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Abstract The aim of this study was to examine the
possible effects of some trace metals on the inhibition
of calcium oxalate crystallization. A test of urinary
lithogenic risk was used to follow the crystallization of
calcium oxalate from artificial urine in the presence of
several metal ions assayed in their physiological con-

centrations. Interactions of these metal ions with
known inhibitors of such crystallization (phytate,
pyrophosphate, citrate and chondroitin sulphate)

were also investigated. None of the metals affected
the inhibition of calcium oxalate crystallization at
concentrations approximating those found in normal
urine, with the exception of the Fe* ™ ions. Interactions
of Fe*" with some urinary components produced both
synergic (phytate and pyrophosphate) and negative
(citrate) effects on preventing crystallization. These
effects are explained in terms of the affinity of the
inhibitors for the calcium oxalate crystal surface and
their ability to form stable complexes in urine. Because
of the minimal concentrations, we conclude that
physiological concentrations of trace elements in urine
have no significant influence on calcium oxalate crys-
tallization. In this sense, ferric ions, which exhibit an
intrinsic high inhibitory capacity of calcium oxalate
crystallization at physiological concentrations, even
increased by the concomitant presence of phytate and
pyrophosphate, are probably unable to act as powerful
inhibitors in the presence of physiological urinary
concentrations of citrate, due to the formation of
highly stable complexes in solution without inhibitory
activity.
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Introduction

Urolithiasis is a process that results from a combination
of factors in which the main phenomenon is the super-
saturation of some compounds in urine that might
crystallize forming solid concretions. This process is af-
fected by the lack of crystallization inhibitors, the
presence of crystallization promoters and some morp-
hoanatomic factors [1]. A lithiasic episode may occur
when the equilibrium between these factors is broken.
Thus, crystallization inhibitors are critical for urolith-
iasis, being used for the preventive treatment of uro-
lithiasis recurrences [2].

In contrast to the well known inhibitory activity of
some urinary components such as citrate, magnesium,
phytate, pyrophosphate and glycosaminoglycans [3-6],
little attention has been paid to trace elements [7, 8]. On
the one hand, trace elements are known to influence the
external morphology of crystals, as well as to speed or
retard the crystallization process [9-12]. Unfortunately,
the predominantly unphysiologically high concentra-
tions used in these studies do not permit any reliable
conclusion on the in vivo effect of trace elements on
stone formation [13]. On the other hand, some attempts
to study the interaction of metal ions with some uro-
lithiasis inhibitors, such as several bisphosphonates [14]
and citrate, have been reported [15]. However, a great
effort is required to ascertain the effects of trace metal
interactions with the main known inhibitors of urolith-
iasis.

Several procedures have been developed to evaluate
the crystallization properties of urine and to study the
inhibitory capacity of given substances in urine [16, 17].
Recently, a very simple test (the urinary lithogenic risk
test or ULR) to evaluate the capacity of a urine to
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crystallize calcium salts has been presented [18]. The
ULR test is based on the fact that if an unprotected,
non-renewed surface (i.e. histologic paraffin or poly-
ethylene) remains in contact with a urine, sooner or later
the supersaturated substances contained in the urine will
crystallize on it. Thus, the URL test represents a simple
test to evaluate the capacity of urine to crystallize cal-
cium salts. Its application for the evaluation of inhibi-
tion of calcium oxalate crystallization by trace metals is
presented in this study. The advantages of this test are its
ease of application to artificial and real urines, its proved
efficacy on screening for increased risk of calcium oxa-
late crystallization in stone-formers, its rapidity and low-
cost.

Within this context, the aim of this work is to sys-
tematically study the inhibitory activity of certain trace
metals, both the individual effect and in the presence of
the main inhibitors of calcium oxalate crystallization
(i.e., phytate, pyrophosphate, citrate and glycosamino-
glycans), taking into account the possible synergic or
negative interactions on inhibition.

