Urol Res (2003) 31: 242-256
DOI 10.1007/500240-003-0316-3

ORIGINAL PAPER

Ramasamy Selvam - Periandavan Kalaiselvi

Oxalate binding proteins in calcium oxalate nephrolithiasis

Received: 5 February 2002/ Accepted: 19 March 2003 / Published online: 11 July 2003

© Springer-Verlag 2003

Abstract The existence of several oxalate specific bind-
ing proteins have been demonstrated in human and rat
kidney. These occur in both cortical and medullary
cells and are distributed mostly in the subcellular
organelles. About 1/3 of the total cellular oxalate
binding was localised in the inner mitochondrial
membrane while the rest was in the nucleus. The
purified mitochondrial oxalate binding protein
(62 kDa) was composed, with a higher molar propor-
tion, of basic amino acids, and could accumulate oxa-
late on incorporation into liposomes. In the nucleus,
histone H;p (27.5 kDa), nuclear membrane protein
(68 kDa) and nuclear pore complex protein (205 kDa)
were present with oxalate binding activities. In addi-
tion, a 45 kDa calcium oxalate binding protein was
identified in most of the subcellular organelles. Both
mitochondrial and nuclear oxalate binding proteins and
calcium oxalate binding protein have shown the kinetic
properties of specificity, saturability, pH and tempera-
ture dependency, energy of activation and inhibition by
substrate analogues. All oxalate binding proteins were
sensitive to the transport inhibitor 4’-4” diisothiocyano
stilbene-2-2 disulphonic acid (DIDS), which is known
to interact with the lysine moiety of the proteins.
Calcium oxalate monohydrate (COM) crystals
adsorbed oxalate binding proteins from human and rat
kidney, and oxalate binding proteins isolated from
human kidney stone matrix also exhibited the above
kinetic properties. In experimental hyperoxaluria, all of
the renal oxalate binding proteins showed enhanced
oxalate binding activity with increased protein con-
centration. This enhanced oxalate binding activity was
also attributed to increased lipid peroxidation, which
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correlated positively, and to decreased thiol status,
which correlated negatively. A positive correlation was
observed between the lipid peroxidation and both the
oxalate binding activity of the in vitro peroxidised
subcellular organelles and the purified protein. Simi-
larly, in an in vivo hyperoxaluric condition, a negative
correlation was observed between thiol content and
both the oxalate binding activity of the peroxidised
subcellular organelles and the purified protein. In the
calcium oxalate crystal growth system, the oxalate
binding proteins behaved either as promoters or
inhibitors of the nucleation and aggregation of crystals.
Following the peroxidation of the proteins, the degree
of effect of the promoter protein was further stimulated
while the degree of inhibition caused by the inhibitor
protein further declined. Similar observations were
duplicated with the proteins derived from hyperoxalu-
ric rat kidney or kidney homogenate subjected to in
vitro lipid peroxidation. The oxalate binding proteins
were thought to modulate the crystallisation process in
an hyperoxaluric condition similar to calcium specific
binding protein modulators.

Keywords Oxalate binding - Lipid peroxidation -
Protein thiol depletion - Nucleation - Aggregation

Urinary stone disease, which has plagued and intrigued
human beings, existed at least 7,000 years ago, as it has
been found in the pelvis, presumably in the bladder, of a
mummified Egyptian [112]. Renal stone disease is esti-
mated to occur in 2-5% of the population, and the rate
of recurrence increases with age if untreated [14]. The
formation of a stone within the urinary tract is not a
specific disease but a culmination of the potential com-
plications of many different metabolic disorders such as
hypercalciuria, hyperoxaluria, hypocitraturia, abnormal
crystallization inhibition, hyperabsorption in the intestine,
excess secretion in tubular fluid, hormone imbalance



and inborn errors in oxalate metabolism [40, 72, 114,
133]. Despite the development of novel means of treat-
ment, such as dietary modifications, supplementation of
citrate, magnesium oxide, antioxidants like vitamin E,
lipoic acid, indigenous medicines and by surgical meth-
ods [9, 90, 93], the basic mechanism of stone formation,
the identity of predictors of recurrence, and the factors
involved in retention are still largely shrouded in
uncertainty.

