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Abstract. 210Pb-derived sediment accumulation rates, as well
as a suite of geochemical proxies (Al, Fe, d13C, d15N), were
used to assess the time-dependent variations of C, N, and P
fluxes recorded in two sediment cores collected at Ohuira
Lagoon, in the Gulf of California, Mexico, during the last 100
years. Sedimentary C, N, and P concentrations increased with
time and were related to land clearing, water impoundment, and
agriculture practices, such as fertilization. C:N:P ratios and
d13C suggested an estuarine system that is responsive to in-
creased C loading from a N-limited phytoplankton community,
whereas d15N values showed the transition between an estua-
rine-terrestrial to an estuarine-more marine environment, as a
consequence of the declining freshwater supply into the estuary
due to the channeling and impoundment of El Fuerte River
between 1900 and 1956. The recent increases in nutrient fluxes
(2- to 9-fold the pre-anthropogenic fluxes of C and N, and 2 to
13 times for P) taking place in the mainland from the 1940s,
were related to the expansion of the intensive agriculture fields
and to the more recent development of shrimp farming activi-
ties.

The Mexican state of Sinaloa has 656 km of coastline and is
characterized by high fishing and agriculture activity. Ohuira
is a shallow and brackish coastal lagoon (average depth of 3 m,
surface area of 125 km2), which supports local fishing activity
including wild and cultivated shrimp for export. However,
there is some concern related to the desiccation of lowlands
and infilling promoted by sediment transport due to agriculture
activities, as well as alteration of water quality due to waste
water discharges (CONABIO 2002). Actually the lagoon re-
ceives the untreated domestic wastes from the village of Juan
Jos� R�os (23,470 inhabitants; INEGI 2000) as well as the
residual waters from 4 shrimp aquaculture facilities (350 ha;
Lyle-Fritch et al. 2001) and El Fuerte Valley agriculture lands,

which are characterized by intensive tillage, irrigation, heavy
application of fertilizers and pesticides, and monocropping.

The economic development of the region started about 1890
upon the efforts of a group of utopian socialists from the
United States, who built the first irrigation system in El Fuerte
Valley to develop the sugar cane industry (Gill 2003). Cur-
rently El Fuerte Valley represents approximately 15% of the
irrigated lands in Mexico, and its most important crops are
sorghum, corn, sugar cane, mangos, alfalfa, and chick peas,
with 26, 12, 19, 2, 2, and 1 · 103 cultivated hectares,
respectively (SAGARPA 2005).

The aim of this work was to evaluate the temporal changes in
sediment accumulation rates and excess nutrient fluxes reflected
in the sedimentary record of C, N, and P in the Ohuira Lagoon
mudflats, using 210Pb chronology. C and N isotope composition
was used to evaluate the relationship between the observed
changes and the economic development of El Fuerte Valley.

Materials and Methods

Sampling

Two sediment push-cores were collected with plastic tubes (7-cm
inner diameter) from 2 mudflat areas of Ohuira Lagoon, in June 2004
(Figure 1). The core OHT (25�41¢, 108�53, 14 psu) was taken in an
inner zone of the lagoon, less exposed to sea water exchange than core
OH2 (25�41¢, 108�54¢, 17 psu). Core subsamples were sliced into
1-cm intervals, freeze-dried to constant weight, and stored in plastic
bags until analysis.

Laboratory Analysis

Water content data were used to calculate the porosity and in situ dry
sediment bulk density, to estimate the mass depth (accumulated
weight per area unit, g cm)2) for each core section (Baskaran and
Naidu 1995). Organic matter (OM) and carbonate (CaCO3) contents
were estimated through loss on ignition (LOI) at 400�C and 750�C,
respectively; OM was calculated as 0.58*LOI400 (EPA 2006). Total
phosphorus (P) was measured as molybdate reactive P by UV

Correspondence to: Ana Carolina Ruiz-Fern�ndez; email: caro@
ola.icmyl.unam.mx

Arch. Environ. Contam. Toxicol. 53, 159–167 (2007)
DOI: 10.1007/s00244-006-0122-3



spectrometry, after calcination of the sediment samples (550�C, 1 h;
P�ez-Osuna et al. 1991) with an analytical precision of 4.8%. Organic
carbon (OC) and total nitrogen (N) contents were measured using a
FISONS NA2000 Element Analyzer after removal of the carbonate
fraction in silver capsules using 1.5 M HCl. The average standard
deviation of each measurement was determined by replicate analyses
of the IAEA standard NBS19 (0.07 % for OC and 0.009 % for N).

