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Abstract. Humans are exposed to methylmercury (MeHg)
principally by consumption of marine fish. The coastal zone
supports the majority of marine fish production, and may
therefore be an important source of MeHg to humans; how-
ever, little is known about the bioaccumulation of MeHg in
near-shore marine ecosystems. We examined MeHg in mi-
croseston, zooplankton, a decapod crustacean, and four rep-
resentative species of finfish that differ in trophic status and/or
prey selection in Long Island Sound (LIS), a large coastal
embayment in the northeastern United States. MeHg biomag-
nifies in LIS; levels in microseston were 104.2 greater than
those in water and 2.3-fold less than zooplankton. MeHg
concentrations were related positively to fish length for each
species, but often varied considerably among larger individu-
als. This may be due to differences in the past dietary MeHg
exposure of these fish, some of which are migratory. Sedi-
mentary production and mobilization can account for most of
the MeHg in microseston of LIS, and by extension, other near-
shore locations. Hence, much of the MeHg in higher trophic
levels of coastal marine ecosystems, including fishes destined
for human consumption, may be attributed to net sedimentary
production and dietary bioaccumulation.

Accumulation of toxic methylmercury (MeHg) in aquatic food
webs is the primary human health concern related to mercury
in the environment. Humans are exposed to MeHg principally
by the consumption of fish and fish products (Fitzgerald and
Clarkson 1991), and some fish levels may pose a threat to
public health. Indeed, transfer of MeHg from a maternal sea-
food diet to prenatal life stages can inhibit the neurological and
cardiovascular development of children (e.g., Grandjean et al.
1997; Sorensen et al. 1999). Additionally, MeHg may ad-
versely affect the cardiovascular health of adults who eat fish
(Salonen et al. 1995). Most of the fish consumed by humans is
of marine origin (U.S. EPA 2002), and the coastal zone sup-
ports 50–75% of marine fish productivity (Ryther 1969). Thus,
bioaccumulation and biomagnification of MeHg in near-shore

marine ecosystems are critical processes affecting the exposure
of humans who consume fish. Yet, compared to freshwater
environments, there is a paucity of knowledge concerning the
biogeochemistry and bioaccumulation of MeHg in biologically
productive coastal marine systems.

Most MeHg in coastal marine systems results from the
bacterial methylation of inorganic mercury (Hg) in sediments.
Near-shore sediments are not only a repository for natural and
anthropogenically derived inorganic Hg (e.g., Balcom et al.
2004), but they host active communities of sulfate reducing
bacteria, the major functional group of organisms mediating
the transformation of inorganic Hg to MeHg (Compeau and
Bartha 1985). Recent studies have shown that the biogeo-
chemical combination of inorganic Hg and sulfate-reducing
bacteria in near-shore deposits results in considerable pro-
duction and mobilization of MeHg to overlying water (e.g.,
Gill et al. 1999; Hammerschmidt et al. 2004; Hammerschmidt
and Fitzgerald 2006). In Long Island Sound, for example,
more than 70% of the MeHg is estimated to be derived from
sediments (Balcom et al. 2004).

Aquatic organisms accumulate MeHg from water, sediment,
and food. MeHg and inorganic Hg are concentrated from water
by unicellular organisms (Mason et al. 1996). Diet is the pri-
mary source of MeHg in zooplankton (Tsui and Wang 2004)
and fish (Hall et al. 1997). Slow rates of elimination relative to
the rate of dietary intake result in the bioaccumulation of
MeHg. That is, MeHg concentrations typically increase with
age/size of an organism (Wiener and Spry 1996). Relatively
slow rates of MeHg depuration also result in its biomagnifi-
cation during trophic transfers; MeHg increases in concentra-
tion with increasing trophic levels in a food web (Wiener et al.
2003). Bioaccumulation and biomagnification often result in
fish MeHg concentrations that are 106 to 107 greater than those
in surface water (Wiener et al. 2003). Some fish contain levels
of MeHg that exceed those deemed safe for human con-
sumption by state, federal, and international agencies (e.g.,
U.S. EPA 2004).

