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Abstract
Primary hyperoxalurias (PHs) are rare inherited disorders of liver glyoxylate metabolism, characterized by the abnormal 
production of endogenous oxalate, a metabolic end-product that is eliminated by urine. The main symptoms are related to 
the precipitation of calcium oxalate crystals in the urinary tract with progressive renal damage and, in the most severe form 
named Primary Hyperoxaluria Type I (PH1), to systemic oxalosis. The therapies currently available for PH are either poorly 
effective, because they address the symptoms and not the causes of the disease, or highly invasive. In the last years, advances 
in our understanding of the molecular bases of PH have paved the way for the development of new therapeutic strategies. 
They include (i) substrate-reduction therapies based on small-molecule inhibitors or the RNA interference technology, (ii) 
gene therapy, (iii) enzyme administration approaches, (iv) colonization with oxalate-degrading intestinal microorganisms, 
and, in PH1, (v) design of pharmacological chaperones. This paper reviews the basic principles of these new therapeutic 
strategies and what is currently known about their application to PH.
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Introduction

In humans, oxalate is a metabolic end product that has to be 
excreted by urine [97]. The main risk associated with oxalate 
accumulation is the formation of the poorly soluble calcium 
oxalate (CaOx) salt, which is prone to crystallize and deposit 
as stones in the kidneys and urinary tract [6]. The excretion 
of more than 40–45 mg /24 h of urinary CaOx is considered 
pathological and gives rise to a clinical condition named 
hyperoxaluria [97]. Hyperoxaluria can be generally divided 
into two categories: (i) primary hyperoxalurias (PHs) are 
rare inborn errors of glyoxylate metabolism that result in a 

high endogenous oxalate production, mainly by the liver [27, 
48, 55]; (ii) secondary hyperoxalurias (SHs) generate from 
an increased exogenous oxalate absorption, as a consequence 
of various alterations including intestinal inflammation, bari-
atric surgery or excessive intake of oxalate precursors [60, 
85, 97]. Despite the fact that the clinical manifestations of 
PH and SH are qualitatively similar, and comprise recurrent 
urolithiasis and nephrocalcinosis, PHs are usually associated 
with a more severe phenotype and serious consequences for 
human health. In fact, the continuous CaOx deposition that 
occurs in the kidneys of PH patients in most cases leads 
to a remarkable kidney damage and to the consequent End 
Stage Renal Disease (ESRD). Under ESRD conditions, huge 
oxalate production is compounded by impaired oxalate elim-
ination, thus causing a step-by-step increase of plasmatic 
oxalate, which in turn results in the accumulation of CaOx 
crystals in extra-renal tissues, such as in particular skin, 
retina, bones and heart. The latter state, named systemic 
oxalosis, is often fatal [9, 55].

In this review, we briefly describe the molecular bases of 
PHs and the new treatment strategies under investigation for 
the cure of this life-threatening disease.
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PHs are inherited disorders of glyoxylate 
metabolism

In mammals oxalate is mainly synthesized in the liver, 
and glyoxylate is thought to be its main precursor [53]. 
In human hepatocytes, glyoxylate is produced by two 
main pathways that take place in different cellular com-
partments, mitochondria and peroxisomes (Fig.  1). 
Mitochondrial glyoxylate arises from the catabolism of 
hydroxyproline, derived by either collagen turnover and 
the metabolism of proteins from animal food [63, 66]. 
4-hydroxy-2-oxoglutarate aldolase (HOGA1), a liver-spe-
cific enzyme, is involved in the last step of hydroxyproline 
metabolism, and catalyses the conversion of 4-hydroxy-
2-oxoglutarate (HOG) into glyoxylate and pyruvate [70, 
80]. In mitochondria, glyoxylate can be further metabo-
lized by the NADPH/NADH dependent glyoxylate reduc-
tase/hydroxypyruvate reductase (GRHPR), which reduces 
glyoxylate and hydroxypyruvate to glycolate and D-glyc-
erate, respectively [12, 44, 73]. GRHPR displays a double 
mitochondrial/cytosolic localization, and thus it is also 
involved in the metabolism of cytosolic glyoxylate. In per-
oxisomes, glyoxylate derives either from the intake of veg-
etable and fruits containing glycolate, which is oxidised by 
glycolate oxidase (GO), or from the oxidation of glycine 
by D-amino acid oxidase (DAO) [102]. Peroxisomal gly-
oxylate is metabolized by alanine:glyoxylate aminotrans-
ferase (AGT), a pyridoxal 5′-phosphate (PLP)-dependent 
enzyme that catalyses the transamination of L-alanine and 
glyoxylate to pyruvate and glycine, respectively. Since the 
equilibrium constant of the reaction catalysed by AGT is 
about 4700, it can be considered irreversible in the cellular 

milieu, in line with the supposed role of the enzyme in 
glyoxylate detoxification [17].