Stable isotopic analyses of OM (13C/12C and 15N/14N) were carried
out on the same samples using a Finnigan Delta Plus mass spec-
trometer, which was directly coupled to a Fisons NA2000 EA by
means of a CONFLO interface for continuous flow measurements.
Stable nitrogen and carbon isotope ratios are reported in the con-
ventional d-notation with respect to atmospheric N2 (air) and PDB
(Pee Dee Belemnite) carbonate standard, respectively. Uncertainties
were lower than € 0.2&, as determined from routine replicate mea-
surements of the reference sample standard IAEA-NBS19 for the d13C
and standard IAEA-N-1 for the d15N.

Sediments for Al, Fe, and 210Pb analyses were digested overnight
in closed SavillexTM containers, on a hot plate at 200�C, in a mixture
of 5:4:1 HNO3 + HCl + HF (Loring and Rantala 1992). Al and Fe
were analyzed by AAS (uncertainties of 2–5%, determined from
replicated analysis of the standards IAEA-356 and BCS-1). Total
210Pb (210Pbtot) was determined by alpha counting of 210Po sponta-
neously deposited onto silver discs (Flynn 1968) using 209Po as yield
tracer. Uncertainty (€ 4.6%) was determined through replicate mea-
surements of standard IAEA-300. 137Cs and supported 210Pb (210Pbsup,
derived from the 214Bi photopeak) were measured on Ortec gamma
detectors for a minimum of 24 h. Excess 210Pb (210Pbxs) activities
were determined by subtracting 210Pbsup from

210Pbtot values.

Results and Discussion

Sedimentary Environment

Collected sediments were mostly silty clays ( > 90%). LOI400-
derived OM and CaCO3 contents gradually decreased with
depth in both cores (Figure 2A and B). These variations sug-
gested the increasing productivity of calcareous organisms
toward the most recent times, although they might also reflect
the chemical carbonate dissolution driven by organic matter

oxidation. Al profiles in both sediment cores (Figure 2C)
suggested that the sediments accumulated from heterogeneous
detrital sources and this variability is more evident in sediment
core OHT. Fe content in both cores was low (�2%) suggesting
reducing conditions in the sediments (Figure 2D). Fe is known
for being diagenetically mobile in aquatic systems depending
on redox conditions. Under anoxic or suboxic conditions,
ferric iron is reduced and can either precipitate as FeS or
migrate to the sediment surface where it can precipitate as
ferric oxides in case of oxidizing conditions (Jorgensen 1977).
Therefore, the three peaks observed at intermediate depths of
core OHT might be the result of ferrous sulfides precipitation.

OM/Al ratios exhibited an increasing trend from around 11
cm depth to the surface at the 2 sites (Figure 2E) suggesting an
increment in the biogenic contribution over the lithogenic
supply to the site, although OM diagenesis could have also
influenced the OM/Al ratios decreasing with depth. Nonethe-
less, this trend also confirmed that these sediments are not
redeposited sediments since, otherwise, the sediment profile
would have exhibited uniform OM/Al ratio distribution (Emeis
et al. 2000).

Short-Lived Radioisotopes (137Cs, 210Pb)

137Cs activities in both cores were below the analytical back-
ground, as has been previously observed in other sediments
from the Mexican Pacific coast (P�ez-Osuna and Mandelli,
1985; Ruiz-Fern�ndez et al. 2001, 2002) and explained as a
consequence of poor fallout of this radionuclide over these low
latitude coastal areas.

210Pbtot activities were low (Figure 3A and B) but con-
sistent with regional data (Ruiz-Fern�ndez et al. 2001, 2002).
Mixing was considered to exert a negligible effect since the
nutrient profiles obtained from the same cores (see Nutrients
section) showed increasing trends toward the surface with
maximum values at the top of the core. If mixing were in-
tense, these clear features would have been smoothed or

Fig. 1. Location of sampling sites
at the tidal mudflats of Ohuira
Lagoon, Sinaloa, Mexico
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blurred, and a number of organisms would have been found
when sampling and subsampling. These observations sup-
ported the suitability of the sedimentary record to provide
stratigraphic information. In order to verify that 210Pbxs fea-
tures were not caused by changes in sediment composition
(mineral type, grain size distribution, OM, or CaCO3 con-
tent), 210Pbxs activities were normalized by OM, CaCO3, and
Al concentrations, with the effect of increasing 210Pbxs values
without significantly modifying the features.

