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Abstract. We simulate a deterministic population ge-
netic model for the coevolution of genetic codes and
protein-coding genes. We use very simple assumptions
about translation, mutation, and protein fitness to calcu-
late mutation-selection equilibria of codon frequencies
and fitness in a large asexual population with a given
genetic code. We then compute the fitnesses of altered
genetic codes that compete to invade the population by
translating its genes with higher fitness. Codes and genes
coevolve in a succession of stages, alternating between
genetic equilibration and code invasion, from an initial
wholly ambiguous coding state to a diversified frozen
coding state. Our simulations almost always resulted in
partially redundant frozen genetic codes. Also, the range
of simulated physicochemical properties among encoded
amino acids in frozen codes was always less than maxi-
mal. These results did not require the assumption of his-
torical constraints on the number and type of amino acids
available to codes nor on the complexity of proteins,
stereochemical constraints on the translational apparatus,
nor mechanistic constraints on genetic code change. Both
the extent and timing of amino-acid diversification in
genetic codes were strongly affected by the message mu-
tation rate and strength of missense selection. Our results
suggest that various omnipresent phenomena that distrib-
ute codons over sites with different selective require-
ments—such as the persistence of nonsynonymous mu-
tations at equilibrium, the positive selection of the same
codon in different types of sites, and translational ambi-

guity—predispose the evolution of redundancy and of
reduced amino acid diversity in genetic codes.
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Introduction

In relation to the problem of the origin and evolution of
the standard genetic code, Crick (1968) argued that the
greatest increase in fitness should have come from en-
coding more diverse amino acids. Selection to preserve
the meaning of protein-coding genes1 provided the
counter-balance to this advantage. Crick envisioned a
primitive genetic code that was highly redundant, pro-
ducing relatively simple proteins. Codons were then sub-
sequently reassigned to novel amino acids, increasing
diversity. This led to increased reliance upon larger and
more complex genetic messages for individual fitness,
thereby increasing the constraint to preserve message
meaning. Presumably, this constraint froze the genetic
code before amino-acid diversification could be fully at-
tained and its advantages fully realized.

The message constraint hypothesis has not yet been
studied quantitatively. It may be consistent with most
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extant variation in genetic codes, at least in organellar
genomes, where reductions in genome size and compo-
sitional complexity may cause codons to become infre-
quent (Osawa et al., 1992). Yet, against the diversity
advantage hypothesis, most variant codes reassign
codons to already encoded amino acids; this may be
partly due to the effect of genomic reductive evolution
on the translational apparatus (Andersson and Kurland
1995). Therefore, it behooves us to demonstrate that the
vocabularies of extant genetic codes are limited in both
number and quality. Furthermore, on the assumption of
this limitation, we wish to discern the extent to which it
may be explained by the hypothesis of message con-
straint. Because there are several different, not necessar-
ily mutually exclusive, hypotheses for the origin of ge-
netic codes, it is useful to examine their various
necessities and sufficiencies to explain a putative restric-
tion on the genetic code vocabulary, either in concert
with Crick’s message constraint hypothesis and each
other or alone.

Extant genetic codes show natural and experimental
evidence of at least three kinds of restrictions to their
vocabularies: strict codon synonymy, restricted diversity
in chemical property kinds (such as chemical reactivity
under various conditions), and redundancy or near-
redundancy in the values of chemical properties that are
represented among encoded amino acids (for example,
the extent of encoded hydrophobicity).

Even accounting for wobble coding, there is a surplus
of strict redundancy in the standard genetic code.
Wobble rules are taxon-dependent, but one invariant rule
is that the third-position pyrimidines (C and U) are not
read independently (Osawa et al. 1992). Therefore, al-
lowing for stop codons, that leaves 454 64 − 16 − 3 as
an estimate of the maximum encodable number of amino
acids in the standard genetic code. The strict redundancy
of the standard genetic code, then, may be quantified as
1 − 20

45
≈ 0.56 (on a scale from 0 to 1).

Furthermore, it is arguable from natural evidence that
the 20 canonical amino acids do not span all dimensions
of chemical variety that would be potentially advanta-
geous in modern proteins. For instance, an alternative
genetic code encodes a 21st amino acid, selenocysteine
(Chambers et al. 1986), and 150 or so different known
post-translational covalent modifications to amino acids
occur in proteins (reviewed in Wold 1981).

There is also evidence of redundancy in the values of
physicochemical properties that do vary among encoded
amino acids, such as size and polarity. Amino acids en-
coded by codons starting with U or C—especially U—in
the standard genetic code have very small differences in
polarity as measured by, for example, Woese’s (1966)
Polar Requirement (Ardell, 1998). These codons encode
most of the aliphatic amino acids, which substitute for
each other more frequently than any other amino-acid
pairs (Benner et al. 1994, and references op. cit.). Mod-

ern translation also admits the highest rates of transla-
tional error among codons encoding these amino acids
(Davies et al. 1966; Parker 1989). These data point to a
high physicochemical redundancy among the encoded
aliphatic amino acids.

The amino-acid vocabulary could well have been
shaped by forces independent of selection for increased
diversity in, and conservation of, message meaning. That
is to say, it is difficult to know whether more extreme or
different kinds of physicochemical properties among
amino acids were available or encodable during various
stages in the evolution of genetic codes. For example,
specific stereochemical affinities between certain amino
acids and certain components of the translational appa-
ratus, or of messages, could have predetermined amino-
acid vocabulary to some extent. Stereochemical prede-
termination was proposed by Jukes (1973), who argued
that ornithine was once encoded but subsequently re-
placed by arginine, its metabolic product, which has hy-
pothetically greater stereochemical affinity with the
translational apparatus. In support of this hypothesis,
Knight and Landweber (2000) have shown convincing
statistical evidence for an affinity between arginine and
its codons in in vitro-evolved aptamers selected for spe-
cific amino-acid binding. A more general role for this
hypothesis is supported by evidence for affinities of iso-
leucine and tyrosine with their codons (Yarus 2000).