Abnormality in oxalate metabolism has been sug-
gested for the pathogenesis of stone disease. The uri-
nary excretion of oxalate depends on various factors
such as dietary intake, endogenous synthesis, intestinal
absorption, and intestinal elimination by secretion,
intestinal elimination by Oxalobacter formigenes and
renal secretion [45, 81, 113]. Excessive excretion of
oxalate leads to calcium oxalate (CaOx) crystalluria.
Oxalate can be voided freely in the urine of healthy
subjects who also pass crystals with normal oxalate
excretion. The question of stone formation arises only
when these crystals are retained in the tubules due to
their size as well as their association with the epithe-
lium, as proposed by Finlayson and Reid in the fixed
particle hypothesis [28]. The factors which facilitate the
retention and further growth of the crystals may play
an important role in the development of nephrolithia-
sis. The specific molecular processes that mediate the
attachment of crystal to kidney epithelium are yet to be
identified. The attachment of crystals to cells may be
dependent on the specific composition and arrangement
of cell surface proteins, glycoproteins, glycolipids and
lipids, as well as to cell damage mediated by lipid and
protein peroxidation [15, 67, 96, 124]. Membranes are
the prime sites involved in the transport, uptake and
binding of oxalate during the absorption process in the
intestine, as well as the secretion process in renal tu-
bules. Many of the oxalate uptake studies have been
performed using membrane vesicles [78], microperfused
renal tubules [121], stripped intestinal tissue as a two
compartment system [37], and cultured epithelial cells
[84]. All of these systems have inherent defects, as
membrane vesicles and culture do not provide the same
information as the intact and functional epithelia under
hormonal coordination. Most of the oxalate uptake
studies present data on its ion-exchange system, such as
chloride, bicarbonate, proton and formate [130]. But
these studies do not throw light onto the mechanism of
oxalate retention. Excellent reviews are available on
calculi formation mechanisms, both with the involve-
ment of altered papillary epithelium and also in the
cavities without any attachment [35], as well as the
interaction of macromolecules with stone forming cal-
cific crystals [56, 123]. All of the macromolecules
implicated in the crystallization processes so far have
some form of calculi binding activity, either through
specific domains or anionic sites [56]. This review pre-
sents evidence for the presence of oxalate/CaOx bind-
ing proteins and CaOx crystal adsorbing proteins with
oxalate binding activity in the renal cells which are
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thought to be involved in the retention of crystals
under altered physiological conditions.

Intestinal oxalate binding protein

The hyperabsorption of dietary oxalate has been
attributed to idiopathic CaOx nephrolithiasis [46]. In the
rabbit, oxalate is transported through the intestine by a
diffusion mechanism that is not energy but concentra-
tion dependent [27]. Oxalate absorption from the gut
takes place by simple passive diffusion in humans and
experimental animals [38]. In rat colon mucosa, oxalate
and chloride share a common transport pathway in
which chloride exchanges with bicarbonate [49]. The
energy dependent net absorption of oxalate is found to
be 4’,4’-diisothio-cyano stilbene 2-2 disulfonic acid
(DIDS) sensitive and carrier mediated. Studies by Pinto
and Paternain showed, for the first time, the presence of
an oxalate transport system mediated by a carrier pro-
tein having the characteristics of a transport protein
with a molecular weight of 73 kDa [83]. They speculated
that two different oxalate transport systems exist, one
operating at low oxalate concentration mediated by the
transport protein and the other at high oxalate concen-
tration by passive diffusion.

Pyridoxine deficiency causes hyperoxaluria in humans
and animals [31]. In pyridoxine deficiency, oxalate
absorption takes place with biphasic carrier mediated
characteristics in which a carrier-mediated saturable
component facilitates oxalate uptake from the lumen into
enterocytes at low mucosal oxalate concentrations [27].
Koul et al. identified an oxalate binding protein in the
brush border membrane having the kinetic properties of
reversibility, saturability, temperature sensitivity and
inhibition by substrate analogues [63]. The protein was
induced under pyridoxine deficiency with two distinct
classes of receptor sites for oxalate, one with high affinity
and the other with low affinity (Table 1). The protein had
a molecular weight of 79 kDa and may be involved in
oxalate binding and transport in the rat intestinal brush
border membrane during pyridoxine deficiency.

Red blood cell band 3 protein

The anion transporter band 3 protein is ubiquitous, not
only being present in cell membranes, but also in nuclei,
Golgi’s complex and mitochondrial membranes [55]. It is
involved in respiration, acid-base balance and is the
major structural protein linking the plasma membrane
to the cytoskeleton. The transport of chloride and
bicarbonate, physiologically important anions, is rapid
in human red blood cells (RBC) from adults and late
fetuses [22], and also from adult chickens [21]. Band 3
protein has been cloned in many species [70], and the
gene is located on chromosome 17. It is a 911 amino acid
protein having a hydrophilic cytoplasmic domain, a
hydrophobic transmembrane domain and an acidic
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C-terminal domain. The amino acids involved in anion
exchange include lysine, arginine, histidine and glutamic
acid [85]. Band 3 protein is involved in the transport of
oxalate across the human RBC membrane [11]. It be-
haves as an oxalate exchanger in a phosphorylation
dependent manner [12]. Increased arachidonic acid
content of the RBC membrane of stone formers was
attributed to enhanced oxalate exchange through the
phosphorylation reaction. Diet induced reduction of
arachidonic acid content of RBC membranes resulted in
the modification of RBC oxalate transport and urinary
oxalate excretion by human subjects and animals [30],
suggesting that membrane phospholipid arachidonic
acid content can control cellular oxalate transport by
modulating protein kinases involved in the band 3
phosphorylation process [13].

Band 3 like proteins are present along the gastroin-
testinal tract as well as the renal tubules [4]. Immuno-
logical studies using highly purified antibodies raised
against the intra-membranous domain of band 3 protein
have shown specific fluorescence along the basolateral
membrane’s alpha intercalated cells of the collecting
duct [126]. A link between RBC abnormality and renal
stone formation has been suggested [19]. Patients with
primary CaOx nephrolithiasis have a significantly ele-
vated RBC oxalate exchange [10, 74].

Renal oxalate uptake and oxalate binding proteins
Renal oxalate uptake

The transcellular movement of substrates from the peri-
tubular capillaries to the tubular fluid requires the cross-
ing of two barriers: the basolateral plasma membrane,
which is in contact with the internal milieu facing the
blood supply, and the apical plasma membrane, which is
in contact with the external milieu and faces the tubular
fluid. The transport of oxalate across these membranes
is mediated by anion exchange mechanisms.