In the last years, many efforts have been directed to a 
better understanding of glyoxylate metabolism in human 
liver. It has been reported that the intermediates of different 
pathways are exchanged between mitochondria, peroxisomes 
and the cytosol [73]. In particular, mitochondrial glyoxylate 
can be delivered to the peroxisome through its conversion to 
glycolate by mitochondrial GRHPR followed by its oxida-
tion to glyoxylate by peroxisomal GO [10]. In this regard, 
the finding that AGT is not inhibited by high glyoxylate con-
centration and that the peroxisomal membrane is permeable 
to both glycolate and glyoxylate, prompted to identify the 
peroxisome as the main site of glyoxylate degradation in 
humans [98].

The deficit of liver enzymes involved in glyoxylate 
metabolism, due to inherited mutations associated with PHs, 
leads to the formation of huge amounts of glyoxylate. Three 
forms of PH have been identified until now and classified as 
Type I (PH1), Type II (PH2) or Type III (PH3) depending 
on the mutated gene (Fig. 1) [25–27, 34, 48, 55]. Muta-
tions in the AGXT gene, encoding human AGT, give rise to 
PH1 (OMIM 259900) [35]. Among the three forms, PH1 is 
the most severe and most frequent one, with an estimated 
prevalence of 1–3 per million population and an incidence of 
approximately 1:120,000 live births [114]. Mutations in the 
GRHPR gene, encoding human GRHPR, give rise to PH2 
(OMIM, 260000). Although disease prevalence is unknown, 
PH2 is less frequent than PH1 and it is usually character-
ized by a milder clinical phenotype and by the presence of 
glycolic aciduria [31, 32, 42, 111]. Finally, PH3 is caused 
by mutations of the HOGA1 gene encoding human HOGA1 
(OMIM 613616). PH3 accounts for 10% of PHs cases and is 
characterized by a mild phenotype, which usually does not 
progress to ESRD [7, 10, 80]. The molecular mechanisms 
explaining the reasons underlying glyoxylate accumulation 
in PH3 are not straightforward. It has been demonstrated that 
the deficit of HOGA1 leads to the accumulation of HOG, but 
the link between its accumulation and glyoxylate production 
is unclear. One of the hypothesis predicts that HOG could 
be transformed into glyoxylate by a cytosolic aldolase [80], 
while another one predicts that it could inhibit GRHPR thus 
indirectly preventing glyoxylate detoxification [95].

Notwithstanding the fact that the three forms of PH arise 
from the deficit of different liver enzymes, all result in the 
accumulation of cytosolic glyoxylate. When present at high 
concentrations, glyoxylate becomes a substrate for lactate 
dehydrogenase (LDH) and is oxidized to oxalate. Endoge-
nously-produced oxalate cannot be further metabolized and 
has to be excreted by urine. In PH, the high urinary oxalate 
concentration leads to the formation of CaOx, a poorly soluble 
salt that very easily reaches supersaturation and precipitates. 

Fig. 1   Molecular mechanisms leading to PH1, PH2 and PH3. HOGA 
4-hydroxy-2-oxoglutarate aldolase; GRHPR glyoxylate reductase/
hydroxypyruvate reductase; AGT​ alanine:glyoxylate aminotrans-
ferase; GO glycolate oxidase and LDH lactate dehydrogenase
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CaOx crystals deposition is then responsible for the progres-
sive kidney damage typical of patients [25, 48] (Fig. 1).

Therapeutic approaches available 
for the cure of PHs

PHs are difficult-to-treat diseases. An early diagnosis and the 
immediate administration of a correct therapy are crucial to 
preserve renal function in patients. Although the metabolic 
defect underlying PH is related to the liver, classical treat-
ments have the main objective of either preventing kidney 
failure or restoring kidney function [11, 16, 25–27]. One 
of the strategies employed is the control of patient diet to 
decrease the intake of exogenous oxalate. This approach is 
not considered very helpful, because it has been claimed that 
dietary oxalate contributes only marginally to the pathogen-
esis of PH, where accumulating oxalate is of endogenous 
origin [107]. However, more recent studies have shown 
that the role of patient diet could be more significant than 
previously known [54]. Other first-line treatments for PH 
patients are directed to prevent CaOx crystallization. This is 
usually done by the administration of crystallization inhibi-
tors (i.e. magnesium and potassium citrate) and by forcing 
hyper-hydration through a consistent water intake [48, 55]. 
Patients showing deposits of CaOx stones are subjected 
to lithotripsy, while dialysis or kidney transplantation are 
necessary under more severe conditions of renal failure and 
associated uremia [14]. Overall, classical therapies address 
the distal aspects of the disease and, although suitable to 
slow down the progression and mitigate the symptoms, they 
do not represent a definitive solution. Nevertheless, in the 
case of PH1, a minority of patients responds to the admin-
istration of pyridoxine (PN), a vitamer B6 precursor of the 
AGT coenzyme PLP [81]. PN is an oral drug endowed with 
a very good safety profile, and it has a demonstrated efficacy 
in reducing urinary oxalate in patients bearing the common 
G170R mutation on the AGXT gene [59].