We examined MeHg in the biota of Long Island Sound
(LIS), a large (3200 km2) coastal embayment in the north-
eastern United States whose productive waters (200–400
g C m)2 y)1; Riley 1956) support active commercial and
recreational fisheries. Total Hg in LIS sediments (mean, 140
ng g)1 dry weight; Varekamp et al. 2000) is comparable to
that in some lacustrine systems (e.g., Cope et al. 1990;
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Bodaly et al. 1993) with fish MeHg concentrations that ex-
ceed recommended limits for safe consumption (300 ng g)1

wet weight; U.S. EPA 2001). Accordingly, and given that
benthic mobilization is the primary source of MeHg in lakes
(e.g., Hammerschmidt et al. 2006) and the Sound (Balcom et
al. 2004), we posited that MeHg levels in LIS biota also
would be elevated. MeHg was examined in surface water,
microseston, zooplankton, American lobster Homarus
americanus, and four representative species of finfish that
differ in trophic status and/or prey selection. These included
the alewife Alosa pseudoharengus (a pelagic planktivore),
winter flounder Pseudopleuronectes americanus (demersal
omnivore), tautog Tautoga onitis (durophagous benthic in-
vertivore), and bluefish Pomatomus saltatrix (piscivore).
Each of these is either a commercially or recreationally
important species in LIS and other near-shore waters of the
eastern United States.

Material and Methods

Sampling

Fish were sampled from the central region of LIS (Fig. 1). LIS is
open to the East River and New York Harbor at its western end and
the Atlantic Ocean in the east. Fish were collected with the assis-
tance of the Connecticut Department of Environmental Protection
(CTDEP) during its biannual Long Island Sound Trawl Surveys. All
fish were sampled from LIS at locations between 72.47�W and
73.41�W.

Alewife, winter flounder, and bluefish were sampled in May and
September 2002. Fish were collected with a 14-m otter trawl that had
a 51-mm mesh codend. Four small lobsters also were collected in
September 2002. In May 2004, tautog were caught, and an additional
nine lobsters obtained from a local lobsterman on the day of their
capture from the central region of LIS, south of New Haven, CT. Fish
and lobsters were stored on ice and transported within 24 h of capture
to the University of Connecticut, where they were weighed and
measured for length. Samples of skinless axial muscle were removed
from winter flounder, tautog, and bluefish, and the tail muscle and
hepatopancreas were dissected from lobsters. Scrupulous trace-metal
clean techniques (Hammerschmidt et al. 1999) were used during
dissection to minimize Hg contamination, which could bias levels and
reduce the percentage of total Hg as MeHg. All dissected tissues and
whole alewife were stored frozen (£ )20�C) inside individual plastic
bags until lyophilization. The Hg content of forage species, such as
alewife in this study, commonly is measured in the whole fish. Freeze-
dried whole alewife were homogenized with a stainless steel blender,
and lyophilized muscle samples were homogenized inside their plastic
storage bags. The age of tautog was estimated by examination of
opercular bones (Cooper 1967).

MeHg also was measured in water, microseston, and zooplankton.
Water and suspended particulate matter (SPM, >0.2 lm), most of
which is phyto- and bacterioplankton (i.e., microseston) in LIS
(Lamborg et al. 2004; Hammerschmidt and Fitzgerald 2006), were
sampled with trace-metal clean techniques as part of a comprehensive
study of the biogeochemical cycling of Hg species in the Sound
(Balcom et al. 2004). Water samples were filtered through 0.2-lm
polycarbonate membrane filters promptly after collection to separate
dissolved and microseston fractions. Zooplankton, nearly all of which
were copepods (Acartia sp.), were sampled from four locations along
the longitudinal axis of LIS with a 200-lm mesh nylon net in June
2002.

Analytical Procedures

MeHg Extraction and Analysis. MeHg was measured in zooplankton
and individual fish after extraction with dilute HNO3. Subsamples
(0.1–0.2 g) of lyophilized and homogenized biological material were
digested with 7.0 mL of 4.57 M HNO3 in a covered 60�C water bath
for 12 h (Hammerschmidt and Fitzgerald 2005). This extraction
method is preferable compared to the traditional KOH/methanol
techniques because it allows determination of both MeHg and total Hg
in the same extract, thereby reducing some random errors (e.g.,
sample mass determinations, within-sample heterogeneity) associated
with analysis of each Hg species in separate tissue subsamples (Bloom
1992). Polycarbonate filters with microseston were digested similarly
with 2 M HNO3. MeHg was extracted from filtered surface waters by
aqueous distillation (Hammerschmidt and Fitzgerald 2004). All MeHg
determinations were made by flow-injection cold-vapor atomic
fluorescence spectrometry (CVAFS; Tseng et al. 2004).

