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Abstract Androgen receptor (AR), a key nuclear tran-
scription factor in the prostate gland, is expressed in all
histological types and stages of prostate cancer. The AR
regulates proliferation of prostate cancer cells by stim-
ulation of cyclin-dependent kinases. However, in some
prostate tumors AR stimulates expression of cell cycle
inhibitors, thus leading to down-regulation of cellular
proliferation. Androgens, by activation of the AR,
control differentiation of prostate cells and synthesis of
neutral lipids. There are several mechanisms by which
prostate cancer cells adapt to an environment with low
androgen supply during endocrine therapy. The AR
expression and activity increase in several cell lines that
are used as an in vitro model for monitoring changes
during long-term androgen ablation. Mutant ARs are of
importance for monitoring the natural course of the
disease and for determining the response to anti-an-
drogens in metastatic lesions from prostatic carcinoma.
In addition, AR activity is up-regulated by various
stimulators of intracellular protein kinases. Current re-
search efforts are focused on elucidation of function of
AR coregulatory proteins, coactivators and corepres-
sors. Their inappropriate expression and/or function
might critically influence cellular events in advanced
carcinoma of the prostate. It is hoped that information
on these coregulatory proteins will serve as a basis for a
more efficient pharmacological inhibition of the AR in
advanced carcinoma of the prostate.
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Introduction

Our understanding of the biology of advanced prostate
cancer has been changed since it has become clear that
the androgen receptor (AR) is expressed in nearly all
prostate cancers, including therapy-refractory tumors
and their metastases. This recognition has important
implications for basic and translational research in
carcinoma of the prostate, especially for the develop-
ment of new therapies. In the past, it was presumed
that AR expression is down-regulated in patients with
advanced prostate cancer. This hypothesis was based
on results obtained in various in vitro model systems
which show a reduced or absent AR expression [82,
97]. Immunohistochemical visualization of the AR in
target tissues, including prostate, was made possible by
use of monoclonal and polyclonal antibodies which
were raised after cloning of the AR [8, 66, 96, 99, 101].
Presence of the AR in relapsed tumors was first re-
ported in the early 1990s [85, 101]. These studies also
revealed that the percentage of AR-positive cells in
tumor specimens does not correlate with duration of
responsiveness to endocrine therapy. In contrast to
prostatic epithelial and stromal cells, the AR is not
expressed in rare small cell cancer of the prostate and
in neuroendocrine cells which are present to some ex-
tent in nearly all prostate cancers [58, 101]. The stromal
AR is a primary target of androgen action and its
functionality appears to be particularly important
during prostate development for maintaining the
function of the normal prostate. It is needed for stro-
mal to epithelial interactions that include various
growth factor loops. In contrast, in late stage prostate
cancers in tumor-adjacent stroma AR expression
decreases [78]. In vivo growth of androgen-responsive
PC 82 prostate cancer cells is dependent on their own
AR pathway and not on the AR-expressing stromal
cells [29]. These data suggest that there is a stromal
independence of prostate tumors. The reasons why
some prostate cancer cells do not express the AR were
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recently studied. These studies revealed that, in DU-145
cells, methylation of the promoter CpG island is as-
sociated with the loss of AR expression [47]. In pros-
tate cancer metastases, AR expression was first studied
in those of lymph node. These samples were obtained
from patients who had undergone radical prostatecto-
my [39]. Since these patients did not present with
therapy-refractory cancer, it was not surprising that
nearly all metastases were AR-positive. In 1995, it was
shown by using the Northern blot technique and im-
munohistochemistry that distant metastases from pa-
tients who do not respond to endocrine therapy are
also largely AR-positive [38, 94]. These findings greatly
stimulated studies on AR function in normal and
pathological situations.