Patients unresponsive to PN and/or to classical treatments 
undergo liver transplantation or, more often, a liver/kidney 
transplantation [24]. Liver transplantation represents a defin-
itive treatment, because it allows to substitute the entire pool 
of AGT thus restoring the glyoxylate detoxification ability 
of the patient. However, it is very risky and invasive [24]. 
Although this strategy was considered an option only avail-
able for PH1, recently it has been also employed with suc-
cess in PH2 [37].

New avenues in the treatment of PH

The significant progress in the understanding of the patho-
genic mechanisms at the basis of PH have opened the way 
for the identification and implementation of new therapeutic 

approaches, which could overcome the limited efficacy of 
classical treatments and/or avoid too invasive and risky 
surgery procedures [11, 24–26, 48, 55]. The most promis-
ing strategy that is currently in the pipeline is a substrate-
reduction approach based on the use of the RNA interfer-
ence technology. The target genes encode enzymes, GO and 
LDH, involved in the pathway leading to oxalate production, 
which is common to the three forms of PH. Attempts have 
been also made to identify small molecules acting as GO 
inhibitors. Since PHs are single-gene diseases, gene therapy 
directed to the liver has been also considered as a possible 
option. Moreover, some efforts are directed to promote the 
intestinal metabolism of oxalate using either microorgan-
isms or purified enzymes. In the case of PH1, the use of 
molecules acting as chaperones is regarded as a possible 
solution, based on the finding that misfolding seems to be 
one of the main mechanisms leading to the AGT deficit. In 
addition, recent reports suggest the possibility to directly 
administer purified AGT [16].

The basic principles of each therapeutic strategy along 
with their application to PH are summarized in Table 1 and 
described below.

Substrate reduction therapy as a common 
strategy for the treatment of the three forms 
of PH

Substrate reduction therapy (SRT) is a therapeutic approach 
for diseases that are caused by loss-of-function mutations 
in genes encoding key metabolic enzymes and result in the 
accumulation of potentially dangerous substrates [30]. Such 
overproduction can be prevented using small molecules 
that inhibit the enzymes working upstream of the mutated 
one in the same metabolic pathway [46, 105, 108]. SRT is 
already in use in some inborn error of metabolism such as 
hereditary tyrosinemia type 1, in which the deficiency of 
fumarylacetoacetate hydrolase leads to the accumulation 
of fumarylacetoacetate (FAA) that in turn is converted to 
the toxic succinylacetone. The drug nitisinone, by inhibit-
ing parahydroxyphenylpyruvic acid dioxygenase, prevents 
FAA accumulation and decreases the hepatocellular damage 
in patients [36]. A similar effect is observed in the case of 
Miglustat and Eliglustat, two FDA-approved drugs in use for 
the treatment of Gaucher disease that act by inhibiting glu-
cosylceramide synthase. Glucosylceramide synthase is the 
enzyme responsible for the synthesis of glucosylceramide, 
the substrate that accumulates due to the deficit of glucocer-
ebrosidase in Gaucher disease [105, 108].

The application of a similar strategy to PH is based on 
the finding that the common point of the three forms of dis-
ease is the increased production of glyoxylate in cell cyto-
sol [102]. Being glyoxylate the direct precursor of oxalate, 
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whose accumulation is responsible for CaOx crystals depo-
sition, any approach aimed at inhibiting glyoxylate forma-
tion could be an effective treatment. The protein consid-
ered a suitable target for SRT in PH is GO, because it is the 
enzyme mainly involved in glyoxylate production in human 
hepatocytes [12, 73, 101]. People bearing inherited muta-
tions causing the deficit of GO do not display a pathological 
phenotype, except for an asymptomatic glycolic aciduria, a 
finding that strongly supports the safety of the target [41, 
67, 72]. GO is a flavin-dependent enzyme belonging to the 
hydroxyacid oxidases family. It is encoded by the HAO1 
gene, and catalyses the conversion of (S)-2-hydroxy acids 
and molecular oxygen to 2-oxo acids and hydrogen perox-
ide [31, 73]. The crystal structure of the enzyme is already 
known and most of its biochemical properties have been 
elucidated [12]. The identification of GO inhibitors has been 
largely investigated, especially for their use in agriculture 
[84, 106]. GO agrochemical inhibitors have been obtained 
based on the crystal structure of the enzyme from spinach 
[109]. Among them, 4-carboxy-5-dodecylsulfanyl-1,2,3-tia-
zole (CDST) was co-crystallized and validated as inhibitor 
of human GO [13]. Higueras et al. have identified another 
compound similar to CDST, 4-carboxy-5-[(4-chlorophenyl) 
sulfanyl]-1,2,3-thiadiazole (CCPST). The crystal structure of 
the complex between CCPST and human GO has shown that 
the ligand interacts with five residues located at active site, a 
key information for its future optimization. It has been also 
demonstrated that CCPST inhibits GO in Agxt1-/- hepato-
cytes, and that the inhibition reduces oxalate production. 
Moreover, when the compound is orally administrated to 
AGXT knock-out mice, it reduces the excretion of urinary 
oxalate by 30–50%. Although the results are promising, 

CCPST presents some limitations, which are mainly related 
to the high dosage required and to the side effects occurring 
in some animals [72]. Therefore, a more detailed investiga-
tion of the toxicity of this putative drug would be necessary.