Figure 3A and B shows that both logarithmic 210Pb
activity depth profiles are characterized by oscillations that
account for changes of accumulation rates over time. How-
ever, in the case of core OH2 an average mass accumulation
rate (g cm)2 y)1) could still be calculated through the
Constant Flux-Constant Sedimentation model (CF-CS; Ap-
pleby and Olfield 1992). Differently, the OHT 210Pbxs profile
showed two different main trends (from surface to 6 cm
depth, and from 6 to 16 cm depth) suggesting a recent abrupt
change of accumulation rate. In this case, the 210Pb dating
was calculated using the Constant Initial Concentration
model (CIC; Appleby and Oldfield 1992) that allows dating

non-linear 210Pbxs profiles. 210Pbxs depth profiles allowed
dating the sediment cores only down to 12 cm depth for core
OHT and to 17 cm depth for OH2, corresponding to a time
span of circa 100 years (115 € 12 and 106 € 11 years), the
most reliable period of time for 210Pb chronologies.

Nutrients

Organic carbon content in both sediment cores showed the
typical exponential decay with depth (r > 0.96, p < 0.05).
Elemental analyzer-OC values were considerably lower
(between 2- and 10- fold) than those estimated from LOI400-
derived OM although both profiles showed similar trends.

The OC, N, and P concentrations in OHT core were con-
sistently higher than those observed at OH2 (Figure 4A–C)
but, in general, the nutrient concentrations found at Ohuira
Lagoon sediments are among the typical values reported for
estuarine sediments in other areas of the world (Table 1). The
OC content was significantly correlated with N in both cores
(p < 0.05, r > 0.93) and the intercepts of the best fit regression
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lines were close to zero, suggesting that N concentrations can
be considered as organic nitrogen (ON). P showed significant
positive correlations with OC and N (p < 0.05, r ‡ 0.95) but
only within the topmost 10 cm (Figure 4D,E).

Sedimentation associated with tidal flooding is an important
source of both N and P to tidal marshes with N usually linked
mainly to organicmatter and P primarily associatedwith the fine
grained clay minerals (Morse et al. 2004). OC correlation with P
andN likely suggests the importance of this organic-rich deposit
as a nutrients reservoir. The correlation between OC and N
indicates that the sources that supply OM to these sediments are
present in nearly invariant proportions (Ruttenberg and GoÇi

1997), while the correlations betweenOCand P, aswell asN and
P, which were found only in the superficial layers of both cores
(topmost 10 cm) are either indicating a change in phosphorus
main incorporation route or are simply the result of OC
enrichment, since P and OC concentrations significantly corre-
late with each other only in high organic coastal sediments
(Ingall and van Cappellen 1990).

Organic carbon diagenesis versus nutrient enrich-
ment. Downcore variation in OC content is mainly attributed
to changes in the supply rate and type of OM; however,
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microbial consumption in the sediment has also an important
role that must be taken into account when interpreting depth
profiles. OC and N decomposition rates were evaluated by the
first-order G model (Zimmerman and Canuel 2000):

Gi ¼ Goe
�kt þ G1

where k is the decomposition constant at any time t, Go

represents the degradable element concentration at the
sediment surface, and G¥ is the asymptotic concentration at
depth, representing the refractory fraction. Parameters
obtained from the model applied to OC and N vertical
distributions are summarized in Table 2. OC and N decay
rates at OHT were slightly higher than at OH2 and,
therefore, their half-life and residence times were also
shorter; however, in both cases, the amount of nutrients
degraded at the sediment water interface is practically
negligible ( £ 0.1%).

In order to evaluate the changes in OC and N supply to the
system during the period of time comprised in the sedimentary
record, the simple rate model for organic decomposition pro-

posed by Middelburg (1989) was used to predict the concen-
tration of OC and N at any time as a result of constant input
and steady-state diagenesis process, according to the following
equation (Cornwell et al. 1996):

Gt ¼ Go e
�ð3:2t0:05Þ

where Gt is the metabolizable organic component of OC
deposited at time t and Go represents the degradable ele-
ment concentration at the sediment surface, which was
chosen to provide a general correspondence between the
model and the measured non-metabolizable OC concen-
trations (the vertical asymptote of the OC profile).