AR structure

In this paper, only a brief overview of AR structure
will be presented. More detailed information, can be
found in comprehensive endocrinological reviews [81].
The AR is a ligand-activated transcription factor of
the nuclear receptor superfamily which is composed of
919 amino acids [8]. The AR gene is located at the
short arm of the chromosome X and consists of eight
exons. The AR protein is composed of the three
domains: (1) the well-conserved ligand-binding, (2) the
DNA-binding and (3) the variable N-terminal domain.
Present in the N-terminal domain are polymorphic
glutamine and glycine repeats, the length of which
influences receptor functional activity. The N-terminal
domain is encoded by exon 1 of the AR gene. Exons 2
and 3 contain sequences for the DNA-binding domain.
The DNA-binding domain amino acids are structurally
organized into two zinc fingers, with each ‘“finger”
being composed of four cysteine residues bound to a
zinc ion. The DNA-binding domain is involved in
receptor dimerization. A part of exon 4 contains in-
formation for the hinge region that is located between
the DNA- and the ligand-binding domains. The li-
gand-binding domain is encoded by a part of exon 4
and entire exons 5-8. Experiments in which AR dele-
tion mutants generated by polymerase chain reaction
(PCR) mutagenesis were expressed in heterologous
cells revealed that the ligand-binding domain-truncated
AR is active in the absence of a hormone [49]. Con-
stitutively active receptors, however, were not detected
in specimens obtained from prostate cancer patients.
The hinge region is important for nuclear transloca-
tion. Transcription activation function (TAF-1, amino
acids between residues 141 and 338) is located mainly
in the N-terminal region but the regulatory sequences
are also located in the ligand-binding domain (TAF-2)
[49, 70]. The unliganded AR is distributed through the
cytoplasm and nucleus and is complexed with heat-
shock proteins 90, 70 and 56 that prevent constitutive
activation of the receptor. Ligand binding leads to
the dissociation of heat-shock proteins and causes a

typical conformational change in the ligand-binding
domain [52].

AR expression and function in prostate cells

Expression of AR mRNA and protein are regulated
differentially in the prostate. Androgen administration
leads to a rapid decrease of AR mRNA but it also
stabilizes the protein and the net effect is an increased
expression of the AR protein [59]. Such regulation
is not observed in each target tissue. For example, in
bone, AR mRNA is up-regulated by androgens [106].
Besides androgens, different peptides are involved in
the regulation of the AR in prostate cells. Substances
that increase intracellular cAMP up-regulate activity
of the human AR promoter [69]. The AR expression
is also up-regulated by 1-a, 25-dihydroxyvitamin Dj
and this up-regulation correlates with the inhibition of
tumor cell proliferation [44]. The relationship between
AR expression and prostate cancer cell proliferation is
very complex and will be discussed later in detail. The
AR mRNA and protein expression are inhibited in
LNCaP cells by epidermal growth factor (EGF) [37].
Down-regulation of AR protein, but not mRNA was
observed after treatment with basic fibroblast growth
factor [11]. It is not clear, however, which signaling
pathways are utilized by these growth factors to
inhibit AR expression. The AR down-regulation in
connection with inhibition of tumor proliferation was
observed after treatment of prostate cancer cells with
conditioned media from activated T lymphocytes and
peripheral blood monocytes [16, 43]. While the medi-
ator of effects of T lymphocytes on AR expression has
not been identified, we have shown that monocyte-
derived interleukin-15 (IL-1p) exhibits negative effects
on AR and prostate-specific antigen (PSA) expression
as well as on LNCaP cell proliferation [16]. Modula-
tory effects of monocyte-conditioned media on
LNCaP cells were abolished after pretreatment of
these supernatants with the anti-IL-1f antibody. An
important intracellular event that leads to induction
of apoptosis and down-regulation of AR mRNA and
protein is an elevation of intracellular calcium levels
[11, 32].