Materials and methods
Reagents and solutions

Synthetic urine [19] was prepared immediately before
use by mixing equal volumes of solutions A and B, both
prepared with reagents of analytical reagent grade and
deionised redistilled water, and adjusted to pH 5.5.
Solution A contained 4.86 g/l Na,SO,4, 1.02 g/l
MgS047H,0, 4.65 g/l NH4CI, 12.2 g/l KCl and 2.24 g/
Ca(NO;3),4H,0. Solution B contained 2.4 g/l NaH,.
PO42H,0, 3.0 g/l Na,HPO42H,0, 13.12 g/l NaCl and
0.075 g/l Na,C,04. The concentration of the different
compounds in the synthetic urine solution was: Na ™
171.7mM, K* 81.3mM, NH,” 43.5mM, Ca*"
47 mM, Mg?>" 2.1 mM, CI- 237.0 mM, SO,
20.1 mM, PO,’~ 16.1 mM and oxalate 0.28 mM.

Tetra-sodium pyrophosphate 10-hydrate (Panreac,
Barcelona, Spain), myoinositol hexaphosphoric acid
hexasodium salt from corn (Sigma, Steinheim,
Germany), trisodium citrate dihydrate (Merck, Darms-
tadt, Germany), chondroitin sulphate A from bovine
trachea (Sigma, Steinheim, Germany) and certified
analytical standard solutions (1,000 mg/l) of assayed
metals (J.T. Baker, Devented, Holland) were used as
inhibitors.

Measurements of calcium oxalate crystallization

Figure 1 shows a diagram of the reaction unit employed.
Before the experiment, 500 pl of an ethanolic 100 g/l
solution of thymol (antiseptic action) was spread in each
polypropylene container and the ethanol was evapo-
rated. Then, 30 ml of artificial urine was placed in the
polypropylene container and sealed, leaving the poly-

ethylene tube in contact with the urine for 24 h at room
temperature. Then, the urine was discarded and the
polyethylene tube, bearing the calcium oxalate crystals
on its surface, was carefully rinsed with water. Calcium
oxalate was finally redissolved by introducing the tube
into a vial containing 4 ml HCI 0.3 M, and calcium
measured by ICP-OES (model Iris Intrepid IT XLS from
Thermo Electron, USA).

Inhibitory effects of various compounds

To study the activity of some inhibitors on calcium
oxalate crystallization and to evaluate the effect of their
interactions, the amount of calcium precipitated from
artificial urine containing the target inhibitors was
determined by the ULR test. Both the inhibitory effects
on calcium oxalate crystallization of several metal ions
in the physiological concentration ranges shown in
Table 1 and the effect of binary mixtures of these metal
ions in the presence of phytate (0.2 mg/l), citrate (80 mg/
1), pyrophosphate (1.5 mg/l) or chondroitin sulphate
(4.5 mg/1) were evaluated by the addition of appropriate
volumes of concentrated stock solutions of these sub-
stances to the artificial urine just before the ULR test.
Phytate, citrate, pyrophosphate and chondroitin sul-
phate were used in these experiments in concentrations
below those of normal human urine because utilization
of physiological concentrations leads to very high inhi-
bition values, thus masking the lower effect of the metals
under investigation at trace levels. If needed, such con-
ditions can be modified to achieve normal urine con-
centrations after considering the inhibition results
obtained.

The percentage of inhibition of calcium oxalate
crystallization was determined for each experiment by
comparison of the amount of calcium precipitated in
each condition with that of the assay in the absence of
inhibitors (see equation). To evaluate the reproducibility
of the obtained results, each experiment was repeated
three times.

% Inhibition =

100<1 —

When the effect of citrate was studied, we took into
account the decrease of free calcium in artificial urine
because of the formation of calcium-citrate soluble

Polyethylene
tube -
7x65mm

Fig. 1 The reaction unit of the ULR test

u g Ca formed in presence of inhibitor
u g Ca formed in absence of inhibitor

Polypropylene
container
38x65mm
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Table 1 Effect of individual trace metals on the inhibition of calcium oxalate crystallization. Representative ranges of these trace metals

for normal urines are given for comparison [20, 21]

Metal ion Zn** Fe** Cu?* Sn?™* Pb** APR* Ni?* cd** Mn?*
Representative range (ug/l) 0-767 0-170 0-55 0-35 0-4 0-34 0-12 0-1 0-2
Assayed range (pg/l) 0-2,000 0-250 0-100 0-50 0-50 0-50 0-50 0-50 0-50
Maximum inhibition observed 6+3 55+4 3+2 242 3+2 4+2 0+1 1+1 2+1

complexes. Thus, a corresponding supplement of cal-
cium was added by controlling the free calcium con-
centration using a calcium-selective electrode, in order to
attain the same calcium oxalate supersaturation value
that is found in the absence of citrate. A decrease in the
supersaturation would produce a decrease in the crys-
tallization rate that can not be attributed to inhibitory
effects. Due to the low levels of phytate, pyrophosphate
or chondroitin sulphate, the decrease in the free calcium
concentration was negligible, making the addition of a
calcium supplement unnecessary.