Renal oxalate secretion is mediated by the cellular
entry of oxalate in exchange for sulfate and/or bicar-
bonate at the basolateral membrane, followed by the
cellular exit of oxalate in exchange for sulfate, bicar-
bonate or hydroxyl ions at the apical membrane [122].
To create a driving force for the exit of sulfate via the
central luminal membrane, sulfate must first accumulate
in the cell. This happens by virtue of sodium coupled
sulfate transport in the luminal membrane. Using LLC-
PK1 cell lines, as well as rabbit renal microvillus mem-
brane, transport studies have suggested that chloride/
oxalate exchange plays a major role in the cellular exit of
oxalate at the apical membrane [54, 131]. The presence
of distinct oxalate transporters in the mammalian
proximal tubule has been demonstrated [33]. In addi-
tion, a sulfate/bicarbonate anion exchanger having
affinity for oxalate in the rat renal cortex basolateral
membrane vesicles [61], oxalate exchange for bicarbon-
ate and sulfate in rabbit renal cortex apical membranes
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[53], and an oxalate/OH  exchanger [134] in rat renal
proximal brush border vesicles have been demonstrated.
All of these anion exchangers, including subtypes of
organic anion transporters are thought to be involved in
the transport of organic anions [121]. Several oxalate
specific binding proteins had been identified in renal
tissues in our laboratory and their kinetic properties and
influence on crystal growth have been studied.

Oxalate binding proteins

Mitochondria

The presence of an oxalate binding protein had been
identified in tissues such as the human kidney, where it is
found in mitochondria, and rat kidney and liver [65].
Other rat tissues like heart, lung, skeletal muscle, spleen,
stomach, and small and large intestinal homogenate
showed no binding with oxalate. About a third of the
total oxalate binding was found to be localized in the
inner mitochondrial membrane. The binding of oxalate
was specific and the other substrate analogues compete
with it less efficiently. The binding of oxalate was rapid,
reversible, dependent on oxalate concentration, and
temperature sensitive. Scatchard plot analysis has shown
the maximum binding capacity (Bmax) to be 49 pmol/
mg protein with a dissociation (Kd) of 43 nM. Calcium
had no effect on oxalate binding [65], suggesting that the
binding was oxalate specific. The purified proteins from
human as well as rat mitochondria showed molecular
weights of 62 and 58 kDa, respectively. Both proteins
had higher percentages of both basic and acidic amino
acids [98]. Antibody raised to the rat protein inhibited
oxalate binding and also cross-reacted with the human
protein. The characteristic properties are listed in
Table 1. Proteoliposomes prepared with the proteins
showed an accumulation of oxalate, confirming a
transport function for the protein. The uptake of oxalate
in mitochondria was mediated through the dicarboxy-
late transport carrier [115].

Nucleus

About 2/3 of the total cellular oxalate binding activity
was distributed in the kidney and liver nuclei [73]. Most
of the radioactive oxalate binding was present in the
histone-H; fraction, and in particular the H;p fraction
[103]. Purified protein showed oxalate binding with the
characteristics of rapidity, reversibility, saturability and
pH dependency. Trypsin treatment abolished oxalate
binding. Scatchard plot analysis showed the character-
istics of protein ligand binding (Table 1). Two distinct
binding sites were found, one with high affinity and the
other with low affinity for oxalate. The oxalate binding
activity was inhibited by the transport inhibitors DIDS
and phenyl succinate. Similarly, liver H,g was found to
have a maximal oxalate binding activity with similar
characteristics to renal protein [104]. This binding was
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not associated with calcium binding. Different tissues
histone H; fractions also exhibited oxalate binding,
showing its ubiquitous nature.

About 40% of the total nuclear oxalate binding was
localized in nuclear membrane. Two oxalate binding
proteins were identified on the nuclear membrane, one
having a molecular weight of 68 kDa [110] and the other
in the nuclear pore complex having a molecular weight
of 205 kDa [128]. Both oxalate binding proteins had
maximal binding at pH 7.4 for both rats and humans.

All nucleated cells had oxalate uptake mechanisms.
Oxalate binding and uptake were studied using, for
example, intact, nucleated chicken RBC, nuclear mem-
branes and nuclear histones. The rate of oxalate anion
exchange by nucleated erythrocytes was found to be
higher (K =1.24/min) than that of human RBC (K =0.5/
min), but less than that of nuclei (K=1.55/min) [106].
The flux rate was pH and temperature dependent.
Oxalate exchange was reduced by 35% for chicken
RBCs and nuclei in the presence of sulfate, bicarbonate,
phosphate and succinate, suggesting their common
transport nature. Both plasma membrane and nuclear
membrane showed maximal oxalate binding at pH 7.4,
while for the nuclear basic protein fraction this occurred
at pH 4.5, similar to renal and hepatic histones. DIDS
inhibited both exchange as well as oxalate binding,
suggesting that oxalate specific binding proteins are
involved in the transport systems.

Calcium oxalate binding proteins

Renal calcium binding proteins have been identified in
several biological systems [41]. Resnik et al. [90] reported
excess excretion of calcium binding proteins in kidney
stone formers. Calcium binding proteins as well as
molecules like sialic acid, y carboxy glutamic acid and
phosphatidic acid allow high local concentrations of
calcium inside the cell in hyperoxaluric conditions [5, 87,
88].