By activation of the AR, androgen regulates pro-
liferative and secretory responses in prostate cancer
cells as well as the synthesis of prostatic lipids and
fatty acid synthase, an enzyme that is overexpressed
in several human malignancies [62, 91, 92] (Table 1).
Proliferation of LNCaP cells is stimulated at concen-
trations of dihydrotestosterone (DHT) of 107 M and
lower. The mechanisms responsible for this biphasic
regulation are not understood. It has been proposed
that transforming growth factor-f (TGF-f) induction
by higher androgen doses causes a decrease in growth
rate [54].

Recent studies have provided new insights into reg-
ulation of prostate cell proliferation by androgens [64,



213

Table 1 Androgen-regulated

genes in the prostate Gene Androgens cause Significance Reference
EGFR Stimulation Proliferation 87
TGF-8 Repression Negative growth factor 60
KGF Stimulation Stromal-epithelial intractions 23, 108
NEP Stimulation Cleavage of neuropeptides 79
ARA 70 Stimulation Enhancement of AR function 33
CDK 2 and 4 Stimulation Cell cycle regulation 64
pl6 Repression Cell cycle regulation 64
p21 Stimulation Anti-apoptotic effect 5, 65
p27 Stimulation Cell cycle arrest (LNCaP) 57
Repression Proliferative effect (MDA PCa) 109
bcl-2 Repression Pro-apoptotic effect 61
PSA Stimulation Differentiation function 62
hGK 2 Stimulation Differentiation function 72
Fatty acid synthase Stimulation Malignant phenotype 92
VEGF Stimulation Angiogenesis 25, 50, 63
IGF-BP-5 Stimulation Potentiation of IGF action 34
IGF-BP-5 Inhibition 75

65, 109]. Androgenic hormones induce the expression of
cyclin-dependent kinase (CDK) 2 and 4 and down-reg-
ulate the cell cycle inhibitor p16 [64]. A CDK inhibitor
that is up-regulated by activation of the AR is p2l
(wafl/cipl) [65]. However, it was recently suggested that
p21 may have anti-apoptotic properties in prostate
cancers in vivo. High expression of p21 was significantly
associated with high Gleason score, DNA aneuploidy,
high S-phase fraction, expression of Ki-67, bcl-2 and
cyclin A and D proteins [1]. The p21 overexpression was
found in a subgroup of patients with advanced prostate
cancer with a high proliferation rate [5]. Androgenic
hormones also down-regulate the expression of the cell
survival protein bcl-2 [61]. The AR is implicated in the
repression of expression of the TGF-f gene, which is the
major negative growth factor in the prostate [60]. It
should be mentioned that the stromal AR is activated
by androgen to induce expression of the keratinocyte
growth factor (KGF) gene, which is essential for signal
transduction from stromal to epithelial cells in the
prostate [23, 108]. The AR is also important for regu-
lation of expression of the insulin-like growth factor
(IGF)-binding protein 5. However, these studies that
were carried out in two different tumor models yielded
divergent results [33, 34, 75]. The AR is indirectly
involved in the regulation of neuropeptide-induced
prostate tumor proliferation. The enzyme neutral
endopeptidase (NEP) 24.11 which cleaves and
inactivates neuropeptides is down-regulated in prostate
cancer cells which do not express the AR [79].

Recent studies convincingly demonstrated involve-
ment of androgens in the induction of angiogenesis.
Proliferation of endothelial cells rapidly declines after
castration in adult rats [25]. Up-regulation of the vas-
cular endothelial growth factor (VEGF) by androgen
was shown by several research groups [46, 50, 63].

In contrast to the biphasic regulation of cellular
proliferation, prostatic specific-proteins, such as PSA
and human glandular kallikrein 2 (hGK 2), are up-reg-
ulated by androgenic hormones in a concentration-de-
pendent manner [71, 113]. Prostatic lipids and enzymes

involved in their synthesis are also regulated by andro-
gen in a concentration-dependent manner [91, 92].