However, there are problems with the stereochemical
theory as the sole explanation to limits to genetic code
vocabulary. The statistical evidence for specific stereo-
chemical affinities between codons and amino acids is
limited to the amino acids examined experimentally,
namely, the 20 canonical amino acids. This sheds no
light on possible interactions of aptamers with other
amino acids. Also, because these experiments expressly
select for the binding of specific amino acids, they are
inconclusive as to whether the evolution of a transla-
tional system inevitably included certain amino acids and
excluded others. Indeed, Wong (1983) showed thatE.
coli could be selected to completely replace tryptophan
by 4-fluoro-tryptophan in such a way that cells grew
slower in tryptophan-supplemented medium than with
4-F-tryptophan. This change did not come about through
an intrinsically higher affinity of the translational appa-
ratus with 4-F-tryptophan. Thus, stereochemical interac-
tions alone cannot comprehensively explain limits to en-
coded amino-acid diversity.

There may also have been historical or mechanistic
constraints on the diversification of amino acids in ge-
netic codes. As an example of an historical constraint,
certain amino acids were likely to be metabolically and
environmentally unavailable to primitive cells. Wong
(1975) and others proposed that codons were donated
from metabolic precursors to metabolic products as ge-
netic codes coevolved with metabolism (Taylor and
Coates 1989, DiGiulio and Medugno 1999). Like Crick’s
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verbal model, this hypothesis presupposes an initially
more redundant state of the genetic code, in this case
encoding metabolically fundamental amino acids that
also happen to be abundant in chemical models of the
prebiotic earth (Miller 1987). As in Crick’s hypothesis,
the addition to the code of novel amino acids produced
by metabolism could have been partially prevented by a
message constraint.

The proximal mechanisms that generate potential
variation in genetic codes could also have intrinsically
restricted the diversification of encoded amino acids. A
proximal mechanism for code change that has been pro-
posed is the duplication and divergence of tRNAs (Fitch
and Upper 1987; Schultz and Yarus 1994; DiGiulio
1995). Restriction in vocabulary from this mechanism
could have come from specific transformation of an
amino acid to its metabolic product after acylation to
tRNA, as has been naturally observed in organelles by
Schön et al. (1988). However, this particular case is al-
most certainly a derived rather than an ancestral condi-
tion. If code changes did not generally occur through the
metabolic transformation of amino acids after acyla-
tion to tRNA, then duplication and divergence of tRNAs
(and aminoacyl-tRNA synthetases) need not favor the
donation of codons to metabolic relatives. Indeed, ex-
perimental evidence on misacylation supports that charg-
ing errors occur between physicochemically related
amino acids (Fersht 1986). If misacylation is a reason-
able model for a proximal mechanism of code change
through duplication and divergence, then this evidence
would seem to favor the encoding of novel amino
acids that are stereochemically or physicochemically re-
lated, rather than metabolically related, to an ancestral
ligand.

It remains to be seen whether historical and mech-
anistic constraints can comprehensively explain the
limited amino-acid vocabularies of genetic codes. For
example, analyses incorporating the metabolic coevolu-
tionary hypothesis tend to examine only canonically en-
coded amino acids (Amirnovin 1997; DiGiulio and Me-
dugno 1999; Freeland et al. 2000). Such studies cannot
explain why some amino acids within a metabolic path-
way are included and others not.

Weber and Miller (1981) take a different approach to
explaining the exclusion of non-canonical amino acids
from the standard code. They use biochemical reasoning
to argue that certain classes of amino acids were ex-
cluded from the code through selection against adverse
effects that they caused on protein synthesis and protein
structural and catalytic chemistry. Their post hoc argu-
ments are testable and based on considerable biochemi-
cal knowledge and experience. However, it is impossible
to comprehensively explain the exclusion of amino acids
that do not violate the rules they enunciate, but that might
have had a positive diversity advantage.

Using an adaptationist approach to explain the twenty

canonical amino acids merits caution. King and Jukes
(1969) made this point for another purpose in criticizing
the following passage by E. L. Smith: “One of the ob-
jectives of protein chemistry is to have a full and com-
prehensive understanding of all the possible roles that the
20 amino acids can play in function and conformation.
Each of these amino acids must have a unique survival
value in the phenotype of the organism . . .” Thehypoth-
esis that the 20 canonical amino acids form a unique and
irreducible basis of life is contradicted by the aforemen-
tioned experiment by Wong (1983).

On the basis of the present study, we describe the
following novel, subtle aspect of the message constraint
on code evolution that may have promoted redundancy
in genetic codes. Various phenomena cause the same
codon to be found simultaneously in different, possibly
dissimilar, “types” of sites at once in the same genome.
Different types of sites in this sense correspond to dis-
tinct sets of locations in proteins with different biochemi-
cal requirements, among which amino acids have differ-
ent relative fitnesses. The distribution of the same codon
over different types of sites induces spatial heterogeneity
of selection on its meaning. The message constraint then
favors the assignment of amino acids to the code with
relatively generalized biochemical properties, as a sort of
functional compromise to the various different types of
sites in which codons occur. We show that this promotes
redundancy and restricted diversification of amino acids
in genetic codes, without need of additional stereochem-
ical, historical, or mechanistic constraints. Nor is it nec-
essary to postulate that messages became larger and
more complex in order to increase the message con-
straint, as Crick postulated. The phenomena that cause
the distribution of codons in multiple types of sites in-
clude the persistence of nonsynonymous mutations at
mutation-selection equilibrium, and the positive selec-
tion of codons in multiple types of sites. Thus, the mes-
sage mutation rate and selective tolerance to missense
influence how specialized and diverse the vocabulary of
a genetic code may evolve to become.