In the last years, another SRT approach for PH has been 
implemented, thanks to the use of the RNA interference 
(RNAi) technology. RNAi is based on ≈ 20 bp RNA mol-
ecules that bind and specifically degrade a target mRNA, 
thus suppressing the expression of the corresponding protein 
[1]. This innovative technique has been widely exploited in 
drug discovery programs, as demonstrated by the fact that 
more than 30 RNAi-based drugs are in clinical trials since 
2004 [1]. As for PH, the development of a SRT based on 
the use of RNAi has been first focused on the HAO1 gene 
encoding GO. Dutta et al. reported that a Dicer-substrate 
small interfering RNAs (DsiRNAs), delivered by lipid nano-
particles, decreases the conversion of glycolate to glyoxy-
late and in turn reduces urinary oxalate in mice and mon-
keys models of PH1 [41]. Liebow et al. tested a therapeutic 
RNAi (ALN-GO1) delivered by subcutaneous injection, 
whose administration leads to a potent, dose-dependent and 
durable silencing of the HAO1 gene encoding GO, which 
in turn is able to reduce urinary oxalate in mice, rats and 
non-human primates [67]. Based on this data, Alnylam Phar-
maceuticals developed Lumasiran, a drug based on ALN-
GO1 conjugated to N-acetylgalactosamine, for an efficient 
delivery to hepatocytes. Lumasiran is currently tested in a 
phase 1/2 clinical trial aimed at evaluating the safety, toler-
ability, pharmacokinetics and pharmacodynamics of single- 
and multiple-ascending doses of drug in healthy volunteers 
and patients with PH1 (https​://clini​caltr​ials.gov-NCT02​
70688​6). The company has also extended the trial to study 

Table 1   Currently available and new therapeutic strategy for PHs

Theoretical principle Therapeutic strategy Applicability Current status

Pharmacological chaperone Pyridoxine PH1 FDA approved
Pyridoxamine, Pyridoxal PH1 Developmental stage
AOA analogues PH1 Developmental stage

Inhibition of mitochondrial import machinery Dequalinium chloride (DECA) PH1 Developmental stage
Substrate reduction therapy (HAO1 gene silencing) Lumasiran

(ALN-GO1)
PH1, PH2, PH3 Phase 2 study

DCR-PH1 PH1, PH2, PH3 Phase 1 study
Substrate reduction therapy (LDHA gene silencing) DCR-PHXC PH1, PH2, PH3 Phase 1 study
Substrate reduction therapy (GO inhibition) 4-carboxy-5-dodecylsulfanyl-1,2,3-

tiazole (CDST) analogues
PH1, PH2, PH3 Developmental stage

Enzyme replacement therapy PEG-PGA-AGT​ PH1 Developmental stage
Enzyme substitution therapy Nephure™ PH1, PH2, PH3 Food supplement 

approved by FDA
OxDC CLEC PH1, PH2, PH3 Phase 1 study
Oxazyme™ PH1, PH2, PH3 Phase 2 study
ALLN-177 PH1, PH2, PH3 Phase 3 study

Metabolism of intestinal oxalate Oxabact™ PH1, PH2, PH3 Phase 3 study

https://clinicaltrials.gov-NCT02706886
https://clinicaltrials.gov-NCT02706886
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the effects of a long-term administration of ALN-GO1 in 
PH1 patients (https​://clini​caltr​ials.gov-NCT03​35045​1). 
Very recently, the possibility to target LDH for SRT has 
been also evaluated. LDH is the enzyme directly involved 
in glyoxylate-to-oxalate conversion in the cytosol of liver 
hepatocytes. Although LDH plays a crucial metabolic role in 
carbohydrate metabolism, cases of inherited LDH deficiency 
have been reported in people showing no particular adverse 
effects [110]. This finding supports the safety as target for 
RNAi approaches in PH patients. Dicerna Pharmaceuticals 
has developed the DCR-PHXC drug targeting the LDHA 
gene. Results described on the company website indicate 
that the knockdown of the LDHA gene decreases oxalate 
excretion in animal models in the absence of evident toxic 
effects (http://www.dicer​na.com). On these bases, a phase 1 
clinical trial with dose escalation of the molecule in healthy 
volunteers and PH patients just started (https​://clini​caltr​ials.
gov-NCT03​39289​6). Nevertheless, deep investigation on the 
actual safety of LDH silencing should be done before the 
definitive approval of the drug.