The Middelburg model underestimated most of the OC
concentrations at OHT but described relatively well OC
changes in core OH2 up to 11.5 cm, indicating that OC content
can be accounted for by steady-state diagenesis up to that
depth. The OC concentrations were higher than those predicted

Table 1. Concentrations of OC, N, and P in estuarine sediments

Estuarine system OC (%) N (%) P (mg g)1) References

Ohuira Lagoon, M�xico 0.3–6.5 0.08–1.60 13–36 This study
Culi�can River Estuary, M�xico 0.3–3.0 0.04–0.29 443–3102 Ruiz-Fern�ndez et al. (2002)
Chiricahueto Lagoon, M�xico 0.4–4.5 0.04–0.48 160–1600 Soto-Jim�nez et al. (2003)
Altata-Ensenada del Pabell�n, M�xico 0.1–0.5 n.a. 34–51 P�ez-Osuna et al. (1992)
Celestffln Lagoon, M�xico 1.0–16 0.20–0.80 n.a. Gonneea et al. (2004)
Chesapeake Bay Estuary, USA 1.0–4.0 0.20–0.50 0.4–0.9 Cornwell et al. (1996)
Winyah Bay Estuary, USA 1.0–5.0 0.10–0.40 n.a. GoÇi et al. (2003)
Florida Bay Estuary, USA 2.0–7.0 0.20–0.80 0.05–0.25 Orem et al. (1999)
Seine Estuary, France 6.0–46 0.50–3.00 0.8–1.8 Mesnage et al. (2002)
Shinji Lagoon, Japan 1.0–3.0 0.10–0.40 0.5–1.8 Yamamuro and Kanai (2005)
Cochin Estuary, India 0.3–3.2 0.20–0.80 0.1–20 Mathews and Chandramohanakumar (2003)
Ashtamudy Estuary, India 1.0–4.0 0.10–0.30 0.1–0.3 Babu et al. (1998)
Mandovi Estuary, India 0.1–3.0 0.30–3.00 0.5–6.7 Nasnolkar et al. (1996)
Lunawa Estuary, Sri Lanka 1.0–14 0.10–0.80 n.a. Ratnayake et al. (2005)

n.a. = not available.

Table 2. Parameters of first-order G model for OC and ON
decomposition at Ohuira Lagoon

Parameters

Sediment core

OHT OH2

Organic carbon
k (year)1) 0.04 0.03
Residence time (year) 23 37
OCmetabolized fraction (%) 0.0015 0.11
t1/2 (year) 16 26

Organic nitrogen

k (year)1) 0.04 0.03
Residence time (year) 23 40
OCmetabolized fraction (%) 0.07 0.07
t1/2 (year) 16 27

k = first-order decomposition constant; t1/2 = half-life; metabolized
fraction = percent of initial concentration degraded at the sediment-
water interface.

Table 3. Geochemical variable ranges obtained for sediment cores
from Ohuira Lagoon

Variable OHT OH2

CaCO3 (%) 2–8 2–4
Fe (%) 1–9 1–2
Al (%) 3–12 4–9
OC (%) 7–26 6–13
OCbck (mg g)1) 0.48 € 0.02 0.25 € 0.01
N (mg g)1) 0.8–11 0.4–2.5
Nbck (mg g)1) 0.80 € 0.02 0.40 € 0.02
P (mg g)1) 13.2–36.2 15.0–30.1
Pbck (mg g)1) 14.6 € 0.6 15.2 € 0.2
C:N 6.8–7.8 6.8–7.8
C:P 0.9–6.5 0.7–1.8
N:P 0.9–6.5 0.7–1.8
d15N (&) )1 to + 10 +7 to + 12
d13C (&) )14 to )18 )14 to )18
210Pbtot (dpm g)1) 0.9–1.8 0.9–1.3
Accumulation rate (g cm)2 y)1) 0.03–0.13 0.10
Sedimentation rate (cm y)1) 0.06–0.32 0.15
OC fluxes (mg cm)2 y)1) 4.0–37 2–3
N fluxes (mg cm)2 y)1) 0.6–6.0 0.2–0.4
P fluxes (mg cm)2 y)1) 0.1–7.0 0.1–1.5
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by the model, reflecting an increase in OC deposition starting
from the early 1900s at OHT, and from the early 1940s at
OH2.