Methods

The model described in the appendix has been implemented in the
program CMC, written in C++, and available upon request from the
authors. The appendix also defines terms we use below that may be
unfamiliar or are used unconventionally (such as “codon usage”).
Eigensystem solutions for determining the growth ratel(c) and equi-
librium codon usageU(c), associated with a genetic codec according
to the model, were obtained using the iterative method (Press et al.
1988). All values were calculated to double precision (10−16). Ties in
the genetic code take-over condition were broken arbitrarily by picking
the first code observed with maximal invasion fitness.

A simulation of code-message coevolution according to our model
is fully determined by picking values for the message mutation rate
parameterm, the missense tolerance parameterf, and a setA of 20
uniform randomly distributed values between 0 and 1. These values
represent both the physicochemical requirements of the 20 site-types in
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proteins and the physicochemical properties of the 20 encodable amino
acids. In the following, the setA of 20 randomly distributed values is
called an “amino-acid/site-type space” or simply “amino-acid space.”
For simplicity, the values themselves are called “amino acids.”

We examined the effects of variation in the parameters on the
number of explicitly encoded amino acids (Naa), the number of explicit
encoding codons (Nc), and a measure of physicochemical diversity
calledNER, to be defined below, both in frozen genetic codes and over
simulation time. We examined parameter values off ranging from
f 4 2.8 × 10−7 to f 4 0.9999 and values ofm ranging fromm 4 5.0
× 10−6 to m 4 1.0 × 10−3. In order to control for any idiosyncratic
effects of particular randomly generated amino-acid/site-type spaces,
we examined the mean and standard deviation (and sometimes the
median and interquartile range) of these observables over simulations
run with 40 different uniformly distributed amino-acid spaces.

The measure of physicochemical diversity of amino acids in a code
that we used was the range of physicochemical properties that it ex-
plicitly encoded divided by the maximum range for the amino acid
space with which it evolved. Denote byc(CII

B) ⊆ A the set of amino
acids explicitly encoded by a genetic codec on the codon setCII

B, and
by d(b|a) 4 |b − a| the physicochemical distance between any two
amino acidsa, b ∈ A.

TheNormalized Encoded Range (NER)of a codec given an amino-
acid spaceA and associated physicochemical distanced is:

NER=
maxa,b∈c~CII

B
! d~b|a!

maxa,b∈A d~b|a!
(1)

Results

Redundancy in Codes Increases Directly with Both
Mutation Rate and the Tolerance of Missense
in Messages

Figure 1 shows a simulated evolutionary trajectory of a
4-base, 2-position genetic code from an initial uniformly
ambiguous state to a diversified and explicit frozen state.
This trajectory was typical for these parameters ofm and
f. A complete depiction of the code-message coevolu-
tionary trajectory would include graphs of the equili-
brated usage of all 16 codons within each of the 20
site-classes at each step. However, for simplicity, the
codon usage patterns are not shown.

In this example, the initial ambiguous state persisted
until step 23; 7 of 9 reassignments occurred before the
code evolved to become fully explicit. The code froze at
step 25 with only 10 different encoded amino acids for a
final redundancy of 1 −10

16
4 0.375. The amino acids that

were encoded did not include the most physicochemi-
cally extreme amino acids, labeled as 1 and 20. Instead,
most of the encoded amino acids, and all of the redun-
dantly encoded amino acids, came from the middle of
amino-acid space, despite that the target protein selected
for the encoding of all 20 amino acids.

The genetic code in Fig. 1 did not freeze with any
codons in the initially ambiguous state. In fact, in none of
our simulations did any genetic code freeze that was not
fully explicit (despite that the ambiguous state encodes

the optimal amino acid of any site with some probabil-
ity). Instead, all codons eventually became explicitly as-
signed to some amino acid during all runs.

In Fig. 2 we show that this result of redundancy and
limited amino-acid diversity was typical of frozen codes
evolved with any of 40 different random amino-acid/site-
type spaces over a broad range of message mutation rates
and missense tolerances. Indeed, over the entire param-
eter-space that we examined, averages of bothNaa (top
of Fig. 2) andNER (bottom) were less than their theo-
retical maximum values of 16 and 1.0, respectively. Av-
erageNaa remained between 10 and 13 (redundancy re-
mained between 0.1875 and 0.375), and averageNER
stayed at about 0.9, for 10−4 # m # 10−3 and 0.1# f #
0.95, a stability in the parameter space that we call the
Encoding Plateau.