The accuracy of our MeHg measurements was quantified by
analyses of (1) blanks and calibration standards taken through the
digestion process, (2) certified reference materials from the National
Research Council of Canada, lobster hepatopancreas (TORT-2), and
dogfish liver (DOLT-2), (3) replicate subsamples of fish and zoo-
plankton, and (4) spiked subsamples (before digestion). Our mean
measured concentration of MeHg in TORT-2 was 151 ng g)1 dry
weight (certified range, 139–165 ng g)1), and that in DOLT-2 was 686
ng g)1 (certified range, 640–746 ng g)1). Method precision (relative
standard deviation), estimated from analyses of duplicate and tripli-
cate subsamples, averaged 3.3% (range, 0.1–16%; n = 98). The mean
recovery of MeHg was 101% (95% confidence interval, 97–104%)
from 26 spiked samples. All MeHg concentrations in biota are re-
ported on a wet-weight basis.

Total Hg Extraction and Analysis. Total Hg was measured in 19
individual fish to verify that MeHg was the dominant Hg species. The
4.57 M HNO3 leachates for MeHg analysis also were used for
determination of total Hg after treatment with BrCl for 12 h (Ham-
merschmidt and Fitzgerald 2005). Hydroxylamine hydrochloride
(12% wt:vol) was added to digestates as a prereductant at least 1 h
prior to analysis. Digestates were analyzed for total Hg by dual-Au
amalgamation CVAFS (Fitzgerald and Gill 1979). Total Hg analyses
were calibrated with Hg0 standards removed from the headspace over
pure liquid and verified by comparison to analyses of aqueous Hg2+
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solutions traceable to the U.S. National Institute of Standards and
Technology (NIST). Also, working standard solutions of MeHg were
calibrated, after BrCl oxidation, by comparison to NIST-traceable
Hg2+ solutions and Hg0 standards. Recovery of added Hg2+ averaged
99% (range, 94–104%) compared to Hg0 standards. Our mean mea-
sured concentration of total Hg in TORT-2 was 280 ng g)1 dry weight
(certified range, 210–330 ng g)1) and that in DOLT-2 was 2120 ng
g)1 (certified range, 1860–2420 ng g)1). The precision of methodi-
cally replicated analyses of total Hg averaged 1.9% RSD (range, 0.1–
12%). The estimated detection limit for both MeHg and total Hg in a
0.1-g sample of lyophilized fish was about 0.1 ng g)1.

Results and Discussion

Bioaccumulation and Biomagnification of MeHg

MeHg biomagnifies in LIS (Table 1). Levels of MeHg in
0.2-lm filtered, oxic waters of LIS average about 0.03 ng
L)1, and are comparable to those in other coastal marine
systems (Mason et al. 1999; Baeyens et al. 2003; Ham-
merschmidt and Fitzgerald 2006). Microseston bioconcentrate
Hg species from surface water (Mason et al. 1996). The
mean concentration of MeHg in LIS microseston is 0.5 ng
g)1 wet weight (range, 0.2–1.0 ng g)1), assuming that the
water content of microseston averages 90% (Yamaguchi et
al. 2005). The increase in MeHg between water and mi-
croseston can be expressed as a bioaccumulation factor
(BAF, L kg)1), which is the concentration of MeHg in biota
(wet weight basis) divided by that in water. The BAF for
MeHg in microseston of LIS averages 104.2. This is the
greatest amplification step for MeHg in the food web of LIS
(Table 1). Comparable BAFs for MeHg in microseston have
been observed in other coastal marine (103.5–103.9, Baeyens
et al. 2003) and freshwater systems (103.8–105.2; Watras and
Bloom 1992; Watras et al. 1998). These studies reported
either bioconcentration or bioaccumulation factors for seston
based on dry-weight tissue concentrations that we converted
to wet weight assuming seston is 90% water.

MeHg accumulated by microseston is transferred to graz-
ing zooplankton. Zooplankton in LIS, mostly Acartia cope-
pods in our samples, contained 0.9–1.4 ng MeHg g)1 (mean,
1.1 ng g)1; Table 1), assuming that the water content of
zooplankton is 90%. The average increase in MeHg from
microseston to zooplankton in LIS was small (2.3-fold), but
comparable to that observed in freshwater environments
(Watras and Bloom 1992; Watras et al. 1998). Alewife for-
age principally on zooplankton (Bowman et al. 2000), and
MeHg in whole alewife was about 20-fold greater than that
in zooplankton (Table 1). Ultimately, bioaccumulation and
trophic transfer resulted in a 106 magnification of MeHg
between water and alewife (Table 1). Also, the percentage of
total Hg as MeHg (i.e., %MeHg) increased concomitantly
with the concentration of MeHg among trophic levels
(Table 1). This is consistent with observations of MeHg
bioaccumulation and trophic transfer in freshwater systems
(Wiener et al. 2003). Winter flounder, American lobster,
bluefish, and tautog were not assessed in this biomagnifica-
tion analysis because only the muscle of these organisms was
analyzed for MeHg (Gray 2002). These results indicate that
MeHg is biomagnified during trophic transfers of organic
material in LIS, and that accumulation of MeHg by

microseston is a major factor affecting levels in coastal
marine food webs.