Fluxes of OC and N were estimated upon OC concentrations
corrected for the degradative loss occurred with time. The OC
lost to degradation for any sample deposited t years ago (Clost-t)
was estimated as in Zimmerman and Canuel (2002):

Clost�t¼ GoðmÞ�Gt

where Go(m) is the OC concentration measured in the sur-
face layer of the core and the degradation-corrected con-
centrations (Ccorr-t) for a sample of concentration Cmt, is
then:

Ccorr�t¼ CmtþClost�t

The modeled fluxes of OC and N to the sediment were then
calculated as the product of its modeled concentration and the
210Pb-derived sediment mass accumulation rates (Table 3;
Figure 5A and B for OC and 5C for N).

Anthropogenic P fluxes (Figure 5C) were obtained by
multiplying the excess P concentrations (Pxs) by the 210Pb-
derived sediment mass accumulation rates. Pxs were calculated
by subtracting the pre-anthropogenic P values (Pbck,) from the
P concentrations analytically determined. Pbck are often ob-
tained from the correlation between P and Fe in pristine sed-
iments (Gerritse et al. 1998) under the assumption that Fe-
(hydroxy)-oxides tend to adsorb the inorganic P (Shukla et al.
1971); however, none of the sediment cores displayed such a

relationship, likely due to their reducing conditions. Pbck val-
ues were, therefore, obtained from the average of the asymp-
totic values observed below 23 and 15 cm depth at OHT and
OH2 cores, respectively (Table 3).

As with C and N fluxes, P fluxes were higher at OHT than at
OH2. The larger nutrient enrichment observed at site OHT is
most likely due to a preferential sedimentary dynamics, since
site OH2 is more influenced by tides than OHT, which is
currently accreting at higher sedimentation rates and receiving
a higher supply of nutrients due to its proximity to the agri-
culture fields of El Fuerte Valley and some shrimp aquaculture
facilities, established since the late 1980s. Considering that the
effective sedimentary retention of the total amount of nutrients
supplied to the estuaries can be as low as 40% for N and
usually less than 60% for P (Tappin 2002), the N and P fluxes
calculated for Ohuira cores might underrate the historical
nutrient supply to the lagoon.

Organic matter provenance. The C:P and N:P values were
rather low since the pre-anthropogenic times (pre-1900), sug-
gesting a prevailing phosphorus clastic source in the area.
Their increasing trends, based on the significant correlation
found between OC and the C:P and N:P ratios (p < 0.05,
r2 > 0.95) were associated with the increased anthropogenic
input of OM.

d15N profiles showed a similar increasing trend toward the
present in both cores (Figure 6D). d13C values above back-
ground levels showed contrasting trends (Figure 6E), with
values decreasing �3& toward the surface in core OH2,
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whereas in core OHT after a strong decrease between 7.5 and
11.5 cm depth (1900–1959) they increased again (�4&) in the
most recent times.

Sedimentary OM found in Ohuira cores fits in the reported
ranges of d15N ()1.2 to +10.6&; Cloern et al. 2002) and C:N
(6 to 9; Giordani and Angliolini, 1983) for coastal and estua-
rine-marine organic matter, although d13C values were higher
than expected for estuarine-marine OM ()17 to )28&; Cloern
et al. 2002).

The decreasing d13C values are usually related to the dec-
rement of algal productivity with the enhancement of the iso-
topic discrimination against dissolved 13CO2 (Tenzer et al.
1999). However, the C:N ratios in both cores showed that the

marine algal contribution did not decrease with time and,
therefore, the declining d13C values could result from the
contribution of more marine OM ()20 to )22&; Meyers 1994).