We extended our studies to extremes of strong selec-
tion and low mutation rates to see if we could force the
average behavior of the genetic codes we evolved to
encode the maximum of 16 amino acids and the maxi-
mum encodable physicochemical range. These data are
shown in Fig. 3. Even at the strongest selection we ex-
amined, (f 4 2.8 × 10−7, m 4 0.0001,N 4 40), both
the average and median number (not shown) of encoded

Fig. 1. A typical code evolution in the Encoding Plateau region of
parameter space. Four-base, 2-position genetic codes are represented as
4-by-4 grids. The initial uniformly ambiguous coding state is indicated
by the striped pattern. The one-dimensional scale at the bottom of the
graph is the amino-acid/site-type space with which this code evolved.
Codes are shown above the step number in which they were uniquely
established in the population. The code of a subsequent step was the
unique invading mutant that most increased the fitness of messages
equilibrated to its predecessor. No mutant codes could invade the mes-
sages of the code frozen at step 25. The colors of codons indicate the
physicochemistry of their assigned amino acids as shown in the scale.
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amino acids was less than 15. That is to say, the majority
of frozen codes evolved encoded less than 15 amino
acids under these conditions. At lower mutation rates, the
rate of convergence of our calculated eigensystems was
too slow to statistically average over many different runs
with different site-type/amino acid spaces. However,
both of the two genetic codes evolved under the most
extreme conditions that we examined (f 4 0.0001,m 4
5.0 × 10−6, N 4 2) remained partially redundant and did
not encode the most physicochemically extreme amino
acids. Both frozen genetic codes encoded 15 different
amino acids, and had anNERof approximately 0.97. In
the majority of simulations under almost all parameter
conditions that we examined, some redundancy remained
in our frozen genetic codes. TheNER was below its
maximum of 1.0 in all frozen codes that we evolved.

Changing the mutation and selection parameters
caused profound differences in the level of redundancy.
Frozen genetic codes encoded both more and increas-
ingly diverse amino acids, on average, when they
coevolved with messages mutating at lower rates or
stronger missense selection (Figs. 2 and 3). With lowerf
or m, the reduction of redundancy in genetic codes
tended to occur through the encoding of amino acids
from the middle of amino-acid space rather than its ex-
tremes. This is evident, for instance, within the Encoding
Plateau (Fig. 2), where the rate of increase inNaa with
the strength of missense selection is greater than that for
NER.

Decreasing selection above threshold values caused
sharp reductions in bothNaa andNERon average (Fig.
2). The value of the threshold depended on the mutation

Fig. 2. The average number (Naa) and
Normalized Encoded Range (NER, see
Methods) of amino acids in final frozen
codes as functions of message mutation
rate (m) and missense tolerance by
selection (f). Each point represents an
average over 40 runs with different
amino-acid/site-type spaces. A smaller
value off corresponds to stronger
missense selection (see Appendix).
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rate and much less on the form of the amino-acid/site-
type space. Under conditions of high mutation rate and
extremely weak missense selection, near-total redun-
dancy evolved, a phenomenon we call theEncoding Ca-
tastrophe.

Figure 4 shows the effect of the Encoding Catastrophe
on the morphology of final codes. All 9 codes shown
were evolved in simulations using the same single
amino-acid/site-type space and different combinations of
m and f parameters as indicated. It is clear that when
diversity decreased and redundancy increased in the En-
coding Catastrophe, they did so towards the center of
amino-acid space. It may be shown that amino acids
from the center of amino-acid space are preferably en-
coded in the various circumstances we describe because
they have the highest geometric mean fitness over site-
types in our model. Therefore, we call such amino acids
“versatile” or “generalist” amino acids, compared to
those at the extremes of amino-acid space, which are
relatively “specialized” to site-types at the same ex-
tremes of site-type space.

Early Versus Late Diversification of Amino Acids in
Genetic Codes

Mutation and selection affected not only the extent but
also the timing and evolutionary path of amino-acid di-

versification. In our model, this diversification generally
occurred through codon reassignments except under con-
ditions of very low tolerance to missense. Small changes
in parameter values could radically change the timing
and nature of codon reassignments that occurred in code
evolution, and thus, the timing of amino-acid diversifi-
cation.

Recall that codon reassignments occurred rather fre-
quently in the Encoding Plateau region of parameter
space shown in Fig. 1. Seven reassignments occurred
before every codon evolved explicit meaning (reassign-
ments before explicit), and 2 reassignments occurred af-
ter, for a total of 9 in all. A close look shows that many
of these reassignments tended to be diversifying. For
example, in step 4, a codon that had just been assigned
amino acid 4, at the low extreme of amino-acid space,
became reassigned in the next step to the even more
extreme amino acid 2. Another diversification through
reassignment occurred just before freezing, at step 24.

When we looked at the average behavior over 40
different amino-acid/site-type spaces, between 8 and 11
reassignments of codon meaning occurred in genetic
codes coevolving in the Encoding Plateau (depending on
the mutation rate), mostly occurring before the code was
explicit (Fig. 5). In the Encoding Catastrophe (asf or m
were increased), codes rapidly froze without any reas-
signments at all. Reassignments also decreased under
conditions of low missense tolerance relative to the En-
coding Plateau, suggesting as expected that selection
against missense inhibited changes in codon meaning.

Fig. 3. Average and standard deviation (error bars) inNaa andNER
of amino acids in final frozen codes evolved under conditions of ex-
tremely low missense tolerance andm 4 0.0001. As before,N 4 40
amino-acid/site-type spaces for each point.

Fig. 4. An array of final frozen codes placed in a grid according to
the selection (column) and mutation rate (row) parameters with which
they evolved. All codes were evolved with the same amino-acid/site-
type space shown.
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We call this part of parameter space theStrong Selection
region.

However, in a region of parameter space between the
Encoding Plateau and the Encoding Catastrophe, there
was a major transition in the timing of codon reassign-
ments, best seen in the inset figures of Fig. 5. In this
transitional region, genetic codes first evolved to be ex-
plicit without reassignments, and then went through a
prolonged epoch of up to almost 20 reassignments before
finally freezing. For reasons explained in the discussion,
we call this region of parameter space theSonneborn
Region.