Study of the solid phase formed

Solids formed on the surface of polyethylene tubes were
also studied by scanning electron microscopy (model
JSM-6300 from JEOL, Japan) in order to determine the
composition of crystals occurring in in vitro assays. Such
a determination was carried out both by morphological
characterization and elemental composition by using X-
ray energy dispersive analysis.

Results

In vitro studies were performed in synthetic urine, using
crystallization conditions that avoid calcium phosphate
precipitation (pH=15.5) with the aim of examining the
formation of calcium oxalate crystals exclusively. In
Fig. 2, an image of the crystals obtained in vitro with the
model described above shows the formation of well
developed polygonal crystals of calcium oxalate mono-
hydrate, as previously found [5, 19]. X-ray energy dis-
persive analysis also supports this finding by providing
the corresponding signal for calcium and the absence of
the signal for phosphorus (no calcium phosphate for-
mation).

Results in Table 1 indicate that none of the metals
affect the inhibition of calcium oxalate crystallization at
concentrations approximating those found in normal
urine, with the exception of the Fe’ " ions. Furthermore,
the effect of some other substances such as phytate,
citrate, chondroitin sulphate and pyrophosphate on the
inhibition of calcium oxalate crystallization was not
significantly influenced (neither increased nor decreased)
by the assayed concentrations of metal ions, again with
the exception of the Fe’ " ions. The effects of binary
mixtures of the aforementioned crystallization inhibitors
of calcium oxalate crystallization together with Fe’"

ions are shown in Figs. 3, 4, 5 and 6. As can be seen,
both phytate+Fe (Fig.3) and pyrophosphate+ Fe
(Fig. 4) mixtures manifested significant synergic effects,
whereas citrate + Fe mixtures (Fig. 5) show important
negative effects on inhibition of calcium oxalate crys-
tallization. Finally, the combination of chondroitin sul-
phate with Fe’" ions (Fig. 6) shows additive
interactions.

Discussion

The essential trace elements As, Cr, Co, Cu, F, Fe, I,
Mn, Mo, Ni, Pb, Se, Si, Sn, V and Zn must be present in
the body in minimal concentrations to guarantee specific
functions, such as enzyme reactions, electronic transfer,
redox reactions, etc. Although their presence in urinary
stones has been demonstrated [22, 23], whether this is
simply a result of external deposition from urine or
whether the presence of excess amounts of elements such
as iron, zinc and copper in a local environment may
become an initiating factor in the process of rapid stone
precipitation [24] remain unknown. However, it seems
clear that if a particular trace metal has an effect on

Fig. 2 Scanning electron micrograph of well-developed polygonal
crystals of calcium oxalate monohydrate formed in vitro on the
surface of polyethylene tubes of the reaction unit (ULR test)
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Fig. 3 Effects of Fe’ " + phytate mixtures on the crystallization of
calcium oxalate. Percent inhibition £+ SD in the presence of different
concentrations of Fe* and absence of phytate (filled circles) or the
presence of phytate 0.2 mg/l (empty circles). The dashed line is the
line that would be obtained if only additive effects of inhibition
were produced

crystallization of a urinary stone component, it must
necessarily act at the surface of the crystals since the
concentration of trace metals in urine is too small to
affect the lattice ions in solution, being thus trapped and
perhaps concentrated within the lattice of the crystals.
The presence of Fe*" in calculi is further explained by
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Fig. 4 Effects of Fe’>* + pyrophosphate mixtures on the crystalli-
zation of calcium oxalate. Percent inhibition+SD in presence of
different concentrations of Fe** and absence of pyrophosphate
(filled circles) or presence of pyrophosphate 1.5 mg/l (empty
circles). The dashed line is the line that would be obtained if only
additive effects of inhibition were produced
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Fig. 5 Effects of Fe®* +citrate mixtures on the crystallization of
calcium oxalate. Percent inhibition+SD in presence of different
concentrations of Fe’™ and absence of citrate (filled circles) or
presence of citrate 80 mg/l (empty circles). The dashed line is the
line that would be obtained if only additive effects of inhibition
were produced