The increasing d13C values observed in the most superficial
layers of coreOHT (uppermost 8 cm; ca. 1959) could result from
the input of an additional 13C-enriched OM source. In both
sediment cores, the d13C and C:P plots showed the characteristic
hyperbolic trend of the mixing line obtained between two end
members (Figure 7B) where sediments with low C:P ratios
display the heaviest d13C values (more terrestrial-estuarine or-
ganicmatter) and, at the other end of the trend, sampleswith high
C:P ratios are characterized by lighter d13C values (both traits of
more marine-estuarine–derived organic matter; Ruttenberg and
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GoÇi 1997). However, in the most recent layers of core OHT,
C:P and d13C appeared directly correlated, suggesting that a new
organic matter source has been introduced. d13C values as high
as )11& have been previously observed in coastal tidal flats
sediments and were related to the input of relatively coarse
detritus from C4 grasses (Mook and Tan 1991). According to
Van derMerwe andVogel (1978), even a discrete terrestrial OM
input, introducing a C4 plant component from cultivated fields
(as corn, sorghum, or sugar cane, which are cultivated in El
Fuerte Valley) could shift the d13C values as high as )12.5&. It
is worth mentioning that the production of sorghum and sugar
cane in El Fuerte Valley has significantly increased with time.
Only between 1994 and 2004, sorghum and sugar cane crops
passed from 9,160 to 55,807 and from 448,560 to 1,006,034 tons
per year, respectively (INEGI 1994, 2005).

According to Meyers (1997), the observed d15N profile
could be the result of the reduction of freshwater supply after
the partial diversion of a river. According to the plot of d15N
and d13C (Figure 7A), the sediment core OHT is showing the
transition between two kinds of environments: (1) from the
bottom of the core up to 11.5 cm depth (year 1900), a wetter
environment in which estuarine OM has a more terrestrial
character; and (2) from 9.5 cm depth (early 1930s) to the
surface, a dryer environment in which estuarine OM has a
more marine character (the values from sediment core OH2 are
also located in this region of the plot). d15N and d13C values
increasing together can be produced by dryer conditions
(runoff diminution) with bloom maxima migrating upstream
(as the saline plume arrives further up in the estuarine zone)
and decreased size of the bloom due to lower nutrient flux to
the site (Bratton et al. 2003). The 15N increase is likely due to
the decreasing input of isotopically light land-plant detritus
carried by the river waters to the estuary (Meyers and Lallier-
Verg�s 1999) where marine algae are more abundant.

C and N isotopic changes are undoubtedly related to the
development of the agroindustry in the surrounding area of
Ohuira Lagoon. The period of gradual decreasing d13C values in
core OHT corresponded with the gradual increment of the cul-
tivated area at El Fuerte Valley (Figure 6F) between 1900 and
1959, whereas in core OH2 the evidence is observed after the
abrupt increase of cultivated areas between 1956 and 1957. On
the other hand, d15N increasing values are most likely the result
of the reduction in fresh water supply to the site due to the
creation of irrigation infrastructure of El Fuerte Valley and the
consequent development of more brackish-marine conditions.
Actually, the Tastes channel was built in 1892 to derive water
from the El Fuerte River to the Los Mochis desert. By the mid-
1940s, this channel and several other minor channels connected
through 500 pumps were used to irrigate 18,000 ha. The SICAE
channel was built by 1947 and the irrigated area abruptly dou-
bled from 18,000 to 36,000 ha; and with the construction of
Miguel Hidalgo dam in 1956, the irrigation capacity increased
from 55,000 to 240,000 ha (Gill 2003).

Conclusions

The combination of geochemical analysis and 210Pb dating
was very useful to examine the past rates of sediment and
nutrient sequestration in a coastal environment. C and N iso-
tope ratios proved to be more sensible tools to trace changes in

OM provenance than C:N:P ratios. The study demonstrated
that anthropogenic land use within the catchment is the main
factor driving both sediment and nutrient retention in two
mudflat areas of Ohuira Lagoon; although the impact is not
spatially uniform and, therefore, care should be taken to avoid
generalizations. The different effects of the nutrient-enriched
runoff from agricultural lands observed in the two cores were
related to the hydrological regime (open and partially closed
subtidal areas) and the closeness to the sediment and nutrients
source. Sediment accumulation in the area closer to the culture
fields has increased �5 times with respect to the pre-anthro-
pogenic conditions in less than 20 years, while C, N, and P
fluxes increased almost 10-, 10-, and 13-fold, respectively. At
the site that is more influenced by marine conditions, no
changes in sediment accumulation were observed, although C,
N, and P fluxes doubled during the last 60 years.
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