Enzyme administration therapies

When a disease is directly due to the deficit of an enzyme, 
and to the consequent loss of the specific function it plays in 
the organism, a possible therapeutic strategy is represented 
by enzyme administration. Enzyme administration has the 
rationale of replenishing patients with the defective enzy-
matic activity and can be done by two different approaches 
named enzyme replacement therapy (ERT) and enzyme sub-
stitution therapy (EST). ERT is based on the direct admin-
istration of the non-mutated and hence functional enzyme 
in the purified form. FDA-approved ERT therapy are cur-
rently available for Gaucher disease, Fabry disease and other 
lysosomal storage diseases [2, 105]. On the other hand, EST 
aims at introducing a new enzyme able to degrade the accu-
mulating metabolite generating a non-toxic product. Such an 
approach is one of the therapies in use for phenylketonuria, 
where the intravenous administration of a PEGylated form 
of phenylalanine ammonia lyase is able to metabolize accu-
mulating phenylalanine [104].

Both ERT and EST approaches have been explored in PH. 
Attempts to develop an ERT have been limited to PH1. In 
2014, Mesa-Torres et al., using a consensus-based approach, 
created an engineered form of AGT endowed with high 
catalytic activity and stability, a first step for the applica-
tion of the enzyme in the biomedical field [77]. However, 
to be effective in playing its metabolic role upon adminis-
tration, AGT should be able to penetrate into cells and to 
be delivered to peroxisomes. To solve this issue, our group 
created a fusion protein of AGT with the cell-penetrating 
Tat peptide at the N-terminus (Tat-AGT). The biochemical 

characterization of Tat-AGT demonstrated that the presence 
of the fused peptide does not induce functional or struc-
tural alterations [100]. The fusion protein is internalized in a 
mammalian cell model of PH1 and shows a cytosolic locali-
zation, but is able to detoxify endogenously-produced glyox-
ylate. However, it is not suitable for human delivery because 
of the remarkable immune response probably arising from 
the Tat peptide. Recently, we developed a nanoconjugate of 
AGT with a di-block polymer formed by a moiety of poly-
ethylene glycol (PEG) and a moiety of polyglutammic acid 
(PGA) (PEG-PGA-AGT). Conjugation was achieved trough 
the formation of disulphide bonds between reactive pyridil-
dithiol groups of the polymer and solvent-exposed cysteine 
residues of AGT. The binding to the polymer endows AGT 
with the ability to reach the correct peroxisomal localization 
and to restore glyoxylate detoxification ability in a cellular 
model of PH1 [99]. Moreover, PEG-PGA-AGT conjugates 
are hemocompatible, stable in plasma and non-immunogenic 
in in vitro assays. Although further investigations will be 
necessary to optimize conjugation efficiency and to imple-
ment a targeted hepatic delivery, the results obtained hold 
promise for a future development of an ERT for PH1.

As for the EST approach, the strategy employed is based 
on the common theme of the three forms of PH, i.e. oxalate 
accumulation, and relies on the use of oxalate degrading-
enzymes [90]. Oxalate-degrading enzymes are non-human 
proteins able to convert oxalate in products that are safe for 
human beings [90]. They can be orally administered and 
degrade intestinal oxalate. Although this approach has been 
developed to reduce exogenous oxalate intake in oxalosis 
and secondary hyperoxaluria, a possible application to PH 
cannot be excluded. In fact, it has been demonstrated that 
the intestine could have a sink effect to promote oxalate 
clearance from blood, thus decreasing the endogenous lev-
els [51]. In fact, small intestine can participate to oxalate 
excretion thanks to the presence of the anion exchanger 
SLC26A6 [49]. The protein currently employed is oxa-
late decarboxylase (OxDC), a Mn-dependent enzyme that 
catalyses the conversion of oxalate to formate and carbon 
dioxide [65]. Different OxDC formulations are available 
such as Nephure™, OxDC CLEC, Oxazyme, and ALLN-
177. Nephure™ is OxDC from S. elongatus used as a food 
ingredient (www-nephure.com), while Oxazyme is the com-
mercial name of OxDC from Bacillus subtilis formulated 
as a dietary additive for secondary hyperoxaluria [83]. A 
phase 1 clinical trial for subjects with enteric hyperoxaluria 
after Roux-en-Y Gastric Bypass or with idiopathic hyper-
oxaluria revealed a significant reduction of urinary oxalate 
only in the first group (https​://clini​caltr​ials.gov-NCT01​
12708​7). OxDC-CLEC is a crystalline form of OxDC from 
Bacillus subtilis proven to be effective in degrading oxalate 
and reducing kidney damage in hyperoxaluric mice [45]. 
This formulation has also shown some effectiveness in a 

https://clinicaltrials.gov-NCT03350451
http://www.dicerna.com
https://clinicaltrials.gov-NCT03392896
https://clinicaltrials.gov-NCT03392896
https://clinicaltrials.gov-NCT01127087
https://clinicaltrials.gov-NCT01127087
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swine model of nephrocalcinosis [61]. ALLN-177 is derived 
from OxDC-CLEC and has been recently tested in a phase 
1 clinical trial, showing the ability to degrade oxalate in 
the gastrointestinal tract of healthy volunteers with hyper-
oxaluria induced by ingestion of a high oxalate, low calcium 
diet [64]. Recently, it has received orphan drug designation 
for primary hyperoxaluria and for pediatric hyperoxaluria 
and a phase 2 clinical trial in adult and paediatric patients 
with enteric or primary hyperoxaluria and hyperoxalemia 
is currently ongoing (https​://clini​caltr​ials.gov-NCT03​
39180​4). Overall, these results and observations confirm 
the hypothesis that reduction of intestinal oxalate absorp-
tion could influence endogenous oxalate concentration and 
hence reduce urinary oxalate excretion. However, it should 
be taken into account that OxDC displays an optimum pH 
around 4, with approximately 2% residual activity at pH 7 
[65]. Thus, attempts to increase the catalytic efficiency at 
neutral pH should be undertaken.

