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Abstract. We simulate a deterministic population ge- guity—predispose the evolution of redundancy and of
netic model for the coevolution of genetic codes andreduced amino acid diversity in genetic codes.
protein-coding genes. We use very simple assumptions

about translation, mutation, and protein fitness to calcuKey words: Evolution — Origin — Code-message
late mutation-selection equilibria of codon frequenciescoevolution — Redundancy — Amino acid — Wobble
and fitness in a large asexual population with a given— Mutation-selection balance — Codon usage

genetic code. We then compute the fithesses of altered
genetic codes that compete to invade the population by
translating its genes with higher fithess. Codes and genes. Juction
coevolve in a succession of stages, alternating between

genetic equilibration and code invasion, from an initial

wholly ambiguous coding state to a diversified frozen!n relation to the problem of the origin and evolution of
coding state. Our simulations almost always resulted irfhe standard genetic code, Crick (1968) argued that the
partially redundant frozen genetic codes. Also, the rangéreatest increase in fitness should have come from en-
of simulated physicochemical properties among encode§oding more diverse amino acids. Selection to preserve
amino acids in frozen codes was always less than maxthe meaning of protein-coding gerfeprovided the
mal. These results did not require the assumption of hiscounter-balance to this advantage. Crick envisioned a
torical constraints on the number and type of amino acidrimitive genetic code that was highly redundant, pro-
available to codes nor on the complexity of proteins,ducing relatively simple proteins. Codons were then sub-
stereochemical constraints on the translational apparatugeduently reassigned to novel amino acids, increasing
nor mechanistic constraints on genetic code change. Botiversity. This led to increased reliance upon larger and
the extent and timing of amino-acid diversification in more complex genetic messages for individual fitness,
genetic codes were strongly affected by the message midbereby increasing the constraint to preserve message
tation rate and strength of missense selection. Our resulf§eaning. Presumably, this constraint froze the genetic
suggest that various omnipresent phenomena that distritsode before amino-acid diversification could be fully at-
ute codons over sites with different selective require-tained and its advantages fully realized.

ments—such as the persistence of nonsynonymous mu- The message constraint hypothesis has not yet been
tations at equilibrium, the positive selection of the samestudied quantitatively. It may be consistent with most