It is readily demonstrated that in situ sedimentary produc-
tion is a primary source of MeHg in LIS microseston. Firstly,
the estimated diffusional flux of MeHg from sediments of LIS
is 11 € 4 kg y)1 (Hammerschmidt et al. 2004), and the major
source to this system (�70% of total inputs; Balcom et al.
2004). Lesser inputs from external sources, namely rivers, are
balanced roughly by tidal exchange, sedimentation, and pho-
todecomposition within the Sound (Balcom et al. 2004;
Hammerschmidt 2005). Secondly, the significance of sedi-
mentary production and mobilization of MeHg to its accu-
mulation at the base of the food web in LIS can be evaluated in
the following manner. The concentration of MeHg in mi-
croseston would be 0.3–0.7 ng g)1 if all sediment-derived
MeHg were accumulated by microseston in LIS (200–400 g C
m)2 y)1; Riley 1956). This estimate assumes that the water
content of plankton averages 90% and that carbon is 40% of
dry material (Redfield et al. 1963). The predicted level of
MeHg in microseston agrees quite well with our measurements
of MeHg (mean, 0.5 ng g)1), as noted in Table 1. This
agreement suggests that most of the MeHg in microseston may
be attributed to the sedimentary flux in LIS, and by extension,
other comparable coastal marine systems not impacted by
large fluvial inputs. This should include many continental shelf
regions, where the fraction of MeHg derived from benthic
production is presumably even greater than that in LIS
(Hammerschmidt and Fitzgerald 2006). Accordingly, levels of
MeHg in higher trophic levels of the coastal zone may be
related to its production in underlying sediments, and this
production may have been enhanced during the past 200 years
by anthropogenic loadings of inorganic Hg to near-shore and
continental shelf sediments (Varekamp et al. 2002; Balcom
et al. 2004).

Hg Speciation in Tissues

Nearly all of the Hg in fish is MeHg. Figure 2 shows that, on
average, about 98% (slope of regression) of the Hg in the
muscle of LIS fish is MeHg. Alewife are not included in the
regression analysis in Figure 2 because whole-fish homogen-
ates of alewife were analyzed, and the %MeHg in these
samples (mean, 84%) is considerably less than that in the

Table 1. Biomagnification of MeHg in Long Island Sound

Food web
component

Mean MeHg
(ng g)1 wet weight)

BAF
(log units)

MeHg/total
Hg (%)

Oxic water
(<0.2-lm filtered)

0.00003 — 3

Microseston
(SPM, >0.2 lm)

0.5a 4.2 9

Zooplankton
(>200 lm)

1.1a 4.6 —

Whole alewife 27 6.0 84

Bioaccumulation factors (BAF, L kg)1) were calculated as the mean
concentration of MeHg in biota (wet weight basis) divided by that in
oxic surface water.
a MeHg concentration assumes the water content is 90%.
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muscle of the other species (range, 98–101%). The difference
in %MeHg between alewife and the other species likely re-
flects both the distribution of MeHg and inorganic Hg within
fish and method of sample preparation. In fish, muscle is the
primary repository for MeHg but not inorganic Hg (Wiener
and Spry 1996). Nearly all of the Hg in muscle of fish and
lobster from LIS is MeHg, in agreement with measurements of
MeHg in the muscle of other marine finfish and decapod
crustaceans (Bloom 1992; Francesconi and Lenanton 1992;
Andersen and Depledge 1997; Baeyens et al. 2003). The Hg
content of small forage species, however, is commonly mea-
sured after homogenization of the whole fish, such as alewife
in this study, which includes some tissues enriched with
inorganic Hg compared to muscle (e.g., liver, kidney; Lasorsa
and Allen-Gil 1995; Francesconi and Lenanton 1992; Baeyens
et al. 2003). Given our clean techniques and scrupulous
attention to the avoidance of trace metal contamination, the
lower %MeHg in alewife can be attributed to organs enriched
with inorganic Hg (Bloom 1992), rather than contamination.