Using calcium-'*C oxalate, the existence of CaOx
binding protein has been demonstrated in several rat
tissues [2]. Kidney showed the maximum binding activ-
ity among the various tissues studied. Renal medulla
exhibited higher CaOx binding activity than papilla or
cortex. Subcellular studies revealed the enrichment of
this protein in nuclei. The purified protein has a
molecular weight of 45 kDa and the kinetic properties of
concentration and time dependency, optimum tempera-
ture, substrate saturability with a single affinity site with
a Kd of 41 nM and Bmax of 6.5 nmol/mg protein
(Table 1). This binding was inhibited by DIDS, while
EGTA and ruthenium red had no effect on the binding,
suggesting that the protein-oxalate binding was oxalate
specific and not calcium site specific. Further lysine
group might be involved in oxalate binding since DIDS
is known to react with lysine-amine residues.

All of the above listed oxalate specific binding pro-
teins, located in the different membranes of renal cells,
may serve the function of carrier proteins for the

transport systems since all of the transport systems
exhibit energy of activation as well as transition point
during temperature effect studies and inhibition by
transport inhibitors. Carrier proteins of the transport
system are generally constituted with lipids and they
undergo phase transition at a temperature which is a
function of the fatty acid composition of the lipid
components [20, 91].

Calcium oxalate monohydrate adsorbing proteins

All urinary stones contain an organic matrix which
comprises approximately 2-5% of the total stone
weight. Organic matrix has been considered to be
essential for the genesis and mineralization in the growth
of urinary calculi during stone formation [76]. As the
matrix proteins are thought to be present due to inclu-
sion by tissue trauma or by coprecipitation along with
crystals, the actual proteins in the active involvement of
the crystallization process are still unknown. Thus,
studies have been attempted with the proteins which
were adsorbed with calcium oxalate monohydrate
(COM) crystals in urine. Several proteins have been
identified by this method which resemble those identified
in stone matrix. [8, 26, 44, 48]. All of these proteins, such
as nephrocalcin, Tomm-Horsfall glycoprotein, crystal
matrix protein or prothrombin fragment F1 and
bikunin, have the characteristic properties of calcium
binding and inhibition of crystal growth. None have
been tested for oxalate binding activity. Several oxalate-
binding proteins have been identified in COM crystal
adsorbed proteins as well as stone matrix proteins in our
laboratory.

Human kidney

The proteins were adsorbed on CaOx crystals by
allowing them to interact with triton-extracted human
kidney homogenate. They were then subjected to
DEAE-cellulose column chromatography and three
protein peak fractions were eluted (designated as frac-
tion I-III) according to their order of elution with
increasing concentration of NaCl [100]. Among the three
eluted protein peaks, the protein eluted with 0.3 M NaCl
(fraction III) had the maximum oxalate binding activity
of 270 pmol/mg protein at pH 4.5. The protein had no
oxalate binding at pH 7.4. The purified protein had a
molecular weight of 23 kDa. Amino acid analysis
showed that 18% of the total molar proportion was
made up of basic amino acids (lysine and arginine) while
acidic amino acids accounted for only 11%. Modification
of the lysine group abolished oxalate-binding activity.

In contrast to fraction III, fraction I had oxalate
binding activity at pH 7.4.The purified protein had a
molecular weight of 45 kDa with an activity of 280 pmol
oxalate/mg protein. The protein had the kinetic prop-
erties of saturability, with a Kd of 1.96 nmol and Bmax
of 200 pmol/mg protein [99].



Rat kidney

Among the different tissues, the COM adsorption of
proteins derived from kidney was found to be maximum.
DEAE-cellulose chromatographic fractionation yielded
three proteins with oxalate binding activities, fractions
I-IIT according to their order of elution. The molecular
weight of these fractions were determined to be 74, 20
and 23 kDa, respectively. Subcellular distribution stud-
ies of these proteins revealed that the 20 kDa one was
largely distributed in microsomes, that of 74 kDa in
mitochondria and the 23 kDa protein in nuclei [101].
The 74 kDa protein exhibited maximum oxalate binding
activity at pH 7.4, while for the 23 kDa protein this was
at pH 4.5 with no activity at pH 7.4.

Human kidney stone matrix

When EDTA-extractable proteins from human kidney
stone matrix were subjected to DEAE-cellulose chro-
matography, three protein peaks were identified with
oxalate binding activity in the order of elution, fractions
1-3. Fraction 1 on further passage through a Sephadex
G-200 column, separated into 48 kDa and 29 kDa
proteins. The 48 kDa protein had maximum oxalate
binding activity compared to the other. Both proteins
exhibited the binding characteristics of renal proteins
[34] (Table 2).