The transition in the timing of reassignments corre-
sponded exactly in parameter space to the decrease in
average encoded amino-acid diversity which culminated
in the Encoding Catastrophe (Figs. 2 and 5). A typical
evolutionary trajectory of a genetic code coevolving in
the Sonneborn Region is shown in Fig. 6. Compared to

the genetic code in Fig. 1, this genetic code evolved to
become explicit much earlier (step 19 versus step 23),
with many more reassignments of meaning occurring
after explicit (18 versus 2). The initial explicit state was
more redundant than that which evolved in the Encoding
Plateau. The amino acids that it encoded tended to be
from the middle of amino-acid space. Like in the Encod-
ing Plateau, reassignments tended to diversify the code,
but the frozen code in step 37 was more redundant and
less diverse than the code that evolved in the Encoding
Plateau (Fig. 1).

These differences in dynamical behavior are shown to
be general in Fig. 7, which illustrates how the different
regions of parameter space affected the median time-
course number of explicit codons (Nc), number (Naa),
and Normalized Encoded Range (NER) of encoded
amino acids, and the cumulative distribution over time of
codes frozen (out of 40 runs for each value off shown).

Fig. 5. The effects of message
mutation and selection on the average
numbers codon reassignments before
and after the step in which all codons
were assigned explicit amino-acid
meaning.N 4 40 runs with different
amino-acid/site-type spaces.
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As in earlier figures, we controlled for idiosyncratic ef-
fects of individual amino-acid/site-type spaces by study-
ing the central tendencies and dispersion of the results
over multiple runs with different spaces. The interquar-
tile range (itq) of Nc, Naa, and NER are sporadically
indicated with error bars. The five different values off
illustrated survey the regions of parameter space we have
so far described. From Fig. 5, the dynamical behavior of
runs withm 4 0.0005 is dominated by Strong Selection
at f 4 0.001, is in the Encoding Plateau atf 4 0.4 and
0.8, is in the peak of the Sonneborn Region atf 4
0.995, and is approaching the Encoding Catastrophe at
f 4 0.999.

Genetic codes took almost twice as many steps to
freeze in the Sonneborn Region as in other parts of pa-
rameters space. On the other hand, codes froze fastest
(with the least reassignments) at the extremes of param-
eter space, both in the Strong Selection and Encoding
Catastrophe regions.

Even thoughNc increased fastest in the Encoding Ca-
tastrophe and Sonneborn Region, amino-acid diversity

evolved much later, if at all, compared to the Encoding
Plateau or Strong Selection regions of parameter space.
There, the number of encoded amino acids increased
steadily throughout evolution, and codes froze soon after
they became explicit.NER, on the other hand, increased
to its maximum almost immediately. This implies that
amino acids which were encoded later in the Encoding
Plateau and Strong Selection regions tended to be in the
middle of amino-acid space rather than at the extremes.

Because codons could not revert to the ambiguous
state and we know thatNERdid not decrease over time
in our runs, it might be thought that the running median
curves in Fig. 7 should all increase monotonically. They
don’t because as more and more codes froze under the
same conditions (bottom subfigure of Fig. 7) fewer and
fewer runs contributed to the median. Evidently, runs
which persisted longer in the Sonneborn Region had
smallerNaa andNER.

The overall similarity of the sets of runs withf 4 0.4
andf 4 0.8 in Fig. 7 illustrates the dynamic equivalence
of runs within the Encoding Plateau.

Fig. 6. A typical code evolutionary
trajectory in the Transitional Region of
parameter space between the Encoding
Plateau and the Encoding Catastrophe
that we call the Sonneborn Region for
reasons given in the discussion. The
amino-acid/site-type space shown is the
same as in Fig. 1.
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Discussion

It is widely understood that the usage patterns of codons,
in a general sense, depend on interactions among evolu-
tionary forces such as mutation, selection on nonsynony-
mous and synonymous changes, genetic drift, and upon
the genetic code itself. For instance, King and Jukes
(1969) demonstrated that amino-acid composition in pro-
teins is largely predictable from redundancy patterns in
the standard genetic code, mutation, and genetic drift.
Yet few studies have treated how these factors will in-
fluence the constraint of messages on genetic code evo-
lution. An exception is a theory of derived genetic code
change due to Osawa et al. (1992), who consider the
effects of neutral changes in equilibrium base composi-
tion on codes. By assuming that codons must become

very rare to be reassigned, they assumed that selection
against multiple simultaneous amino-acid replacements
will be very strong.

We have introduced a quantitative model for the evo-
lutionary interactions of genetic codes and messages.
Analysis of codon usage patterns in our model, not pre-
sented here, illuminated several factors that influenced
how codons were distributed over sites with different
selective requirements. These factors were: the equilib-
rium usage of nonsynonymous mutant codons, positive
selection of the same codon in multiple site-types, trans-
lational ambiguity, and the genetic code itself. In various
ways, these factors caused the fitness consequences of a
change in meaning of a single codon to depend on the
fitnesses of amino acids in different selective environ-
ments at the same time.