Alterations of AR function after long-term
androgen withdrawal

Cell lines derived from independent laboratories after
long-term androgen ablation share some common
properties. These cell lines are valuable tools for
studying molecular changes during endocrine therapy
and prostate cancer progression. During long-term
androgen ablation, AR mRNA and protein increase
gradually. In transactivation assays, androgen induces
reporter gene activity more efficiently in these ablated
cells [17, 30, 56]. The AR amplification, which occurs
in about one third of the patients with therapy-resistant
carcinoma of the prostate, was not observed in any of
the sublines developed after androgen ablation in vivo
[17, 57]. There are also specific alterations in AR
function in individual cell lines generated after long-
term withdrawal of androgenic hormones. One of the
most important changes is acquisition of agonistic
properties of the non-steroidal anti-androgen bicaluta-
mide in LNCaP-abl cells generated in our laboratory
[17]. Although reporter gene activity measured in re-
sponse to bicalutamide alone was lower than that in-
duced by androgens, consistent stimulatory effects on
proliferation in vitro and tumor growth in vitro were
observed in these androgen-depleted cells. Induction of
apoptosis by retinoic acid was delayed in the long-term
steroid-deprived cell line compared to parental LNCaP
cells [30]. Up-regulation of the AR in ablated cells is,
most probably, associated with a selective up-regula-
tion of androgen-responsive genes. One would expect
that, in cells that express a hyperactive AR, the PSA
gene is up-regulated. However, long-term androgen
ablation is obviously associated with progressive
dedifferentiation in vitro and thus there is no evidence
that PSA expression is enhanced in androgen-ablated
sublines [17, 30].
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AR structural alterations: implications
for endocrine therapy

When grown in steroid-depleted medium, LNCaP cells
are stimulated not only by androgens but also by es-
trogenic and progestagenic steroids and non-steroidal
anti-androgens hydroxyflutamide and nilutamide [105].
The AR in LNCaP cells was sequenced and the muta-
tion in the exon H of the AR gene was detected [36,
102]. This mutation leads to an exchange of the wild-
type threonine at position 877 to alanine and to an
increased binding affinity for estradiol, progesterone,
synthetic progestin R5020, progestagenic anti-androgen
cyproterone acetate, hydroxyflutamide and nilutamide
[103]. The LNCaP AR, in contrast to many mutant
ARs found in patients with androgen insensitivity
syndromes, binds androgens and its transcriptional ac-
tivity could be induced by ligands [102]. As with an-
drogen, it was shown that hydroxyflutamide enhances
nuclear translocation of the AR and promotes the
dissociation of a heat shock protein-receptor complex
[104]. Transcriptional activity of the LNCaP AR is up-
regulated by estrogenic and progestagenic steroids, hy-
droxyflutamide and nilutamide [102]. Although in the
majority of clinical studies a low frequency of AR
mutations was reported, there is still an uncertainty as
to the percentage of tumor cells bearing mutations. The
AR was sequenced in both early prostate cancers and in
the therapy-resistant disease [7, 12, 13, 21, 22, 74].
However, in the study by Tilley and associates AR
point mutations were detected in 11 out of 25 primary
prostate cancers sampled prior to initiation of hor-
monal therapy [98]. In that patient collective, altogether
15 missense, one nonsense and seven silent mutations
were detected. Patients with AR point mutations
showed a poor response to subsequent hormonal ther-
apy. Tilley et al. used single-strand conformational
polymorphism analysis to detect AR mutations [98];
however, this approach was also used by other inves-
tigators [7, 21, 22, 89]. In primary tumors there may be
a contamination of samples with benign tissue and
mutations may thus remain undetected. In metastatic
lesions from human prostate cancer, AR point muta-
tions may occur more frequently than in primary tu-
mors. Point mutations in the AR gene were detected in
bone lesions from five out of ten patients examined [94].
Unfortunately, studies on AR structure in metastatic
lesions are hampered because of a limited availability of
these samples. In prostate cancer, both somatic [12, 74]
and germ-line mutations [22] were detected.