Among oxalate degrading-enzymes, a potential alterna-
tive to OxDC is represented by oxalate oxidase (OxOx), a 
Mn-dependent enzyme that catalyses the conversion of oxa-
late to carbon dioxide and hydrogen peroxide [90]. Dahiya 
and Pundir showed that OxOx from Bougainvillea glabra 
immobilized with ethylene maleic anhydride displays a 
residual activity of 70% at pH 7. Interestingly, in a lipo-
some-encapsulated form, the enzyme degrades oxalate in a 
rat model of hyperoxaluria [33].

Promotion of intestinal oxalate degradation

In humans, oxalate is eliminated from the body mainly 
through the kidneys and partly through the intestine [97]. 
Oxalobacter formigenes is a bacterium part of the intes-
tinal flora, which relies on oxalate as energy source [3]. 
Since the elimination of intestinal oxalate could induce a 
concentration-dependent transport into the intestinal lumen, 
the possibility that the intestine colonization with O. formi-
genes could represent a treatment option in PH1 has been 
tested. In animal models, the oral administration of O. for-
migenes leads to a net reduction of the levels of oxalate in 
urine and plasma, due to the complete colonization of the 
intestinal tract that effectively induces a progressive excre-
tion of endogenous oxalate [49, 50, 57]. In this regard, it has 
been demonstrated that the treatment of intestinal epithe-
lial cells with bioactive factors produced by the bacterium 
actually promotes oxalate transport [5]. Oral formulations 
of O. formigenes have a good safety profile and lead to a 
reduction in urinary oxalate levels, as shown in a Phase 1 
trial in PH patients [56]. In 2011, Hoppe et al. have also 
reported the effectiveness of the same treatment in two 
patients affected by infantile oxalosis [57]. A lyophilized 
form of O. formigenes with the name of Oxabact (produced 

by OxThera, Sweden) has been granted as orphan drug in 
USA and Europe for the treatment of PH. Unfortunately, a 
randomized Phase I/II trial has not completely confirmed the 
results obtained in animal models. Although the treatment 
is well-tolerated, no significant differences between control 
and treated group have been observed. This is probably due 
to the clinical heterogeneity of the patients in the two groups 
and to the influence that the baseline kidney function can 
have on patient responsiveness [58, 78]. Therefore, an opti-
mization of the procedure and a better stratification of the 
patients will be required for future studies.

In the same field, two studies in animal models of hyper-
oxaluria have reported that gut colonization with other bac-
terial strains, such as Bifidobacterium animalis subsp. lactis 
and Lactobacillus plantarum, reduces urinary oxalate con-
centration [62, 115]. These approaches have been mainly 
regarded as treatments for dietary hyperoxaluria. Two 
probiotics analysed in a double-blind, placebo-controlled 
study failed to reduce urinary oxalate in mild hyperoxaluric 
patients [68]. However, a possible application to PH cannot 
be excluded. Nevertheless, the importance of determining 
the intraluminal factors affecting colonization and how colo-
nization with beneficial oxalate degraders is established and 
maintained, are essential knowledges for the development of 
therapeutic approach that utilized probiotics [113].

Use of gene and cell therapy 
for the treatment of PH1

Single-gene inherited diseases can be treated by gene ther-
apy, which aims at replacing the mutated gene with a nor-
mal copy, thus restoring protein function. All three forms of 
PH are single-gene disease suitable for the development of 
gene therapy approaches. This strategy has been particularly 
explored in PH1, because it would represent a good alterna-
tive to liver transplantation. AGXT gene transfer has been 
achieved by two different research groups. In a first study, 
the administration of two adeno-associated virus serotypes 
(AAV5 and AAV8) in mice knock-out for the AGXT gene 
has been found to reduce urinary oxalate excretion with-
out significant untoward effects [103]. More recently, using 
helper-dependent adenoviral vectors, a reduction of oxalate 
excretion has been observed in a mice model of PH1 [15]. 
Although these results are promising, high doses of vec-
tors are required to induce a complete phenotypic response 
of hepatocytes, a condition that decreases the safety of the 
treatment and prompts for the identification of new viral 
vectors showing an enhanced tropism for the liver and/or an 
increased transduction efficiency.