Fig. 7. Running median over
simulation time of the number of
explicit codons (Nc) and the number
(Naa) and Normalized Encoded Range
(NER) of explicitly encoded amino
acids. Each point shown is the median
these observables in runs at a given step
over 40 simulations with different
amino-acid/site-type spaces and message
mutation ratem 4 0.0006. Interquartile
ranges (error bars) are shown only
sporadically for clarity. The bottom
panel shows the proportion of codes
frozen as a function of step-time.
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The magnitude of these various effects depended pre-
dictably on the magnitude of evolutionary forces acting
on messages. For example, both high mutation rates and
high selective tolerance to missense increased the per-
sistence of nonsynonymous mutant codons at mutation-
selection equilibrium. This favored the assignment of
amino acids with relatively high average fitness in mul-
tiple site-types, which were those from the middle of
amino-acid space. These amino acids, which may be
called versatile or generalist amino acids, were the only
ones to be encoded at sufficiently high mutation rates or
missense tolerance (Fig. 4).

Analysis of codon usage patterns (not shown) illumi-
nate that, under some conditions, the genetic code itself
could wield a strong influence on codon usage patterns in
messages and thereby on its own subsequent evolution.
This effect was greatest in the Encoding Plateau and
Sonneborn Region, where messages evolved at interme-
diate mutation rates and missense tolerances. If mutation
rates or missense tolerances were too high, as in the
Encoding Catastrophe, codons were distributed so ran-
domly, with respect to their amino-acid meaning, that
changes in the code did not alter codon usage patterns
and, in turn, did not influence subsequent evolution of
the code. If, on the other hand, mutation rates and mis-
sense tolerances were very low, the frequencies of mu-
tant codons were very low. Codons were mainly used
where they were positively selected. Low frequencies of
mutant codons caused the outcome of code changes to be
predominantly determined by a few site-types with simi-
lar fitness requirements. In this case, explicit codons
could change meaning more independently of the de-
tailed organization of amino-acid assignments in the
code. This explains why reassignments were more com-
mon in the Encoding Plateau and later stages of evolu-
tion in the Sonneborn Region, where they often occurred
in consecutive cascades, than in the Encoding Catastro-
phe or Strong Selection Regions. At intermediate param-
eter values, changes to the code perturbed codon usage
patterns in multiple types of sites, often reducing the
number of types of sites in which a codon was used. This
released constraints on subsequent code changes and fa-
cilitated amino-acid diversification, often through codon
reassignments.

Even at extremely low mutation rates and missense
tolerance, we were unable to evolve a majority of non-
redundant genetic codes. Nonsynonymous mutations
should have had negligible effects on the fitness of code
changes in this part of parameter space. However, the
same codon could be positively selected in more than
one site-type on the basis of its fitnesses relative to other
codons within a given code. The resulting high usage of
the same codon in multiple types of sites would then
restrict further specialization of its meaning. This prob-
ably partly explains why the most extremely physico-
chemically diverse amino acids were never encoded in

our final frozen genetic codes under any conditions. It
also describes another way in which earlier forms of a
code may influence its own future evolution though pat-
terns of codon usage.

Under our assumptions, the initial ambiguous state of
codons had low fitness under most patterns of codon
usage. For example, after a few codons were assigned
explicit meaning in the Encoding Plateau or Strong Se-
lection regions, the frequency of ambiguous codons in
messages was negligible, so that only a few explicit
codons dominated the codon usage in all types of sites. In
contrast, in the Encoding Catastrophe and early stages of
the Sonneborn Region, ambiguous codons were used
with frequencies similar to explicit codons at mutation-
selection equilibrium-(data not shown). Thus, if codons
were distributed over many site-types, an explicit gener-
alist amino acid coding state was more fit than the uni-
formly ambiguous initial coding state. The transition in
parameter space that we observed then, between early
and late amino acid diversification, was actually a tran-
sition between two alternative evolutionary routes
through which codes and messages reduced the use of
relatively unfit ambiguous codons: the purification of
them from messages through selection or the rapid as-
signment of explicit meaning to them through code mu-
tation. This second evolutionary route, ambiguity avoid-
ance through rapid assignment of explicit sense, is a
missense analogue to the scenario proposed by Sonne-
born (1965), in which most codons in the early code were
rapidly assigned some meaning to reduce the frequency
of nonsense mutations (termination). It is for this reason
we call the transitional region between the Encoding Pla-
teau and Encoding Catastrophe the Sonneborn Region.

In later stages of evolution in the Encoding Plateau, it
may be shown that ambiguous codons were used in many
types of sites at low frequencies, on the order of the
mutation rate. Such patterns of usage favored the (re-)
assignment of generalist amino acids. If we had consid-
ered restricted ambiguity over a smaller set of perhaps
physicochemically similar amino acids, then such am-
biguous codons could be positively selected in site-types
that favored one or more of the amino acids thereby
ambiguously encoded. This might happen only if none of
the ambiguously encoded amino acids or highly fit sub-
stitutes for them were not explicitly encoded by other
codons. In such a case, translational ambiguity would
also restrict subsequent amino-acid diversification by fa-
voring the assignment of an explicit meaning with high
relative average fitness in the types of sites in which that
codon was used. Thus, translational ambiguity, through
both the low fitness that it induces, and its possible ten-
dency to distribute codons over sites with different fit-
ness requirements, may ultimately promote a less diverse
genetic code.