Effect of lipid and protein peroxidation
on oxalate/CaOx binding proteins in hyperoxaluria

Mitochondrial oxalate binding

Oxalate binding was increased by 150-180% of control
values in kidney and liver after subjecting them to lipid
peroxidation (LPO) [107]. Renal mitochondrial oxalate
binding was stimulated by promoters in the order of
Fe?>" >tBH > ascorbic acid>Fe®" >H,0,. The iron
induced oxalate binding was inhibited by reduced glu-
tathione, B-mercaptoethanol, alpha tocopherol, and the
hydroxyl radical scavengers histidine and mannitol.
Catalase also inhibited both Fe?"and H,O, induced
enhanced oxalate binding and LPO reaction suggesting
that the oxalate binding was mediated through a
hydroxyl radical reaction. Increased oxalate binding
had a positive correlation (r= +0.98) with LPO and a
negative correlation with reduced GSH content
(r=-0.80), observed during lipid peroxidation in rat
kidney mitochondria [108] (Table 2). In the presence of
oxidized glutathione (GSSQG), peroxidized mitochon-
dria lost 48% of their protein-SH with a concomitant
threefold increase in oxalate binding activity, while
control mitochondria lost only 20% of their protein-
SH content with only a 0.8%-fold increase in oxalate
binding activity [108]. The affinity of oxalate (Km) to
GSSG treated mitochondria increased from 1x10® M
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to 0.6x10® M. Reduced GSH inhibited oxalate binding
activity competitively (Ki=1.4x10""' M). Urolithic
kidney mitochondria showed a 30-50% increase in
oxalate binding activity along with a depletion in total
GSH and protein-SH as observed in vitro [79]. Simi-
larly, feeding dehydroascorbic acid to rats also
increased renal oxalate binding activity [102]. This
increased activity was associated with increased LPO
and decreased activities of the antioxidant enzymes
superoxide dismutase (SOD), glutathione peroxidase
(GPX), catalase, glutathione-S-transferase (GST) and
the scavengers, reduced glutathione (GSH) ascorbic
acid and vitamin E. These studies suggest that oxalate
binding is regulated by the thiol status of the mito-
chondria. This is further supported by the following
studies: (1) feeding a vitamin B¢ deficient diet or calculi
producing diet such as sodium glycolate or ethylene
glycol in drinking water increased oxalate binding
activity in mitochondria with the depletion of thiol
content [79, 108]; (2) the depletion of GSH by buthi-
onine sulfoximine in the presence of ethylene glycol
feeding [80] increased oxalate binding activity. Further,
oxalate binding activity was correlated negatively with
the thiol status of mitochondria and calcium accumu-
lation was also negatively correlated with thiol content;
(3) ischemia reperfused kidney also showed stimulated
mitochondrial oxalate binding with the depletion of
thiol content [109]. A well pronounced effect was seen
when ischemia reperfusion was combined with hyper-
oxaluria. (4) In addition, oxalate administration to rats
also increased mitochondrial oxalate binding activity,
and peak activity was correlated with the deposition of
crystals [119].

Nuclear oxalate binding proteins

An increase in oxalate binding activity was observed
when nuclear fractions were subjected to lipid peroxi-
dation. The increased oxalate binding was associated
with the depletion of -SH content. The binding activity
was correlated positively with LPO and negatively with
thiol content in the nuclear as well as residual membrane
fractions [52]. In contrast, histone oxalate binding
activity was correlated negatively with LPO (Table 2).
Increased nuclear oxalate binding was also associated
with experimental urolithiasis. The hyperoxaluric rat
kidney nucleus exhibited a 50% increase in oxalate
binding in both the residual fractions containing nuclear
envelope and the histone fraction, with a concomitant
increase in basal lipid peroxidation and a decrease in
thiol content [53]. Hyperoxaluric rat kidney showed an
increased H; content and oxalate binding activity. The
distribution of H;g was higher than in the control,
showing that hyperoxaluria increased the expression of
H,;g. Similarly, the expression of nuclear pore complex
protein was found to be dependent on the cell cycle and
oxalate concentration. Maximum expression was asso-
ciated with telophase [129].
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Calcium oxalate binding protein

Renal CaOx binding activity was increased in rats
treated only with cyclosporin A, a condition which in-
creases lipid peroxidation leading to nephropathy [3]. A
further increase was observed when combined with hy-
peroxaluria. This increased CaOx binding was associ-
ated with LPO as well as with a concomitant decrease
in total thiol in both rat and human kidney [3]. The
increase in CaOx binding activity observed in hyper-
oxaluria was associated with increased availability of
the protein, suggesting an enhanced expression of this
protein.

COM binding proteins

Proteins derived from different rat tissues show that all
organs have the capacity for COM adsorption. Maxi-
mum adsorption occurred in rat kidneys and pancreas.
Microsomes showed maximum adsorption in the kidney.
Hyperoxaluric rat tissues showed a greater percentage of
adsorption to crystals suggesting an enhanced affinity.
Among COM binding proteins derived from hyperox-
aluric rat kidney, both the 74 kDa and 23 kDa proteins
showed an increased concentration with increased oxa-
late binding activity [51].

Stone matrix proteins

Similar to mitochondrial, nuclear and COM adsorbed
proteins, stone matrix fractions obtained from DEAE-
cellulose chromatography showed increased oxalate
binding by 22%,11% and 14%, respectively, for frac-
tions 1-3. During peroxidation, there was no loss of
protein content but thiol content was drastically
decreased [33] (Table 2).

Effect of oxalate binding proteins on cCaOx crystal
growth: the role of peroxidation

Differences in the effect of oxalate binding proteins on
CaOx crystal growth have been noted (Table 2). Purified
mitochondrial oxalate binding proteins derived from rat
and human kidney showed a promoter effect on CaOx
crystallization [98]. Among them, rat protein showed
higher promoter activity and the antibody of this protein
inhibited both oxalate binding activity and crystal
growth in vitro, suggesting that the oxalate binding site
plays an important role in crystal growth.

