Response Variables

During the 3 days after their introduction into the test aquaria, tadpole
behavior was monitored by both authors twice a day (at 10:00 and
16:00). Each observation was carried out for a 3-minute period during
which the numbers of visible (i.e., unconcealed within the litter) and
moving tadpoles were recorded every 30 s. The morning and after-
noon recordings were averaged because the data collected each day
in each aquarium did not differ significantly between these two
periods (visibility: F1, 40 = 2.23, p = 0.143; activity: F1, 40 = 3.20,
p = 0.080). After 72 hours, dead leaves and salamanders were
removed from the experimental aquaria and the numbers of surviving
tadpoles were counted.

Data Analysis

The mean numbers of visible, moving and surviving tadpoles were
converted into percentages to obtain mean proportions. These pro-
portions were then arcsine square root-transformed to stabilize the
variance and provide a closer approximation to a normal distribution
(Sokal and Rohlf 1981). Behavioral data were processed with re-
peated-measure analyses of variance (ANOVAs) to determine the
main effects and interactions of predator and amitrole all along the
3-day experiment. Because preliminary analyses indicated that the
proportion of surviving tadpoles in the tanks did not affect the
behavioral endpoints considered, we did not perform a repeated-
measures analysis of covariance using tadpole survival as a covari-
ate. Tukey�s multiple comparison tests were then used to determine
the treatments that were different from one another. Survival data
were processed using a two-way ANOVA to determine the effects of
predator, amitrole, and their interaction. The intertreatment differ-
ences were then assessed using Tukey�s multiple comparison tests.

Results

Behavioral Data

Visibility. The proportion of tadpoles unconcealed within
the litter is significantly affected by time, predator, amitrole,
and the predator · amitrole interaction. By contrast, this
endpoint does not appear to be significantly influenced by the
other two-way and three-way interactions (Table 1).

Irrespective of the treatment, the proportion of visible tad-
poles is significantly higher 1 day after their introduction into
the test aquaria than 2 or 3 days later. This proportion also
decreases significantly between days 2 and 3.

In the absence of the larval salamander, tadpoles exposed to
0.01, 0.1, and 1 mg/L amitrole are significantly less visible
than control tadpoles. These differences do not appear subse-
quently in the presence of the predator. In the presence of the
larval salamander, control tadpoles and tadpoles exposed to
0.01 and 0.1 mg/L amitrole are the only groups showing a
significant reduction of visibility compared to the treatment
without predator. In contrast, tadpoles exposed to the two
highest amitrole concentrations (1 and 10 mg/L) show similar
visibility levels regardless of the presence/absence of the larval
salamander (Figure 1).

Movements. The proportion of moving tadpoles is signifi-
cantly affected by time, predator, and amitrole, as well as the
interactions time · predator, predator · amitrole and time ·
predator · amitrole. In contrast, the time · amitrole interaction
does not significantly influence this endpoint (Table 1).

Irrespective of the treatment tested, the proportion of mov-
ing tadpoles is significantly higher 1 day after their introduc-
tion into the aquaria than 2 or 3 days later. This proportion
does not differ significantly between days 2 and 3.

In the absence of the larval salamander, and during the 3
days of exposure, we find the proportion of moving tadpoles to
be significantly decreased in response to 0.01 mg/L amitrole
(Figure 2 a–c). Additional amitrole effects are observed on day
2, with tadpoles exposed to 0.1 and 1 mg/L amitrole showing a

Table 1. Summary of repeated-measure analyses of variance for the effects and interactions of predator, amitrole, and time on the behavior of
Rana temporaria tadpoles

Source of variation df Visible tadpoles Moving tadpoles

Sum of squares F p Sum of squares F p
Between groups

Predator 1 1.9506 291.0934 <0.001 3.1600 525.3857 <0.001
Amitrole 4 0.3433 12.8076 <0.001 0.7975 33.1483 <0.001
Predator · Amitrole 4 0.2440 9.1045 <0.001 0.2672 11.1070 <0.001
Error 40 0.2680 0.2406

Within groups

Time 2 0.3275 32.6752 <0.001 0.1300 22.9110 <0.001
Time · predator 2 0.0305 3.0406 0.0534 0.0511 8.9978 <0.001
Time · amitrole 8 0.0361 0.9016 0.5194 0.0406 1.7872 0.0918
Time · predator · amitrole 8 0.0646 1.6123 0.1344 0.0665 2.9276 0.006
Error 80 0.4009 0.2270
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significant reduction of movements compared to the controls
(Figure 2b). There is no herbicide effect in the presence of the
predator, except on the first day, when tadpoles exposed to 10
mg/L amitrole appear significantly more active than control
tadpoles (Figure 2a). In the presence of the predator, and
throughout the experiment, control tadpoles are the only group
showing a significant decrease of activity compared to the
treatment without predator (Figure 2a–c). A similar reduction
of movements in the presence of a predator is only recorded in
the group exposed to 10 mg/L, and this occurs only on the last
day of the experiment (Figure 2c). Otherwise, tadpoles ex-
posed to the four amitrole concentrations exhibit similar rates
of activity irrespective of the presence/absence of the larval
salamander.