We have described several ways in which code-
message coevolution may lead to a more uniform distri-
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bution of codon usage over sites with different selective
requirements, and shown that this is an intrinsic factor
limiting amino-acid diversification in the evolution of
genetic codes. The frozen genetic codes we evolved had
higher fitness with their own messages than mutant
codes that increased the range of encoded amino acid
physicochemical properties. Indeed, at each step in evo-
lution, the fitness of assigning or reassigning exactly one
of any of the 20 amino acids to any of the 16 codons was
calculated as a potential path of evolution. Every amino
acid was available throughout evolution to optimally ful-
fill the selective requirements of a unique site-type, yet
the maximum diversity in vocabulary was not attained.
Thus, historical, stereochemical, and mechanistic con-
straints may be unnecessary to explain redundancy in
genetic codes. Further, our data show that the rate of
message mutation and the strength of missense selection
have probably had profound effects on the extent and
timing of diversification of encoded amino acids in ge-
netic code evolution.

It is worth asking whether the notion of a generalist
amino acid makes biological sense. Such a claim was
made for alanine by Zuckerkandl and Pauling (1965) in
their analysis of amino-acid substitution in hemoglobin.
Döring and Marlière (1998) make such a claim for cys-
teine on the basis of its small size, amphiphilicity and
that they achieved partial replacement of isoleucine by
cysteine inE. coli with relatively low loss in fitness.
Finally, we note that generalist amino acids should tend
to substitute more frequently and uniformly with other
amino acids. Physicochemical generality is a property,
then, that could be measured in the analysis of amino-
acid substitution matrices.

Further work could examine the extent to which the
size and dimensionality of codon and amino-acid spaces,
the form of fitness interactions of amino acids within and
among sites, and the particulars of the code-message co-
evolutionary dynamics affect the results and hence the
generality of our interpretations. The effect of finite
population size on messages, also not addressed here,
will probably be an additional factor that distributes
codons over sites with different selective requirements.
We also have not attempted to estimate the conditions of
message mutation and selection that reproduce the ob-
served level of redundancy in the standard genetic code.

The interpretations of this paper may possibly be gen-
eralized to the evolution of other coding systems. The
generalized principle would be that such phenomena as
the erroneous transmission of symbols, the multiple use
of symbols in different semantic settings, and the am-
biguous decoding of symbols may all ultimately restrict
later diversification of symbolic meaning.
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Appendix

Model

This model builds on the assumptions, justifications, and results de-
tailed and discussed in Sella and Ardell (2001). To specify our model,
we must define the following quantities: The set of codons and how
they mutate; the sets of amino acids, types of sites in proteins, and the
elementary fitness matrix that defines the fitness of amino acids in any
type of site; the target, a vector that associates site-types to a vector of
codons (called the message); the initial genetic code in the population;
the scheme by which genetic codes change; and the coevolutionary
dynamic of codes and messages.

The Codon Set, Codon Mutation Scheme, and Message.We model
a set of 16 codons, with 2 positions over the set of 4 basesB 4 { U, C,
A, G}. The codon setCII

B then consists of 16 codons:

CII
B 4 B × B 4 { UU, UC, UA, . . . , GG}. (2)

The codon mutation matrixmC is defined in terms of the base mutation
matrix mB 4 { mB(y|x)} x,y∈B, wheremB(y|x) is the probability of basex
mutating into basey in one generation. The corresponding codon mu-
tation is then:

mC~zw|xy! = mB~z|x!mB~w|y! x, y, z, w ∈ B, xy, zw∈ CII
B. (3)

We study a one-parameter model of base mutation, namely:
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wherem is themessage mutation parameter, the probability of a base

being replicated correctly after one generation. Themessageof an
individual is a vector ofL codonsm

→
4 〈m1, . . . , mL〉, mi ∈ CII

B,
representing the concatenation of all protein-coding genes.

The Amino Acid and Site-Type Sets, Genetic Code, Elementary
Fitness Matrix, and Target.We assume an immutable setA of M 4 20
amino acids that are always metabolically available and encodable
throughout code evolution. All amino acids are assigned a physico-
chemical coordinate between 0 and 1 from a uniform distributionU(0,
1). The coordinate of an amino acid corresponds to a normalized phys-
icochemical index associated with functionality and fitness in proteins,
such as the Polar Requirement measure of Woese et al. (1966). An
amino acida ∈ A may be denoted directly by its coordinate, so that
0 < a < 1. Given two amino acidsa, b ∈ A, their coordinates allow us
to define a physicochemical distanced(b|a) 4 |b − a| between them.

A genetic code c(a|i) determines the probability of producing
amino acida ∈ A from codoni ∈ CII

B in a message through translation.
Translation is independent by codon, so that the probabilityP(p

→
|m
→

)
of producing anyprotein, which is a vector of L amino acidsp

→
4

〈p1, . . . ,pL〉, pi ∈ A, from a given messagem
→

through translation using
codec is

P~pW |mW ! = )
l=1

L

c~pl |ml!. (5)

A site refers both to the specific locus of a codon in a message and
its corresponding residue location in a protein. We assume that the
contribution to fitness of an amino acid in any site in a protein is
completely determined by thetypeof that site, itssite-type. We choose
the setSof T 4 20 site-types to be in one-to-one correspondence to the
set A of amino acids, such that each site-type is associated with a
distinct target amino acid, which is the unique amino acid conferring
maximal fitness in sites of that type. Note that because we assume 20
amino acids (and hence 20 site-types each with a different target amino
acid) no individual can attain the theoretical maximum fitness, as each
individual may only encode a maximum of 16 amino acids.

The target is the vector of L site-types,s
→

4 〈s1, . . . , sL〉, si ∈ S,
which determines the type of thelth site of any messagem

→
in the

population or any proteinp
→

in any individual, and thereby the fitness of
all proteins. The frequenciesls, lt > 0 of site-typess, t∈ S in the target,
Ss∈Sls 4 L, are assumed to be all equal (ls 4 lt for all s, t ∈ S). The
target is fixed throughout evolutionary time.