In the case of the LNCaP AR, increased activation
occurs as a consequence of an increased receptor binding
affinity for other steroids and anti-androgens. However,
changes in functional activity are not always associated
with alterations in binding affinity. The mutant ARs
715val — met, 726arg — leu and 730val — met do not
show discernible changes in relative binding affinity but
are more efficiently activated by steroid hormones other

than androgen [12, 21, 80]. We also demonstrated that
the increased transactivation by the mutant receptors
did not result from measurable changes in conformation
of the liganded receptors [80]. Thus, the mechanism re-
sponsible for AR functional alterations in prostate
cancer remains elusive.

The results from several laboratories imply that AR
point mutations may be relevant to the natural course
of the disease and to responsiveness to pharmacological
agents. Adrenal androgens and DHT metabolites in-
duce a weak transactivational activity of the wild-type
AR but are more potent in the presence of mutated
ARs 715val — met, 730val — met, 874his — tyr and
877thr — ala [12, 80, 93]. Although the effects of ad-
renal androgens on proliferation of prostate cells that
express mutant ARs have not been assessed, it is likely
that the mechanism described contributes to a pro-
gressive tumor growth. In addition to adrenal steroids,
the effects of estradiol on mutant ARs might also
contribute to proliferation of these tumor cells. Estra-
diol is generated by aromatization of testosterone and
has an important role in the pathogenesis of prostate
diseases.

Major differences between hydroxyflutamide and
bicalutamide have been observed in several functional
studies on mutant ARs. Hydroxyflutamide acts as a
partial agonist at higher concentrations even with
the wild-type AR; it promotes DNA binding of the
hormone-receptor complex and enhances reporter gene
activity [80, 107]. It should be kept in mind that plasma
levels of hydroxyflutamide in prostate cancer patients
are in the micromolar range [6]. Enhanced AR activa-
tion by hydroxyflutamide is described in the presence of
the mutated ARs 715val — met, 730 val —» met, 874
his — tyr, 877 thr — ser and 877 thr — ala [24, 80, 93,
102]. Up until now, there is no evidence of an agonistic
effect from bicalutamide with any of the mutated re-
ceptors being detected in patient tissue. However, a
paradoxical improvement of the clinical status after
cessation of bicalutamide from therapeutic protocols
has been reported [76, 87, 88]. At present, data on the
AR sequence in patients who have experienced a par-
adoxical response to anti-androgens are lacking; a di-
rect association between the anti-androgen withdrawal
syndrome and an AR mutation was reported in Japa-
nese patients who were treated with the progestagenic
anti-androgen chlormadinone acetate [90]. Interestingly,
in a subgroup of patients who received bicalutamide
after flutamide treatment failed, a clinical improvement
was observed [51]. The AR mutations were found in
five out of 16 patients who received complete androgen
blockade with flutamide. Those patients responded to
the second-line treatment with bicalutamide [95]. Col-
lectively, these clinical and basic science findings sug-
gest that any of the anti-androgens currently available
might contribute to tumor progression. Agonist/antag-
onist balance of a particular compound might be
influenced by structure of AR and by duration
of treatment.