Survival Data

The two-way ANOVA indicates that the survival rate of tad-
poles is significantly affected by predator and amitrole. The
significant effect of the herbicide can be mainly attributed to
its impact in the predator�s presence. Indeed, as indicated by
the significant predator · amitrole interaction, amitrole effects
on tadpole survival are highly dependent on the presence of the
larval salamander (Table 2).

In the absence of the larval salamander, the survival rates do
not differ between the different groups of tadpoles: all tadpoles
survive regardless of the level of amitrole contamination. In
the presence of the predator, the survival rates are significantly
decreased compared with the treatments without predator.
Tadpoles exposed to the two lowest amitrole concentrations
(0.01 and 0.1 mg/L) show similar survival rates compared with
unexposed control tadpoles. On the other hand, tadpoles
exposed to 1 and 10 mg/L amitrole survive significantly better

in the presence of the larval salamander compared with the
unexposed controls. Furthermore, we find a concentration-
dependent increase in survival: tadpoles exposed to 10 mg/L
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Fig. 1. Proportion of visible Rana temporaria tadpoles in the absence
(white diamonds) or presence (black diamonds) of larval Salamandra
salamandra across all amitrole treatments. Because the visibility
pattern was the same at all times (as indicated by the nonsignificant
‘‘time · predator,’’ ‘‘time · amitrole,’’ and ‘‘time · predator · ami-
trole’’ interactions, Table 1), the data from each day were averaged
and combined into one single graph. Treatments labeled with
different letters denote significant differences at p < 0.05, based
on Tukey�s multiple comparison tests. Intertreatment differences in
the absence and presence of the predator are represented by small and
capital letters, respectively. For each amitrole concentration, differ-
ences between treatments without and with predator were indicated as
following: ns nonsignificant, *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 2. Proportion of moving Rana temporaria tadpoles in the
absence (white diamonds) or presence (black diamonds) of larval
Salamandra salamandra across all amitrole treatments, on (a) day 1,
(b) day 2, and (c) day 3 of the experiment. Treatments labeled with
different letters denote significant differences at p < 0.05, based on
Tukey�s multiple comparison tests. Intertreatment differences in the
absence and presence of the predator are represented by small and
capital letters, respectively. For each amitrole concentration, differ-
ences between treatments without and with predator were indicated as
following: ns nonsignificant, *p < 0.05, **p < 0.01, ***p < 0.001

Table 2. Summary of the two-way analyses of variance for the ef-
fects of predator, amitrole, and their interaction on the survival rate of
Rana temporaria tadpoles

Source of variation df Sum of squares F p

Predator 1 4.58848 2361.70 <0.001
Amitrole 4 0.17648 22.71 <0.001
Predator · amitrole 4 0.17648 22.71 <0.001
Error 40 0.07771
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amitrole show a significantly better survival rate than those
exposed to 1, 0.1, or 0.01 mg/L. Tadpoles exposed to 1 mg/L
survive significantly better than those exposed to 0.1 and 0.01
mg/L. Finally, tadpoles exposed to 0.1 mg/L survive signifi-
cantly better than those exposed to 0.01 mg/L (Figure 3). All
larval salamanders survive to amitrole exposures.

Discussion

The results of this laboratory experiment clearly show that
short-term exposures to sublethal amitrole concentrations can
alter the predator–prey relationship between common frog
tadpoles and larval spotted salamanders, by affecting both prey
behavior and predation rate.

In the absence of the predator, amitrole-exposed tadpoles
show a significant tendency to spend more time concealed
within the litter and be less active compared with the unex-
posed control tadpoles. These behavioral changes appear
after 1 day of exposure to the lowest concentration tested (0.01
mg/L). Thus, environmentally realistic levels of exposure to
this herbicide can prevent tadpoles from taking advantage of
an absence of predation risk to maximize their foraging
activity. Such alterations might have detrimental effects on
common frog tadpoles that rely on temporary ponds for their
development. In particular, less active tadpoles might incur the
risk of not acquiring the energetic resources necessary to
achieve metamorphosis before the pond dries up. Further
experiments are thus needed to assess whether amitrole-med-
iated behavioral alterations can affect larval development and
growth. In the gray treefrog (Hyla versicolor), Bridges (1999a)
similarly found that, compared with unexposed controls,
tadpoles subjected to a short exposure (24 hours) to sublethal
concentrations of carbaryl spent more time in refuge when no
predator (red-spotted newt, Notophthalmus viridescens) was
present. Moreover, this author showed that, in comparison with