The choice of the elementary fitness matrixv(?|?) completely de-
fines the fitness of any amino acid in a site of any type. We call our
choices ofA, S, and v here thephysicochemical accuracy scheme.
Denote bysa ∈ S the unique and distinct site-type associated with
target amino acida. The physicochemical accuracy scheme makes the
fitness of an amino acidb in a site of a given typesa reflect the
accuracy with which its physicochemical properties matches that of the
target amino acida. We thus choose the elementary fitness matrix to
reflect the physicochemical distances between amino acidb anda. In
mathematical terms, we require that

v(b|sa) 4 f(d(b|a)), (6)

where the functionf remains to be defined.
The fitnessesv( p

→
|s
→

) of a proteinp
→

given the targets
→

is assumed
to be the product of the fitnesses of its amino acids, so that

v~pW |sW! = )
l=1

L

v~pi |si!. (7)

Denote byasl
the target amino acid of thelth site-type as determined

280



by targetsW. In the multiplicative scheme for protein fitness we require
that

v~pW |sW! = )
l=1

L

f ~d~pl |asl
!! = f ~(

l=1

L

d~pl |asl
!!. (8)

The only functional form that meets this requirement is

v~b |sa! = fd~b|a! (9)

where for the fitness to decrease with chemical distance we also require
that 0 <f < 1.

We refer tof as themissense tolerance parameterbecause it de-
termines the overall strength of selection against missense in proteins.
Increasingf increases the tolerance of selection to missense over all
sites in proteins.

The number of proteins produced from a message for a given in-
dividual is assumed to be large. The fitnesses of different proteins from
the same gene, as created for example through translational ambiguity,
are arithmetically averaged to determine overall individual fitness. Let
the usage, u(i|s), be the frequency of codoni ∈ CII

B in sites of type
s ∈ S in a given messagem

→
, satisfyingu(i|s) $ 0 for all i ∈ CII

B and
s ∈ S and Si∈CII

B u(i|s) 4 ls for all s ∈ S. The fitnessv(c,m
→

) of an
individual with messagem

→
and codec given a targets

→
may then be

written as

v~c,mW ! = )
s∈S

)
i∈CII

B
S(

a∈A

c~a | i!v~a |s!Du~i|s!. (10)

The Initial Code.We model the evolution of coding assignments
after the biochemistry is in place to carry out translation of any codon.
On the grounds that a high frequency of mutation to stop codons is
deleterious in any coding system (Sonneborn 1965), we assume an
initial state where all codons have sense. Extending from the logics of
Woese (1965) and Fitch (1966), who argued for an early sloppiness and
ambiguity of the primitive translational machinery, we assume auni-
formly ambiguous initial code. The initial codec0 is such that every
codon inCII

B encodes all of the 20 amino acids inA with equal prob-
ability, i.e.,

c0~a | i! =
1

M
for all i ∈ CII

B and a ∈ A, (11)

whereM is the total number of amino acids inA.

Code Mutation.We assumeuniform discontinuous code mutation,
in which: (1) the meaning of a codon may only change toexplicitly

encode a single amino acid with unit probability, i.e.,c(a|i) 4 1 for
some amino acida, andc(b|i) 4 0 every other amino acidb Þ a, (2)
codons change meanings independently of one another within and
across generations, (3) the probabilities of changes in meaning are
identical over all codons and all amino acids, and (4) the probability
mcmof changing the meaning of any one codon is very small, so that the
probability of two changes in meaning to a code is negligible.

The probabilitymo(c8|c) of mutating to a codec8 from a codec is
then

mc~c8 |c! = 5
1 − Nmcm c8 = c

mcm c8 differs fromc by
one allowed change

0 otherwise,

(12)

whereN 4 16 is the number of codons inCII
B.

The Code-Message Coevolutionary Dynamic.With the assump-
tions outlined above, an infinite-sized asexual population with a unique
genetic codec will converge to a unique codon usage distributionU(c)
4 { uc(i|s)} s∈S

i∈CII
B

in messages, and a unique growth ratel(c) in muta-
tion-selection equilibrium. Also, assuming that messages are long, the
variance in codon usage among individual messages in the population
is small (Sella and Ardell 2001). We call the unique code with which
an equilibrium population translates its messages theestablished code.

We use these results and Equation 10 to calculate theinvasion
fitnessof a mutant code, which is the fitness of an individual using the
mutant code to translate a message with the expected codon usage
frequencies of messages equilibrated to the established code. The in-
vasion fitness of an individual with an altered genetic codec8 and a
messagem

→
c with the equilibrium codon usage distributionU(c) of the

established codec is

v~c8, mW c! = )
s∈S

)
i∈CII

B
S(

a∈A

c8~a | i!v~a |s!Duc~i|s!. (13)

The coevolutionary process on codes and messages proceeds in a series
of steps, in which first a small number of mutant codes compete to
invade and take over a population of messages equilibrated to an es-
tablished code (starting with the initial code), assuming that the mes-
sage distribution does not change; then, if one such mutant code is
successful, messages equilibrate in mutation and selection to it as the
new established code.

More specifically, if at any stepv 4 (c8, m
→

c) > l(c) for some
mutant codec8, the mutant code with the greatest invasion fitness is
assumed to take over the population and become the new established
code (codes with equal maximal invasion fitnesses have equal prob-
ability to take over). Ifl(c) $ v(c8, m

→
c) for all mutant codesc8, then

no mutant code invades and the established code is said to have become
frozen.
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