Control of AR function by protein kinase activators

Similarly to other steroid receptors, the wild-type AR is
involved in cross-talk with the signaling pathways of
growth factors, neurotransmitters and peptide hor-
mones. The evidence for AR interaction with other
signal transduction cascades is increasing (Table 2). In
DU-145 cells transfected with an androgen-inducible
reporter gene and an AR expression plasmid, the three
polypeptide growth factors, IGF-I, KGF and EGF,
activated the AR to different extents in the absence of
androgen [14]. Ligand-independent activation of the AR
was also reported for substances which directly activate
the protein kinase A and C signaling pathways [18, 72,
73, 84]. All these substances were able to potentiate the
effects of low concentrations of androgen thus reducing
a concentration of steroid needed for a maximal acti-
vation of the AR [15]. This type of activation may be
particularly important in patients with advanced pros-
tate cancer in which serum levels of androgen are con-
tinuously suppressed. The outcome of non-steroidal
activation of the AR depends on a cellular and promoter
context [19, 83]. Mechanisms responsible for AR acti-
vation by protein kinase activators are only partly un-
derstood. It seems that multiple signaling pathways are
required for AR non-steroidal activation, as evidenced
in experiments in which inhibitors of protein kinase
pathways were used [40, 73]. The protein kinase A
pathway that is activated by substances which increase
intracellular cyclic adenosine monophosphate is needed
for both steroidal as well as for non-steroidal activation.
Administration of a specific protein kinase A inhibitor,
PKI, caused a partial inhibition of androgen-induced
reporter gene activity whereas it completely abolished
the effects of non-steroidal activators. In addition, mi-
togen-activated protein kinase (MAPK) and protein
kinase C pathways are involved in AR activation by
interleukin-6 (IL-6) [40]. IL-6 is a pleiotropic cytokine
which causes a dose-dependent inhibition of prolifera-
tion of LNCaP cells but induces prostate-specific pro-
teins by activation of the AR. These data show that AR
activation is not necessarily associated with stimulation
of tumor cell proliferation.

In several experimental studies on non-steroidal ac-
tivation of the AR, anti-androgens showed a consistent
inhibitory effect on reporter gene activity [14, 15, 35, 40,
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72,73, 83]. However, in the case of AR activation by the
protein kinase C activator phorbol ester (TPA), inability
of hydroxyflutamide to efficiently inhibit reporter gene
activity was reported [18]. As stated above, frequently
anti-androgens are capable of effectively antagonizing
non-steroidal activation of the AR. Thus, they differ
from several antagonists of the estrogen, progesterone
and glucocorticoid receptors which switch to transcrip-
tional agonists in the presence of substances which
elevate intracellular cAMP levels [27, 77, 86].

In 1999, new data on non-steroidal modulation of
AR signaling have been obtained. In the LAPC-4
prostate cancer xenograft, overexpression of the HER-2/
neu receptor tyrosine kinase resulted in ligand-indepen-
dent tumor growth [10]. The PSA promoter could be
induced by HER-2/neu in a ligand-independent and
synergistic fashion. Similar activation was observed in
LNCaP cells in which it was demonstrated that the MAP
kinase pathway is essential for induction of androgen
target genes [112]. Hydroxyflutamide blocked the in-
duction of the PSA promoter only incompletely. Non-
steroidal stimulation of the AR by MAPK kinase kinase
1 activates apoptosis in prostate cancer [3]. Taken
together, the results of these studies show that ligand-
independent activation of the AR is implicated in the
regulation of proliferation, apoptosis and differentia-
tion. Interestingly, D-type cyclins which were found to
induce estrogen receptor activity inhibit AR transcrip-
tional transactivation ability [55].

AR coactivators in prostate cancer

Activity of a steroid receptor in a particular cell line
depends not only on the levels of expression of a re-
ceptor protein itself, but also on those of coregulatory
proteins. Steroid receptors activate transcription of tar-
get genes by binding to the hormone response element in
promoter regions and formation of the stable form of
the preinitiation complex. Receptor cofactors are large
nuclear proteins that bridge the receptors to the preini-
tiation complex. Some steroid receptor coactivators
acetylate histones thus leading to the loosening of the
structure of nucleosomes and making the DNA more
accessible to transcription factors [100]. Interaction of
the AR with several steroid receptor coactivators was
reported [45]. This interaction usually leads to a ligand-