controls, carbaryl-exposed tadpoles spent less time under
cover in the newt�s presence. In contrast, the present results
indicate that the refuging behavior of R. temporaria tadpoles in
the presence of larval S. salamandra is unaffected by short-
term exposures (1 to 3 days) to sublethal amitrole concentra-
tions. These contrasting results could be related to specific
differences in the behavioral ecology of the observed organ-
isms, as well as methodological differences in both the con-
taminants tested and the modes of exposure. Bridges (1999a)
used carbaryl, a carbamate insecticide known to alter swim-
ming behavior through its inhibitory effect on acetylcholin-
esterase activity (Zinkl et al. 1991; Bridges 1997). In addition,
our behavioral observations were made on pesticide-exposed
tadpoles in the presence of a free-foraging predator, whereas
Bridges exposed tadpoles to the pesticide before introducing
them into an uncontaminated testing chamber with a caged
predator. In the present study, it is also noteworthy that, on the
first day of the experiment, tadpoles exposed to the highest
amitrole concentration (10 mg/L) showed higher rates of
movement in the salamander�s presence than the controls.
Although this high concentration is unlikely to occur under
natural conditions, such a behavioral change might represent a
risk for tadpoles because it could increase the probability of
being detected by a predator. At environmentally more real-
istic concentrations, amitrole does not change the behavior of
tadpoles in the presence of a larval salamander. However, a
growing body of evidence suggests that exposure to multiple
stressors can have more serious consequences on amphibian
larvae than single stressing factors (Zaga et al. 1998; Hatch
and Blaustein 2000; Relyea and Mills 2001; Relyea 2003;
Chen et al. 2004; Edginton et al. 2004; Relyea 2004a; Sih
et al. 2004; Metts et al. 2005; Relyea 2005). For example,
Relyea and Mills (2001) and Relyea (2003, 2004a, 2005)
found that several species of anuran larvae simultaneously
exposed to pesticides and predatory stress suffered from a
massive increase in mortality compared to their counterparts
exposed to pesticides alone. In our study, we did not enhance
the effects of the herbicide by combining predation risk with
amitrole contamination. On the contrary, tests in the presence
of a predator failed to detect any increase of refuge use or
decrease in activity produced by amitrole contamination.
Furthermore, survival data show that the consumption of tad-
poles by the salamander larvae decreases with increasing
amitrole concentration. Further experiments are required
associating predation risk and chemical stressors in amphibi-
ans to assess the relative influences of diverse factors related to
the predator (species, origin, diet, etc.) and contaminant
(chemistry, concentration, and duration of exposure, etc.),
testing their joint effects on prey organisms.

Control tadpoles reacted to the presence of the larval spotted
salamander by decreasing their rate of movements and by
taking refuge within the litter. However, the results also
showed that this antipredator behavioral strategy can be af-
fected by waterborne amitrole. At the four concentrations
tested, amitrole-exposed tadpoles do not significantly reduce
their activity level in the presence of this predator. Moreover,
tadpoles exposed to the two highest amitrole concentrations do
not increase their refuge use when confronted with the larval
salamander. Recent studies in aquatic invertebrates (Lefcort
et al. 2000; Wolf and Moore 2002), fishes (Saglio and Trijasse
1998; Scholz et al. 2000), and amphibians (Lefcort et al. 1998;
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Fig. 3. Proportion of surviving Rana temporaria tadpoles, in the
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Mandrillon and Saglio in press) indicate that negative impacts
of contaminants on antipredator behaviors can result from
alterations of the chemosensory systems involved in predator
detection. In this connection, the presence of waterborne
contaminants has been shown to affect the behavioral response
to chemical cues from the predator and conspecific substances
indicating a predation risk. In the Columbia spotted frog (Rana
luteiventris), Lefcort et al. (1998) found that heavy metals
reduced the antipredator response of tadpoles to chemical cues
from the rainbow trout (Oncorhynchus mykiss). In addition, the
alarm reactions resulting from the chemical detection of in-
jured conspecifics can be modified in the presence of aquatic
contaminants (Saglio and Trijasse 1998, Lefcort et al. 2000,
Scholz et al. 2000, Wolf and Moore 2002). Moreover, we
recently demonstrated that aquatic contamination using an
environmentally realistic amitrole concentration (0.1 mg/L)
can impair the Pavlovian mechanism allowing common toad
tadpoles (Bufo bufo) to learn to recognize chemical cues
from a non-native predator, the Turkish crayfish (Astacus
leptodactylus) (Mandrillon and Saglio 2007). Such toxicant
effects, which disrupt antipredator responses probably through
negative impacts on the olfactory system, are likely to increase
the vulnerability of exposed preys to predation.