Histone oxalate binding protein also exhibited CaOx
crystal growth promoter activity [103]. Histone may be
involved in the initiation of crystal formation in nuclei,
since calcium and calcium binding protein concentra-
tions are also higher in the nucleus [32]. In contrast to
histone oxalate binding protein, nuclear pore complex
oxalate binding protein (205 kDa) showed an 87%
inhibition of CaOx crystal growth in vitro [128].
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Among the COM adsorbed human kidney proteins,
the basic protein (23 kDa) was found to inhibit crystal
growth by 82% at 0.8 pmol/I. It inhibited the nucleation
and aggregation of the crystals by 6% and 28%,
respectively, at 49 nmol/l. The inhibition of both
nucleation and aggregation was higher at pH 5.7 than at
pH 7.4. Significantly, the protein induced the formation
of intertwined CaOx dihydrate crystals in a medium
known to induce the formation of individual dihydrate
crystals [78]. In contrast, the 45 kDa protein was found
to promote crystal growth with —38.61 inhibitory units
at 125 pg/l protein concentration. The protein promoted
crystallization to a greater extent when modified with
oxidized glutathione by promoting both nucleation and
aggregation [100]. It transformed the structure of crys-
tals from COD to COM even in the presence of citrate.
The COD crystals were of 5-7 pm in size while the COM
crystals were of 3—5 um [51]. These studies suggest that
the 45 kDa protein seems to be a strong candidate for
promoting crystal formation, since the antibody to this
protein cross reacted with the matrix stone proteins as
well as urinary proteins (unpublished data).

Among the COM adsorbed rat renal proteins, the
74 kDa protein was found to be a promoter while the
other protein fractions inhibited crystallization. In
hyperoxaluria, the crystal growth promoting activity of
the 74 kDa protein was further increased while the
degree of inhibition by the 20 and 23 kDa proteins was
decreased. The 74 kDa protein derived from control rats
formed single COM crystals in crystal growth while the
hyperoxaluric rat fraction induced the aggregation of
COM crystals [51].

In order to determine whether LPO of membranes
alters the binding properties of COM crystals, the kid-
ney homogenate was subjected to lipid peroxidation and
COM adsorbing proteins were isolated and studied in
relation to their effect on CaOx crystal growth. A posi-
tive correlation between LPO and COM adsorption and
a negative correlation between reduced glutathione and
COM adsorption were observed [S1]. However the per-
oxidized proteins did not show any alterations in the
elution profile on the DEAE-cellulose column. The -SH
content of the peroxidized fractions was lower than that
of the control fractions, but their oxalate binding
activities were increased. Peroxidized fraction I (74 kDa)
promoted crystal growth to a greater extent than control
fraction I (74 kDa). Peroxidized fractions II and I1I were
found to be less inhibitory in nature compared to their
control fractions. Light microscopic examination of the
crystals formed in the presence of peroxidized fractions
showed the formation of large aggregates of COM
(Table 2). These results suggest that peroxidation may
be one of the mechanisms altering the crystal growth
modulatory activity of the proteins in hyperoxaluria
[101].

Kidney stone matrix protein fractions eluted from the
DEAE-cellulose column showed increased oxalate
binding activity and correlated negatively with reduced
thiol content. Fraction 1 (eluted in Tris-HCI, pH 7.4)
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and fraction 3 (0.3 M NaCl in buffer) showed an
inhibitory effect in an in vitro crystallization system [33].
On peroxidation, fractions 1 and 3 showed a further
increase in the promoting effect whereas fraction 2
showed a reduction in the inhibitory effect of nucleation
and aggregation of CaOx crystals. Protein peroxidation
was negatively correlated with the inhibitory activity of
the protein in CaOx nucleation and aggregation. A
similar promoting effect of nucleation and aggregation
was seen with mitochondria and nuclei after peroxida-
tion. These studies suggest that the peroxidation of
proteins or tissue has a substantial influence on nucle-
ation and aggregation in CaOx crystal growth.

In all of the above studies, it is very interesting to
note that in the oxalate binding protein fraction eluted
in buffer from DEAE-cellulose columns from human or
rat kidney, COM adsorbed proteins and human stone
matrix proteins behaved as strong promoters of CaOx
crystal growth. The other fractions eluted in salt buffer
eluate behaved as strong inhibitors. Peroxidation of the
protein fractions either increased the promoting effect
of the promoter proteins or decreased the inhibitory
effect of the inhibitor proteins. These functional alter-
ations are attributed directly to the thiol status of the
cell. This is also reflected by urinary protein in crystal
growth behaviour.

Similar to tissue proteins, hyperoxaluric rat urinary
proteins also showed a different behaviour in crystal
growth studies. The protein eluted in 0.3 M NaCl on
DEAE-cellulose columns having a molecular weight of
45 kDa had maximaum nucleation as well as aggrega-
tion inhibitory effect. In hyperoxaluria, the excretion of
this protein was increased significantly. In the crystal
growth assay, the control 45 kDa protein inhibited
nucleation by 75% and aggregation by 100%([111]. In
contrast, it is very interesting to note that the protein
derived from 28th day hyperoxaluric urine, behaved as a
promoter of nucleation (—113%) and a weak inhibitor of
aggregation (28%). A highly significantly negative cor-
relation (r=-0.97) between oxalate excretion and the
inhibitory effect of the 45 kDa protein was observed
suggesting a modification of the protein by oxalate.