We assumed that MeHg is homogeneous in the axial muscle
of fish, so only a relatively small sample of skinless axial
muscle was dissected (5–50 g wet weight). We tested whether
MeHg concentrations in small subsamples of muscle are rep-
resentative of those throughout the axial muscle by comparing
MeHg in opposite fillets of 13 winter flounder collected in
May 2002. There is no significant difference in MeHg levels
between right and left fillets of winter flounder (paired t-test,
p = 0.20). Accordingly, MeHg is distributed equally in the
axial muscle of winter flounder, and by extension, other fish
species.

Alewife and Flounder

Alewife and winter flounder have the lowest mean MeHg
concentrations of the LIS fish examined (Table 2). Alewife are
a schooling pelagic fish, and individuals less than about 300
mm total length forage mostly on copepods and euphausids

(Bowman et al. 2000). MeHg in alewife is related to their
length, although there is a high degree of variability in MeHg
for a given fish size (Fig. 3a). For example, MeHg in alewife
having a total length of 270-275 mm ranges from 18 to 65 ng
g)1. With data from both May and September 2002 combined,
the relation between MeHg in whole alewife (Ca, ng g)1 wet
weight) and their total length (TLa, mm) can be described by
the equation

Ca¼ 3:86 þ 0:10TLa ð1Þ

which has a coefficient of determination (r2) of 0.20. The
trend of increasing MeHg with fish length is significant
(p < 0.001), and the p-value does not increase if the two
fish having greater than 60 ng g)1 are excluded from the
analysis. The relatively low slope of the regression line in
Figure 3a suggests that the rate of dietary MeHg intake by
alewife is only slightly greater than their rate of MeHg
depuration. This might be expected for planktivorous fishes
whose diet has a relatively low MeHg content.

The mean concentration of MeHg in axial muscle of winter
flounder is comparable to that in whole alewife (Table 2).
MeHg in winter flounder varies 10-fold among individuals and
is related positively to total length with data from May and
September combined (Fig. 3b). The relation between MeHg in
axial muscle of winter flounder (Cf, ng g)1 wet weight) and
their total length (TLf, mm) is described by the regression
equation (r2 = 0.39)

Cf¼ 1:29expð0:011 � TLfÞ ð2Þ

This relationship is influenced strongly by several large fish
(>275 mm total length) with relatively high MeHg levels
that were sampled in May (Fig. 3b). There is little relation
between MeHg and length of winter flounder in September
only, but only one fish larger than 275 mm was sampled
then. The MeHg content of winter flounder less than 275
mm does not differ significantly (t-test, p = 0.94) between
May (mean, 15.0 ng g)1) and September (15.2 ng g)1).

Differences in prey selection of individual fish, and MeHg
content of prey, could explain the relatively high variability in
concentration of the larger alewife and winter flounder. Eup-
hausids, in contrast to zooplankton, comprise a greater portion
of the diet of larger alewife (Bowman et al. 2000). Moreover,
winter flounder are omnivorous or opportunistic feeders on
benthic invertebrate macrofauna (Pereira et al. 1999; Bowman
et al. 2000), and their diet shifts progressively from mostly
detritus, polychaetes worms, and small crustaceans (e.g.,
amphipods and mysid shrimp) to siphons of bivalve mollusks
as the fish grow (Steimle et al. 2000). An ontogenic change in
the diet of some larger alewife and flounder to prey that
contain more MeHg per calorie could result in greater MeHg
accumulation relative to body size.

The MeHg content of alewife and winter flounder appar-
ently also is related to their physiological condition. Length-
weight relationships for alewife and winter flounder in this
study are shown in Figure 4. Seven alewife captured in May
2002 weighed considerably less than others of comparable
length. Data points for these fish are shown as open circles and
are positioned below the length-weight regression line
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(Fig. 4a), which is based on values for all other fish sampled.
Interestingly, whole-body MeHg concentrations in the
‘‘underweight’’ alewife (mean, 44; range, 32–65 ng g)1) were
greater (t-test, p < 0.001) than those in the other clupeids (25;
16–47 ng g)1), suggesting a link between MeHg concentration
and physiological condition, a relationship observed for
freshwater fish species (e.g., Suns and Hitchin 1990; Cizdziel
et al. 2002). This is supported by the results for winter
flounder; the three fish with MeHg levels greater than 60 ng
g)1 (Fig. 3b) also were underweight compared to others of
comparable length (Fig. 4b). Indeed, the weight of these three
flounder is 23–29% less than that predicted for their length
based on the equation in Figure 4b. The connection between
MeHg concentration and physiological condition of alewife
and winter flounder sampled in May 2002 may be related to
recent spawning and associated changes in diet.