its adsorption on calcium oxalate crystals [25]. The
ability of Fe*" ions to establish highly stable chemical
interactions with oxalate ions on the surface of calcium
oxalate crystals, thus disturbing their development,
explains its inhibitory effects on calcium oxalate
crystallization. Fe’" ions are, of all the metal ions
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Fig. 6 Effects of Fe’™ +chondroitin sulphate mixtures on the
crystallization of calcium oxalate. Percent inhibition+SD in
presence of different concentrations of Fe®™ and absence of
chondroitin sulphate (filled circles) or presence of chondroitin
sulphate 4.5 mg/l (empty circles). The dashed line is the line that
would be obtained if only additive effects of inhibition were
produced



assayed in this work, those which more stably bind
oxalate ions [26], probably explaining why the other
metal ions do not show significant inhibitory effects on
calcium oxalate crystallization at physiological concen-
trations. Inhibitory properties previously reported for
other metals ions, such as Zn** [9], A’ [9, 15] or Cu*™
[13], were not confirmed by this study, and are probably
due to unphysiologically high concentrations used in
those studies.

It is even more interesting to note how the interac-
tions between Fe'" ions and the calcium oxalate sur-
face can be modulated by the action of common
urinary components, inducing important changes in its
inhibitory properties. The important synergic effects on
inhibition exhibited by phytate+Fe®" and pyrophos-
phate+ Fe*" are likely to occur via anchored mixed
ligand complexes of Fe’>* or anchored binuclear com-
plexes of phytate and pyrophosphate, which could
cause a greater blocking effect of the active sites on the
crystal surface than the individual components. Some
stable mixed ligand complexes of Fe*™ with carboxyl-
ate and phosphate groups have been reported [27].
Thus, analogous complexes with oxalate and phytate or
pyrophosphate, anchored in the calcium oxalate crystal
surface, could explain the aforementioned synergic ef-
fects. Furthermore, the possible formation of binuclear
complexes of phytate or pyrophosphate with Fe*> " ions
and calcium, anchored by the latter to the calcium
oxalate crystal surface, can also contribute to hindering
crystal growth. A similar mechanism of action has been
reported for the potentiation of bisphosphonate activity
by Sn [14], in which any of the two phosphonate
groups of the bisphosphonate molecule can act as a
separate unidentate ligand, with one group binding the
Sn** ion and the other binding a calcium on the crystal
surface.

Apart from synergic effects with phytate and pyro-
phosphate, negative effects on inhibition by Fe** ions in
the presence of citrate have also been observed. At high
ratios of citrate to metal ions, Fe’* is known to form
highly stable low molecular weight complexes without
the inhibitory properties of calcium oxalate crystalliza-
tion [15]. Such complexes are likely to avoid the inter-
action of ferric ions with the calcium oxalate surface by
displacing the Fe** ions from this surface, counteracting
its inhibitory effect and resulting in the aforementioned
negative effects of the Fe® " -citrate interaction on cal-
cium oxalate crystallization.

Conclusions

Renal lithiasis is known to be a multifactorial disease
in which inhibitory crystallization deficit plays a major
role together with supersaturation levels of different
urinary salts, promoters of crystallization and diverse
phenomena of crystal retention in the urinary tract.
The inhibitory capacity of a given urinary compound
can not only be related to its concentration, since the
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abundant likely interactions of this compound with
other components in urine (complex formation, pre-
cipitation, chemisorption on a crystal surface, dis-
placement from crystal surface) are known to
significantly change its ability to disturb the develop-
ment of a specific insoluble salt, producing either neg-
ative or synergic effects. In this sense, ferric ions, which
exhibit a high intrinsic inhibitory capacity for calcium
oxalate crystallization at physiological concentrations,
even increased by the concomitant presence of phytate
and pyrophosphate, are probably unable to act as a
powerful inhibitor in the presence of physiological
concentrations of citrate, due to the formation of
highly stable complexes in solution without inhibitory
activity.

Because of the minimal concentrations, we conclude
that physiological concentrations of trace elements in
urine have no significant influence on calcium oxalate
crystallization.
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