Apart from the peroxidation of proteins, the car-
boxylation of proteins was also found to facilitate COM
crystal adsorption. Microsomal proteins were adsorbed
maximally with COM crystals. On carboxylation of the
renal microsomal proteins, a significant increase in
the COM crystal adsorption by 2.5-fold was observed in
the hyperoxaluric condition [6]. Further, carboxylated
microsomes of ethylene glycol fed rats showed signifi-
cant binding with CaOx. The enhanced carboxylation
reaction was associated with enhanced carboxylase
activity due to stimulation of the enzyme oxalate/CaOx,
and lipid peroxidation [5]. The microsomal y-glutamyl
carboxylation system has been shown to be an integral
membrane protein in the renal tubule [29], and enhanced
y-carboxy glutamic acid and carboxylated protein
excretion has been observed in calcium nephrolithiasis
[25, 77]. Both y-carboxy glutamic acid and carboxylated

proteins exert a marked enhancing effect on the nucle-
ation rate of CaOx.

Physiological significance of oxalate binding proteins
in relation to other proteins in CaOx stone formation

The interaction between CaOx crystals and tubular
epithelial membrane is considered to be an essential
event for the development of renal stones. Several
mechanisms have been proposed for the aetiology of
stone formation and crystal retention [62, 120]. The
principal causative factors for the formation of calcium
salt stones are attributed to the supersaturation of pre-
cipitating salts and decreased excretion of inhibitory
substances such as citrate, pyrophosphate or glycosa-
minoglycans and inhibitory proteins which form com-
plexes with calcium or elements such as magnesium and
sodium which bind oxalate [24, 72]. The events leading
to the attachment of crystals followed by retention of
crystals by renal cells are still not well understood. In
order for the renal cell to retain CaOx crystal, the crystal
should bind to the cell surface or, primarily, to the
subcellular organelles. The retention of crystals in
the tubular luminal side may occur due to the size of the
crystals exceeding the diameter of the nephron or
increased passage time due to an abnormal nephron
morphology [23, 35].

The adherence of crystals is considered to be the first
event in the final phase of retention. Khan et al. iden-
tified renal cell injury as a high risk factor for CaOx
nephrolithiasis [58]. Cell injury can be induced during
mild hyperoxaluria, as evidenced by enzymuria and
membranuria [59], in the absence of crystalluria and
crystal deposition, implying that hyperoxaluria plays a
significant role in membrane physiology. Our studies
have established a positive correlation between free
radical induced lipid peroxidation of the membrane and
oxalate binding. This increased oxalate binding is neg-
atively correlated with decreased thiol content of the
membrane/protein [2, 93,79, 98, 103, 106, 108] in stone
forming condition. That the involvement of free radical
mediated lipid peroxidation is the major cause of tissue
injury is further confirmed by our studies with the sup-
plementation of antioxidants to urolithic rats, in which
not only the LPO reaction but also CaOx deposition was
prevented in the renal cells [1, 79, 93, 94, 97, 105, 116].
The role of lipid peroxidation and free radical mediated
changes in renal stone formation have been further
confirmed by Schied et al. [92] and Thamilselvan et al.
[117, 119]. Oxalate and not CaOx is found to be more
effective in inducing lipid peroxidation [95], and this
effect is also substantiated by studies on the exposure of
cells to a metastable concentration of oxalate along with
CaOx [118]. Similarly, Koul et al. [64] have also shown a
specific interaction of oxalate and not CaOx crystals in
altering the cell reaction for the promotion of retention
of COM crystals. In addition, oxalate is known to
interact with the cellular machinery to induce the



expression of several gene products such as early growth
response-1, Nur 77, C-Jun, C-myc, zinc finger tran-
scription factor, fast acting plasminogen activator
inhibitor, osteopontin and platelet derived growth factor
[117].

Several crystal-adhering molecules have been pro-
posed (Table 3). The urinary epithelial cell can bind a
crystal only after injury to the cell that results in the
exposure of membrane phosphatidyl serine on its lumi-
nal surface. This is correlated with a corresponding
increase in COM crystal attachment. The apical
membrane lipid asymmetry due to the loss of cell
polarity occurs by the exposure of crystals [132]. Specific
sialic acid containing glycoproteins and glycolipids have
been suggested as the critical determinants of the face-
specific nucleation of COD crystals on the apical renal
cell surface [69]. Crystal retention is attributed to alter-
ations in the number or composition of these cell surface
molecules on genetic modification by genetic alterations,
cell injury or drugs in the tubular fluid [125]. Evidence
has been provided for the interaction of CaOx crystals
with sialic acid [47, 135], hyalouranan, chondroiton
sulphate and heparan sulfate molecules, which are
thought to play a major role in the attachment of crys-
tals [127]. It has been suggested that in the absence of
structural injury, sub-lethal injury mediated by ischmeia
or oxalate induced lipid peroxidation reaction can ex-
pose previously concealed sialic acid residues so that
they protrude into the tubular lumen in a different ori-
entation which enable them to interact with the crystals,
resulting in crystal adhesion. Moreover, the increased
expression of sialic acids in the distal tubule glycoprotein
as well as glycolipids with altered sialic acid linkages has
been suggested for the increased nucleation and attach-
ment of crystals [49].