Table 2 Compounds that

activate the androgen receptor Activator Activation of Blockade by Reference
(AR) in a ligand-independent

and/or synergistic manner. TR IGF-1 IR, EN AA 14

transfected AR, EN en- KGF TR, EN AA 14

dogenous AR, AA anti-andro- EGF TR, EN AA . 14, 35

gens, PK protein kinase TPA (PKC) TR AA (incomplete) 18, 19

’ Forskolin (PKA) TR, EN AA, PK inhibitors 72,73, 84

db cAMP TR, EN AA 15

IL-6 TR, EN AA, PK inhibitors 40

LHRH TR AA 15

Her-2/neu EN AA (incomplete), PK inhibitors 10
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dependent enhancement of AR activity. The steroid
receptor coactivator CREB (cAMP-response element
binding protein)-binding protein (CBP) is a limiting
factor for regulation of AR activity by the AP-1 com-
plex, which is composed of Fos and Jun oncoproteins [2,
26]. A series of AR coactivators, ARAs, has been dis-
covered: ARA 70, ARA 54, ARA 55, ARA 24 and ARA
160 [28, 41, 42, 53, 110] (Table 3). Initially, it was pos-
tulated that ARA 70 is an AR-specific coactivator [110].
However, latter studies revealed interactions between
ARA 70 and human estrogen and glucocorticoid re-
ceptors [4]. In addition, the magnitude of enhancement
of reporter gene activity by ARA 70 differs in various
reports [4, 31, 110]. However, Chang’s group reported
that ARA 70 promotes acquisition of agonistic effects
of non-steroidal anti-androgens hydroxyflutamide and
bicalutamide and enhances AR activation by estradiol
and d65-androstanediol [67, 68, 111].

The role of ARA 70 in modulation of AR-mediated
effects remains elusive. Studies on regulation of expres-
sion of ARA 70 in prostate cancers were performed in
the human prostate cancer xenograft CWR 22 [33].
ARA 70 is up-regulated by androgens but its level in-
creases when the tumor relapses. One possible explana-
tion for this regulation is that protein kinase activators
substitute for androgen in the stimulation of ARA70
gene expression. At present, data on expression of these
AR-coregulatory proteins in human prostate cancer are
not available. It could be speculated that overexpression
of AR coactivators or reduced expression of corepres-
sors leads to a hyperstimulation of an androgen signal-
ing cascade and increased expression of AR-regulated
genes. In breast cancer cells, there is development of
estrogen receptor hypersensitivity following long-term
estradiol deprivation [48]. However, it has been reported
that the expression of coactivator SRC-1 does not differ
between parental cells and an estrogen-hypersensitive
breast cancer subline.

Inhibition of AR expression and function in carcinoma
of the prostate

In contrast to breast cancer in which some pure steroid
receptor antagonists down-regulate receptor levels, AR

Table 3 Regulation of cellular events by androgen receptor cor-
egulatory proteins. DHT dihydrotestosterone, OHF hydroxy-
flutamide

Coactivator Cellular event regulated Reference
ARA 70 Promotion of agonistic effects of 68
anti-androgens
Stimulation of AR by oestradiol 111
AR activation by androstanediol 67
ARA 54 Interaction with the LNCaP AR 53
ARA 55 Stimulation of AR by DHT, OHF 28
and oestradiol
CBP Reverses inhbition of AR activity 2,26

by the AP-1 complex

down-regulation has not been reported for any of the
pharmacological agents currently used for therapy. In
vitro down-regulation of the AR by a hammerhead
ribozyme was recently achieved [9]. This approach is
based on cleavage of the rat AR mRNA at the position
1827/1828. The ribozyme caused a decline of AR
immunoreactivity and inhibition of androgen-inducible
CAT activity by 70%. Morphologically detectable cel-
lular abnormalities were not observed after application
of the ribozyme. Another approach which may be useful
in AR inhibition is application of AR antisense oligo-
nucleotides [20]. However, AR has also a profound role
in differentiation of prostate cells and therefore much
more information from basic science is needed to assess
possible effectiveness of this therapy. Therapeutic
approaches may also include modulation of expression
and function of AR-coregulatory proteins, coactivators
and corepressors in carcinoma of the prostate.
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