In the past, liver cell transplantation has been also used 
in a young patient affected by infantile oxalosis who showed 
a very poor clinical condition [8]. The therapy has resulted 

https://clinicaltrials.gov-NCT03391804
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successful as a bridge to whole liver transplant, although 
improvements of the protocols and methodology have been 
recommended by the authors. In particular, optimal treat-
ment conditions to stimulate liver recolonization requires 
detailed studies, in particular to give a mitotic advantage to 
transfused cells with respect to patient cells.

The role of protein misfolding in PH1 and the use 
of pharmacological chaperones

Proteostasis represents an ideal condition in which the home-
ostasis of the entire pool of cellular proteins is maintained. 
Proteostasis depends on an important network of biologic 
processes that controls biogenesis, folding, and trafficking 
of the pool of proteins present inside the cell [52]. During 
the process of folding, the polypeptide chain must rapidly 
self-assemble into a highly structured native conformation, 
which is essential for biological function. In many cases, 
the folding process requires the presence of molecular chap-
erones, as well as of other proteins that assist and protect 
the nascent protein during folding. Molecular chaperones 
are components of the cellular protein quality control sys-
tem that can act either by preventing aggregation of folding 
intermediates or unfolded proteins, or by helping misfolded 
proteins to achieve the native conformation. In addition, it 
has been reported that some chaperones act as disaggregat-
ing agents, able to breaking up protein aggregates [23].

The perturbation of the proteostasis network, due to envi-
ronmental stresses or to the accumulation of misfolded or 
partially folded intermediates, could generate the onset of a 
pathological state. Protein misfolding diseases are disorders 
whose underlying mechanism is related to the inability of a 
protein to achieve or maintain its native conformation [52, 
93]. Misfolded or misassembled proteins have two potential 
fates: (i) they could be degraded by the ubiquitin–protea-
some degrading pathway (UPS), thus leading to the loss of 
the biological activity of the protein involved (loss-of-func-
tion), or (ii) they can self-assemble generating aggregates of 
misfolded proteins, which in some cases form amyloid fibrils 
that are toxic for the cell and cause tissue damage (gain-of-
function disease) [22].

One of the approaches under development in the last 
decades for the treatment of protein misfolding diseases, 
in particular of those displaying a loss-of-function mecha-
nism, is the use of chemical or pharmacological chaperones, 
small molecules able to improve the folding and restore the 
activity of misfolded proteins. This strategy has been suc-
cessfully applied to treat lysosomal storage disorders, phe-
nylketonuria, tyrosine hydroxylase deficiency, cystic fibrosis, 
nephrogenic diabetes insipidus and others [93]. The term 
chemical chaperones usually refers to low molecular weight 
molecules that non-specifically stabilize a misfolded protein 
without directly interact with it. The term pharmacological 

chaperones (PCs) instead refers to small molecules able to 
specifically bind a misfolded protein and promote the attain-
ment of its correct structure, by determining a thermody-
namic stabilization of the polypeptide chain [96]. When a 
disease is due to an enzymatic deficit, compounds acting 
as PCs are either vitamin derivatives functioning as coen-
zymes, or competitive inhibitors of the enzyme involved. 
Both classes of molecules are usually endowed with a high 
binding affinity and specificity, two features that allow them 
to be effective at very low concentration [96].

As mentioned above, PH1 is the most frequent and most 
severe form of PH and it is due to the deficit of liver peroxi-
somal AGT [87]. The AGXT gene encoding AGT is present 
in humans as two polymorphic alleles named major allele 
(encoding AGT-Ma) and minor allele (encoding AGT-Mi). 
The minor allele has a mean frequency of 20% in the Euro-
pean population and is characterized by a 74-bp duplication 
in intron 1 and by the two amino acid substitutions P11L and 
I340M [34, 94]. The frequency of the minor allele increases 
to 50% in PH1 patients, because the P11L mutation makes 
AGT more susceptible to the effect of pathogenic missense 
mutations associated with PH1 [18, 19, 21, 69]. Moreover, 
AGT-Mi shows a 5% mistargeting to mitochondria, due to 
the P11L mutation that creates a putative mitochondrial tar-
geting sequence (MTS) at the N-terminus of AGT [34].

PH1 is a very heterogeneous disease from a genetic, 
enzymatic and clinical point of view. Up to now, more than 
150 different pathogenic mutations on the AGXT gene have 
been identified, and the most common ones are missense 
mutations [114]. Studies on the molecular and cellular fea-
tures of the variants have indicated that the large majority of 
mutations do not affect the intrinsic AGT catalytic activity 
but rather interfere with the proper folding pathway of the 
protein, thus increasing its aggregation and/or degradation 
propensity, as well as decreasing the overall kinetic stabil-
ity of the protein and promoting the binding with molecu-
lar chaperones [74, 75, 91, 92, 102]. In the case of vari-
ants on the minor allele, mitochondrial mistargeting is also 
often observed. A complex equilibrium during the folding 
pathway, in which the achievement of the correct structure 
and the consequent peroxisomal import compete with the 
population of partly-folded species prone to be degraded, 
to aggregate, or to be imported into mitochondria probably 
exists [76, 82]. Thus, researchers have paid attention to the 
discovery of small molecules that could positively interfere 
with this equilibrium promoting the correct folding of the 
protein [75, 79, 88].