Several crystal adhesion inhibitor molecules have
been identified and their expression is found to increase
during crystal formation [50, 60]. These molecules such
as osteopontin, nephrocalcin, Tomm-Horsfall glyco-
protein and bikunin inhibit crystal nucleation as well as
aggregation [56, 60] (Table 3). Mild hyperoxaluria pro-
motes the increased production of crystallisation mod-
ulators/inhibitors [49]. It has been suggested that these
molecules control not only crystal nucleation, growth
and aggregation but also crystal interaction with the
tubular epithelium and their retention in the cell [56].

All the crystal binding molecules or adherence mol-
ecules facilitating crystal adherence to the epithelium or
molecules which inhibit or modulate crystal growth
behaviour are specific calcium binding molecules. They
form a molecular contact with the calcium atoms on the
surface of CaOx crystals [56]. All of the crystal binding
molecules possess anionic sites such as carboxylate
contributed by either sialic acid (glycoprotein, glycoli-
pids) or serine, glutamate/aspartate (Tamm-Horsfall
glycoprotein, bikunin, prothrombin F1); carboxylate
and phosphate contributed by the membrane phospho-
lipids of phosphatidyl serine and phosphatidyl inositol,
and sulfate contributed by surface carbohydrates
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(glycosaminoglycans, heparan sulphate and chondroiton
sulphate).

Apart from calcium binding sites, we now have evi-
dence of oxalate specific binding molecules with similar
crystal growth modulating activity. Both crystal pro-
moting and crystal growth inhibitor proteins are known
[51, 98, 100, 101, 103, 111]. They occur in the renal
medulla and cortex and are differentially abundant in
the subcellular organelles. All of the proteins possess
lysine in the active binding site with oxalate. Lysine
modification abolishes oxalate-binding activity. Oxalate
binding activity is influenced by the thiol status of the
cell. Oxalate itself is known to deplete the thiol status of
the protein by means of inducing lipid peroxidation
[1, 94, 97, 105], and peroxidised proteins modulate the
crystal growth behaviour differently. Following peroxi-
dation, the promoter activity is increased for the pro-
moter protein while the degree of crystal growth
inhibition is decreased for the inhibitor proteins, with a
net result of promoting crystal growth. This situation is
also reproducible in CaOx nephrolithiasis (Table 3) and
these proteins are at higher concentration under this
condition.

All of the oxalate specific binding proteins are dis-
tributed in the subcellular organelles. Their functions,
although not defined at present, may be implicated in the
movement of oxalate/CaOx from the basolateral side to
the luminal side for secretion and/or from the luminal
side to the lateral side for possible detoxification through
macrophage mediated destruction [56]. Adhesion fol-
lowed by internalisation of CaOx crystal by endocytosis
has been suggested to promote crystal retention in the
nephron by a positive feedback loop that favours
the adhesion of additional crystals [66]. In addition to
the endocytic process, the cellular depletion of thiol
could contribute further for the accumulation of both
calcium and oxalate [80, 93]. The increased concentra-
tion of calcium and oxalate in the cells may turn on the
expression and cell proliferation by the presence of cal-
cium and oxalate binding proteins in the nucleus and
mitochondria. The oxalate binding nature of histone
H;p, and the involvement of nuclear membrane pore
complex oxalate binding proteins in the cell cycle reac-
tion suggest that oxalate is not like a simple dicarb-
oxylate molecule alone but has a specific genomic
interaction to modulate its activity.

In conclusion, oxalate specific binding proteins
could be involved in the initiation of renal stone
formation under altered physiological conditions. In
hyperoxaluria, these membrane proteins undergo lipid/
protein peroxidation with the loss of sulfhydryl groups,
resulting in enhanced binding with the oxalate. The
peroxidised membranes/proteins have a net promoting
effect of CaOx crystallisation by way of enhancing the
promoter effect and decreasing the efficiency of the
inhibitory effect (Fig. 1). The crystal promoting activi-
ties could be increased further by increased availability
of these proteins in hyperoxaluria. The lipid peroxi-
dation reaction could lead to fragmentation of the
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In hyperoxaluria
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Fig. 1 Involvement of peroxidised oxalate/calcium oxalate binding
proteins in the pathogenesis of calcium oxalate stone disease

membrane and peroxidised membrane/protein could
act as a nidus by facilitating increased binding with
oxalate on the crystal, culminating in more and more
deposition of crystals. This reaction might further lead
to crystal incorporation into stones or/and pass along
with the flow of urine.

Editorial comment (C.F. Verkoelen)

Since the mid-1980s investigators at the Department of
Medical Biochemistry of the University of Madras have
regularly reported on renal oxalate binding proteins in
subcellular organelles such as mitochondria and nuclei.
Although the proteins were purified and partially char-
acterized, they were not identified. Oxalate has been
reported to recycle across the apical membrane of renal
tubular cells via anion-exchange proteins to promote the
transcellular transport of chloride, But it is doubtful
whether dicarboxylic acids, like oxalate, are capable of
accumulating inside renal tubular cells. Renal cell oxa-
late handling has been engaging nephrolithiasis research
for many years. The possibility cannot be excluded that
oxalate binding proteins are somehow involved in the
etiology of this disease. Progress can only be expected,
however, after the identity and function of these proteins
has been revealed.

g in stone for

C.F. Verkoelen

Head Stone Research Group, Department of Urol-
ogy, Erasmus MC, Rotterdam, The Netherlands, and

Josephine Nefkens Institute, Room BE330, P.O.B.
1738, 3000 DR Rotterdam
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