American lobster

MeHg in American lobster is related directly to their size
(Fig. 5). With data from both September 2002 and May 2004
combined, the linear relation between MeHg in tail muscle
(Cl, ng g)1 wet weight) and wet weight of American lobster
(Wl, g) is significant (r

2 = 0.83, p < 0.0001) and described by
the regression equation

Cl¼ �0:37 þ 0:27Wl ð3Þ

The high coefficient of determination for this relationship is
surprising given the degree of variability observed between
MeHg and size of alewife and winter flounder (Fig. 3).
American lobster move throughout LIS, but rarely migrate
between the Sound and adjacent continental shelf (Benway
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Table 2. Summary characteristics (€ 1 SD) of finfish and American lobster from Long Island Sound that were analyzed for MeHg

Species n Age (y) Total length (mm) Fresh weight (g) Water content (%)a MeHg (ng g)1 wet wt)a

Alewife 58 — 234 € 45 (120–290) 134 € 62 (15–241) 73.2 € 2.4 27 € 10 (16–65)
Winter flounder 41 — 236 € 53 (133–345) 185 € 124 (23–543) 79.2 € 1.0 21 € 18 (9–86)
American lobster 13 — 103 € 23b (64–130) 513 € 212 (269–902) 78.1 € 1.8 140 € 64 (75–293)
Bluefish 46 lc (0–4) 406 € 170 (137–700) 853 € 770 (22–3383) 77.0 € 1.8 137 € 111 (19–333)
Tautog 32 8 (3–24) 414 € 84 (230–611) 1656 € 951 (280–4785) 80.7 € 1.0 191 € 144 (52–632)

Ranges are in parentheses.
a Water and MeHg contents of specific tissue analyzed for MeHg (whole alewife; axial muscle of winter flounder, bluefish, and tautog; tail muscle
of American lobster).
b Carapace length.
c Estimated age based on fork length-age relationship for bluefish (sexes combined) in coastal waters of the northeastern United States (Salerno
et al. 2001).
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et al. 2004). This suggests that our lobsters may be repre-
sentative of the LIS population, although our sample size
was small (n = 13) and limited mostly to the central region
of the Sound. The strong relationship between MeHg and
lobster size suggests that the MeHg content of their diet
(rock crabs, mollusks, polychaetes; Weiss 1970) remains
relatively constant throughout their lives.

Humans often eat the hepatopancreas (i.e., ‘‘green tomal-
ley’’) of lobster in addition to muscle. MeHg levels in the
hepatopancreas of the nine lobsters sampled in May 2004 are
relatively low (20–59 ng g)1) and averaged only 23% of that in
tail muscle (range, 13–41%). MeHg, unlike more lipophilic
organic contaminants, does not concentrate in fatty tissues
(Niimi 1983), and lipids comprise more than 40% of American
lobster hepatopancreas by weight (Floreto et al. 2000). In
addition, the hepatopancreas may be a site of detoxification for
Hg, as it is for other heavy metals (Ahearn et al. 2004). In
contrast to the Hg content of tail muscle (99% MeHg), MeHg
averages only 28% of total Hg in the hepatopancreas. This
suggests that either MeHg is demethylated in the hepatopan-
creas or complexes of inorganic Hg are sequestered prefer-
entially in this organ.

Bluefish and Tautog

Bluefish are an apex predator in LIS, and their average MeHg
concentration is greater than that of alewife and winter
flounder (Table 2), both of which, in addition to numerous
other bony fishes and cephalopods, are common prey for this
schooling piscivore (Fahay et al. 1999; Pereira et al. 1999). In
September 2002, a strong relationship was observed between
the MeHg concentration (Cb, ng g)1 dry weight) and total
length (TLb, mm) of bluefish (Fig. 6a), which is described by
the regression equation (r2 = 0.96)

Cb¼ 12:1expð0:0045 � TLbÞ ð4Þ

The relationship for September bluefish is noteworthy gi-
ven both the extreme migratory distance of this species,
seasonally between the Middle and South Atlantic Bights

(Fahay et al. 1999), and the presumably variable MeHg
contents of their prey, geographically, and possibly
ontogenically.