Some research groups have analysed the action of chemi-
cal chaperones. Phenylbutyric acid (PBA), betaine, glycerol 
and trimethylamine N-oxide (TMAO) have been tested. 
However, only glycerol and betaine were found to exert 
a stabilizing effect of the pathogenic variants F152I-Mi, 
G170R-Mi, and I244T-Mi [28, 29].
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Based on the finding that in some variants the folding 
defect only or mainly affects the apo-form, and that this is 
also true for mutations responsive to Vitamin B6 at clinical 
level [20, 59, 81], the possible chaperone role of the coen-
zyme has been evaluated. Studies carried out on purified 
proteins and in a cellular model of PH1 have revealed that 
PLP not only shifts the equilibrium from the less stable 
apo-form to the more stable holo-form of AGT, but also 
binds apomonomeric and apodimeric folding intermedi-
ates promoting the acquirement and the maintenance of the 
dimeric structure that is crucial for functionality [18, 19, 
21, 39, 74, 75, 92]. PLP also exerts a stabilizing effect on 
native AGT and prevents its aggregation mediated by elec-
trostatic forces [38]. As a confirmation of the chaperone 
role of PLP, it has been recently reported that mutations 
located at the AGT monomer–monomer interface that 
cause structural alterations on the apo-form but not on the 
holo-form, are responsive to PN administration in vitro. 
Interestingly, the responsiveness seems to inversely cor-
relate with the degree of conformational alteration of each 
variant, thus implying that a kind of threshold could exist, 
above which the coenzyme is not able to rescue for the 
folding defect of a variant [40]. Another parameter that 
could influence B6 responsiveness is the type of vitamer. 
In fact, even though PN is the only vitamer used in clin-
ics, also pyridoxal (PL) and pyridoxamine (PM), can be 
internalized by cells [112]. The comparison of the effec-
tiveness of the three B6 vitamers in a cellular model of 
PH1 has revealed that PN and PM are more effective than 
PN in the rescue of folding-defective variants of AGT [86]. 
The reason underlying this difference is that PM and PL 
administration, differently from PN, avoid the intracel-
lular accumulation of pyridoxine phosphate (PNP) that 
competes with PLP for AGT binding and inhibits catalytic 
activity. Considering the safety of vitamins administra-
tion, and the fact that PM is already in the market for the 
treatment of diabetes Type II, these data hold promise for 
a possible future improvement of the therapy with Vitamin 
B6, which could completely or at least partly relief disease 
symptoms, provided that responsive mutations are identi-
fied and that the more effective vitamer is administered.

In an attempt to identify competitive inhibitors acting as 
PCs for AGT, different approaches have been undertaken 
in the last few years. Aminooxyacetic acid (AOA), a well-
known ligand of the protein [4], has been analysed as can-
didate. AOA behaves as a slow, tight-binding inhibitor and 
plays a chaperone role in the rescue of the most common 
mutations leading to PH1. To overcome the low specific-
ity of AOA, which makes it unsuitable for clinical use, a 
preliminary structure activity relationship analysis has been 
performed. This study allowed to identify a number of AOA 
derivatives among which 2-aminooxy-3-phenylpropionic 
acid was found to work as PC [89].

Other researchers have focused their efforts on the cor-
rection of the molecular defect of the common G170R-Mi 
variant, which is expressed by 30% of PH1 patients and is 
mistargeted to mitochondria [47]. A high-throughput pheno-
typic assay based on the evaluation of the change in the AGT 
subcellular localization has been implemented [71]. The first 
pilot screening has identified three active molecules that do not 
completely redirect AGT to peroxisomes, but could undergo 
future optimization programs. In addition, Miyata and col-
leagues have tried to prevent the aberrant targeting using FDA-
approved molecules acting as inhibitors of the mitochondrial 
import machinery [79]. They identified dequalinium chloride 
(DECA) as a molecule able to redirect AGT into peroxisomes 
and to partially restore the glyoxylate detoxification capability 
of the cells. Unfortunately, DECA is approved by FDA only as 
topical medication, and its parental administration resulted in 
toxic effects in mice [43].

Overall, many progresses have been made in the last years 
for the identification of compounds effective in correcting 
AGT folding by acting as PCs on either the apo- or the holo-
form of the protein, or in promoting the peroxisomal import. 
Future studies will be necessary to design more specific and 
more effective molecules as well as to test possible additive or 
synergic effects of their combined administration.

Conclusions

PHs are a group of diseases due to defects on the hepatic gly-
oxylate metabolism and leading to a wide plethora of clinical 
manifestations ranging from mild nephrolithiasis to severe 
renal damage and systemic oxalosis. In the last years, the 
advancements in the knowledge of the molecular and cellular 
aspects of the disease have driven the setup of new therapeutic 
strategies. Some of them are already in clinical trial for PH 
patients and look promising for a final approval in the near 
future. Others are still at the developmental stage, waiting for 
optimization studies.
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