The present study shows that the alteration of behavioral
defenses in amitrole-exposed tadpoles did not result in an in-
creased predation by the larval salamander. Instead, salaman-
der larvae show a concentration-dependent decrease in
predation efficiency. In the presence of the two highest ami-
trole concentrations (1 and 10 mg/L), the predation rate is
significantly reduced compared to control treatment, indicating
that amitrole contamination affects the predator to a greater
extent than the prey. Such an adverse effect of chemical
contaminants on predators has been previously documented in
fishes (Weis and Khan 1991; Weis and Weis 1995b; Scherer
et al. 1997). Weis and Khan (1991) and Weis and Weis (1995)
showed that mummichogs (Fundulus heteroclitus) from a
metal-polluted site or derived from exposure to methylmercury
did not capture preys as effectively as the control fishes.
Similarly, Scherer et al. (1997) reported a significant con-
centration-dependent decrease of foraging rates in lake trout
(Salvelinus namaycush) exposed to cadmium. In amphibians,
Boone and Semlitsch (2003) and Mills and Semlitsch (2004)
found similar results in tadpoles of the bullfrog (Rana cates-
beiana) and southern leopard frog (Rana sphenocephala)
exposed to waterborne carbaryl, respectively. They demon-
strated that this insecticide released tadpoles from predation,
by killing predators. In the case of the present study, we still
need to elucidate the mechanisms underlying the detrimental
effects of amitrole on the predatory behavior of larval sala-
mander. This herbicide could either interfere with the sala-
mander�s ability to detect preys or impair its capacity to attack
and capture them. Recent studies in aquatic and terrestrial
salamanders have shown that the olfactory sense (including the
primary olfactory system and the vomeronasal organ) can play
a major role in prey detection (Placyk and Graves 2002;
Mathis 2003; Eisthen and Park 2005). As has been shown for
some other pesticides (Scholz et al. 2000; Wolf and Moore
2002), our recent observations on common toad tadpoles
indicate that waterborne amitrole can impair the chemical
detection of predation cues (Mandrillon and Saglio in press).
Thus, we propose that amitrole could also affect the chemical

recognition of prey species. Consequently, we require further
research to assess whether the alteration of the predatory
ability observed here results from the negative impact of
amitrole on the chemical sense of larval salamander. To
specify the effects of amitrole on this predator, further
experiments need to be carried out focusing on the conse-
quences of exposure on feeding motivation, latency to attack,
and capture rates. On the other hand, waterborne contaminants
are able to alter predation efficiency through indirect effects on
prey activity. In this connection, Relyea and Hoverman (2006)
have argued that pesticides can have positive effects on prey
survival by modifying their activity in the presence of preda-
tors. Based on the well-established assumption that predation
risk is positively correlated with activity level (Lawler 1989;
Skelly 1994), a pesticide should make prey less vulnerable to
predation if it induces a reduction of activity. However, the
results of our study show that the reduction of predation effi-
ciency cannot be attributed to a behavioral change in the prey,
because movement rates in unexposed and amitrole-exposed
tadpoles do not differ in the presence of the salamander.

All tadpoles survived in the absence of the predator irre-
spective of the amitrole concentration used in our study,
implying that the levels of contamination used are not lethal
for larval common frog. This result is not surprising because
the concentrations tested here are much lower than the ami-
trole 96 hour-LC50 (3 g/L) documented in tadpoles of another
anuran, the tusked frog (Adelotus brevis, Johnson 1976). This
latter value is 300 times the highest concentration tested here
(10 mg/L).

To conclude, our study demonstrates that short-term expo-
sures to environmentally relevant amitrole concentrations can
disrupt the predator–prey relationship between R. temporaria
tadpoles and S. salamandra larvae. The herbicide alters both the
antipredator behavior of the tadpoles and the predation rate of
the salamander. At high concentrations (1 and 10 mg/L), the
outcome of the predator–prey relationship appears biased in
favor of the tadpoles, which were released from the predation
risk in spite of their altered behavior. Further studies are now
required in these species and other amphibians to investigate the
nature of the mechanisms responsible for the adverse impacts of
amitrole on antipredator behaviors and predation efficiency.
Additional experiments are also needed to investigate the effects
of longer periods of exposure to this herbicide and to confirm
these results under ecologically more realistic conditions.
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