Bluefish sampled in May 2002 have significantly more
MeHg than those of the same size captured in September,
although there is no relationship between MeHg in muscle and
total length of bluefish sampled in May (Fig. 6a). Bluefish
typically migrate in schools of like-sized individuals from
southerly coastal waters into LIS in May, and the total length
of the 14 May bluefish ranges from 460 to 620 mm (mean, 547
mm). Seven bluefish caught in September are within this size
range, and although their total length (mean, 540 mm) is
comparable to that of the May bluefish (t-test, p = 0.79), the
MeHg content of the May bluefish (mean, 276 ng g)1 wet
weight) is considerably greater than that of comparably sized
bluefish caught in September (mean, 136 ng g)1; t-test,
p < 0.0001). The difference in MeHg concentration of bluefish
between these periods is related most probably to recent or
past variations in the MeHg content of their prey, potentially as
a result of migration. This is in contrast to results for the
September bluefish only, which suggest that the MeHg content
of their prey is relatively constant.

Durophagous tautog, which feed mostly on blue mussels and
small decapod crustaceans (Steimle et al. 2000), have the
greatest mean MeHg concentration of the fish species exam-
ined in LIS (Table 2). The relation between MeHg in tautog
(Ct, ng g)1 wet weight) and total length (TLt, mm) is described
by the equation (r2 = 0.69)

Ct¼ 8:4expð0:0072 � TLtÞ ð5Þ

The relatively high levels in tautog are surprising because
MeHg biomagnifies and typically increases in food webs
according to trophic position (Wiener et al. 2003), resulting
in apex piscivores (e.g., bluefish in LIS) having the greatest
levels within a system. One explanation for enhanced levels
in tautog compared to bluefish is their longer lifespan and
opportunity to accumulate MeHg. Indeed, the mean age of
tautog collected for this study is nearly 10-fold greater than
the average estimated age of bluefish (Table 2).

Bluefish accumulate MeHg much more rapidly than tautog.
The mean MeHg content of 2–3-year-old bluefish in LIS is 230
ng g)1 (n = 22). The ages of LIS tautog having a similar MeHg
concentration are between 8 and 10 years. This comparison
indicates that bluefish accumulate MeHg 3–5 times more
rapidly than tautog. A greater rate of bioaccumulation by
bluefish may be attributed to differences in the MeHg content
of prey. Although levels in their diets are unknown, it is likely
that MeHg in the prey of bluefish (e.g., alewife, �25 ng g)1) is
greater than that in the shellfish diet of tautog. For example,
northern quahog clams Mercenaria mercenaria from nearby
New York Harbor (Fig. 1), a surrogate for blue mussels in LIS,
have only about 2 ng MeHg g)1 (Hammerschmidt 2005). Yet,
although bluefish accumulate MeHg at a much greater rate
than tautog, the considerably longer lifespan of tautog, up to
34 years (Cooper 1967), permits an extended period for MeHg
accumulation, and LIS tautog have a mean MeHg concentra-
tion that is comparable to bluefish (Table 2). The significance
of fish longevity to MeHg accumulation is evident in the U.S.
Environmental Protection Agency warning against human
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Fig. 5. MeHg in tail muscle versus size of American lobster from
Long Island Sound in September 2002 and May 2004
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consumption of tilefish Lopholatilus chamaeleonticeps (U.S.
EPA 2004), which has a diet and extended lifespan comparable
to tautog. The results of this work confirm that species lon-
gevity, in addition to trophic position, must be considered
when assessing both the bioaccumulation of MeHg by near-
shore fishes and the associated potential exposure of humans
who consume these fish.

Comparison with New York Bight

Bluefish and tautog captured in LIS can be compared with
those from nearby New York Bight. Deshpande and co-work-
ers (2000) measured total Hg in 14 axial muscle composites
(i.e., three fish of similar size per composite) each of bluefish
and tautog sampled from near-shore waters of the New York
Bight Apex, along the northern New Jersey-Atlantic Ocean
coast. The average MeHg content of the New Jersey bluefish
(mean total length, 561 mm) was 102 ng g)1 wet weight,
assuming all total Hg was MeHg. This concentration is about
30% less than that estimated for a LIS bluefish having this
length in September (151 ng g)1, equation 4) and almost 3-fold
less than the mean level of MeHg in comparably sized bluefish
sampled from LIS in May (276 ng g)1; mean length, 547 mm).
Differences in bluefish MeHg between the two locations may

be related to geographical variations in the synthesis and
mobilization of MeHg from sediments (Hammerschmidt et al.
2004; Hammerschmidt and Fitzgerald 2006), which as noted, is
a major factor affecting the bioaccumulation in lower trophic
levels, and regional differences in planktonic productivity that
influence the MeHg:biomass ratio in food webs (Pickhardt
et al. 2002). It is most probable, however, that bluefish
migration patterns, and associated past differences in dietary
exposure, are the major sources of MeHg variation between
these locations. This is supported by the considerable differ-
ence in bluefish MeHg between May and September in LIS
(Fig. 6a).

However, and in contrast to the bluefish, levels of MeHg in
tautog are comparable between LIS and the northern New
Jersey-Atlantic Ocean coast. Tautog sampled from the New
Jersey shore (mean total length, 310 mm) had an average
MeHg concentration of 81 ng g)1 (Deshpande et al. 2000),
again assuming all total Hg was MeHg. This is comparable to
the estimated MeHg level in LIS tautog having the same total
length (78 ng g)1; equation 5). The differences and similarities
in MeHg accumulation by bluefish and tautog between these
two locations illustrate the complexity of MeHg cycling and
bioaccumulation within and among coastal marine systems.
Together, and in accord with individual fish species in this
study, these results suggest that the MeHg content of coastal
marine fish, some of which are highly migratory, is related to
their past dietary exposure to MeHg, which may vary geo-
graphically and ontogenically. Clearly, there is a need for more
comprehensive and detailed examinations of factors and pro-
cesses affecting the bioaccumulation of MeHg in near-shore
food webs and levels of MeHg in coastal marine fishes
consumed by humans.

Conclusions

MeHg in biota of coastal marine ecosystems is related to its
production in underlying sediments. In situ sedimentary pro-
duction is a major source of MeHg in near-shore systems
(Mason et al. 1999; Balcom et al. 2004), and most of the
MeHg in microseston of LIS can be attributed to the sedi-
mentary flux. Uptake from water by microseston is the greatest
bioaccumulation step for MeHg in the food web of LIS, and
MeHg biomagnifies during subsequent dietary transfers. Many
of the fish species in LIS are migratory, so their MeHg con-
tents are not dependent entirely on the production and accu-
mulation of MeHg in LIS. The MeHg content of near-shore
fish reflects their life-long dietary exposure in coastal waters
and embayments such as LIS, which they may inhabit
permanently or seasonally.

Anthropogenic loadings of inorganic Hg to near-shore
deposits may have increased the accumulation of MeHg in
biota. We have found that MeHg production in coastal marine
sediments is limited by the availability of inorganic Hg
(Hammerschmidt and Fitzgerald 2004; Hammerschmidt and
Fitzgerald 2006), which is influenced strongly by Hg loadings
and partitioning with sedimentary organic material. Anthro-
pogenic sources have increased annual loadings of inorganic
Hg to LIS at least 5-fold since the Industrial Revolution
(Varekamp et al. 2002; Balcom et al. 2004), and it is likely
that comparable increases in the delivery of inorganic Hg have
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occurred in other semi-industrialized near-shore regions. If
factors affecting the bacterial methylation of inorganic Hg
have not changed over this same time period, then it is rea-
sonable to infer that synthesis and subsequent bioaccumulation
of MeHg coastal marine systems have increased relative to
pollutant Hg enrichment. However, increased loadings of al-
lochthonous and autochthonous organic matter may have re-
duced the bioavailability and associated potential for
methylation of the pollutant inorganic Hg (Hammerschmidt
and Fitzgerald 2004).

Each of the fish species analyzed for MeHg in this study
were selected to represent a particular trophic level/feeding
mode in near-shore marine ecosystems. Surprisingly, given the
level of Hg contamination in LIS sediments, MeHg concen-
trations in LIS fish are low. All alewife, winter flounder, and
American lobster sampled for this study have MeHg concen-
trations less than the U.S. EPA-recommended criterion of 300
ng g)1 for safe consumption (U.S. EPA 2001), and only five of
32 tautog (16%) and five of 46 bluefish (11%) exceed this
level. It is noteworthy, however, that many of the bluefish
sampled in this study may be smaller, and have subsequently
lower MeHg levels, than those either typically kept by
fishermen or sampled in other studies. Without regard for fish
size, the average concentration of MeHg in bluefish captured
in LIS (137 ng g)1 wet weight) is considerably less than that
determined from other regional (New Jersey fish markets, 260
ng g)1, Burger et al. 2005; New Jersey coast and estuaries, 410
ng g)1, Ashley and Horwitz 2000; Florida estuary, 640 ng g)1,
Strom and Graves 2001) and national assessments (340 ng g)1,
U.S. Department of Health and Human Services and U.S. EPA
2006). It is evident, given the MeHg levels observed in some
fishes of near-shore food webs, that bioaccumulation of MeHg
in the coastal zone, as well as the open ocean, should be
investigated more comprehensively.
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