codon in different types of sites, and translational ambi-

1 As a complement to the word “code,” we call the concatenation of all
protein-coding genes a “message,” not to be confused with messenger
Correspondence tdDavid H. Ardell; email: dave.ardell@ebc.uu.se RNA.
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extant variation in genetic codes, at least in organellaern translation also admits the highest rates of transla-
genomes, where reductions in genome size and compdional error among codons encoding these amino acids
sitional complexity may cause codons to become infre{Davies et al. 1966; Parker 1989). These data point to a
quent (Osawa et al., 1992). Yet, against the diversityhigh physicochemical redundancy among the encoded
advantage hypothesis, most variant codes reassigaliphatic amino acids.
codons to already encoded amino acids; this may be The amino-acid vocabulary could well have been
partly due to the effect of genomic reductive evolution shaped by forces independent of selection for increased
on the translational apparatus (Andersson and Kurlandiversity in, and conservation of, message meaning. That
1995). Therefore, it behooves us to demonstrate that this to say, it is difficult to know whether more extreme or
vocabularies of extant genetic codes are limited in botHdifferent kinds of physicochemical properties among
number and quality. Furthermore, on the assumption omino acids were available or encodable during various
this limitation, we wish to discern the extent to which it stages in the evolution of genetic codes. For example,
may be explained by the hypothesis of message corspecific stereochemical affinities between certain amino
straint. Because there are several different, not necessaaeids and certain components of the translational appa-
ily mutually exclusive, hypotheses for the origin of ge- ratus, or of messages, could have predetermined amino-
netic codes, it is useful to examine their variousacid vocabulary to some extent. Stereochemical prede-
necessities and sufficiencies to explain a putative restrictermination was proposed by Jukes (1973), who argued
tion on the genetic code vocabulary, either in concerthat ornithine was once encoded but subsequently re-
with Crick’s message constraint hypothesis and eaclplaced by arginine, its metabolic product, which has hy-
other or alone. pothetically greater stereochemical affinity with the
Extant genetic codes show natural and experimentalranslational apparatus. In support of this hypothesis,
evidence of at least three kinds of restrictions to theirkKnight and Landweber (2000) have shown convincing
vocabularies: strict codon synonymy, restricted diversitystatistical evidence for an affinity between arginine and
in chemical property kinds (such as chemical reactivityits codons in in vitro-evolved aptamers selected for spe-
under various conditions), and redundancy or near<ific amino-acid binding. A more general role for this
redundancy in the values of chemical properties that ardypothesis is supported by evidence for affinities of iso-
represented among encoded amino acids (for examplégucine and tyrosine with their codons (Yarus 2000).
the extent of encoded hydrophobicity). However, there are problems with the stereochemical
Even accounting for wobble coding, there is a surplustheory as the sole explanation to limits to genetic code
of strict redundancy in the standard genetic codevocabulary. The statistical evidence for specific stereo-
Wobble rules are taxon-dependent, but one invariant rulehemical affinities between codons and amino acids is
is that the third-position pyrimidines (C and U) are not limited to the amino acids examined experimentally,
read independently (Osawa et al. 1992). Therefore, alnamely, the 20 canonical amino acids. This sheds no
lowing for stop codons, that leaves 4564 — 16 — 3 as light on possible interactions of aptamers with other
an estimate of the maximum encodable number of amin@mino acids. Also, because these experiments expressly
acids in the standard genetic code. The strict redundancselect for the binding of specific amino acids, they are
of the standard genetic code, then, may be quantified asiconclusive as to whether the evolution of a transla-
1- ng = 0.56 (on a scale from 0 to 1). tional system inevitably included certain amino acids and
Furthermore, it is arguable from natural evidence thatexcluded others. Indeed, Wong (1983) showed that
the 20 canonical amino acids do not span all dimensionsoli could be selected to completely replace tryptophan
of chemical variety that would be potentially advanta-by 4-fluoro-tryptophan in such a way that cells grew
geous in modern proteins. For instance, an alternativelower in tryptophan-supplemented medium than with
genetic code encodes a 21st amino acid, selenocysteideF-tryptophan. This change did not come about through
(Chambers et al. 1986), and 150 or so different knownan intrinsically higher affinity of the translational appa-
post-translational covalent modifications to amino acidsratus with 4-F-tryptophan. Thus, stereochemical interac-
occur in proteins (reviewed in Wold 1981). tions alone cannot comprehensively explain limits to en-
There is also evidence of redundancy in the values otoded amino-acid diversity.
physicochemical properties that do vary among encoded There may also have been historical or mechanistic
amino acids, such as size and polarity. Amino acids eneonstraints on the diversification of amino acids in ge-
coded by codons starting with U or C—especially U—in netic codes. As an example of an historical constraint,
the standard genetic code have very small differences igertain amino acids were likely to be metabolically and
polarity as measured by, for example, Woese’s (1966knvironmentally unavailable to primitive cells. Wong
Polar Requirement (Ardell, 1998). These codons encodél975) and others proposed that codons were donated
most of the aliphatic amino acids, which substitute forfrom metabolic precursors to metabolic products as ge-
each other more frequently than any other amino-acichetic codes coevolved with metabolism (Taylor and
pairs (Benner et al. 1994, and references op. cit.). ModCoates 1989, DiGiulio and Medugno 1999). Like Crick’s
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verbal model, this hypothesis presupposes an initiallycanonical amino acids merits caution. King and Jukes
more redundant state of the genetic code, in this cas€l969) made this point for another purpose in criticizing
encoding metabolically fundamental amino acids thatthe following passage by E. L. Smith: “One of the ob-
also happen to be abundant in chemical models of thgectives of protein chemistry is to have a full and com-
prebiotic earth (Miller 1987). As in Crick’s hypothesis, prehensive understanding of all the possible roles that the
the addition to the code of novel amino acids producec?0 amino acids can play in function and conformation.
by metabolism could have been partially prevented by &ach of these amino acids must have a unique survival
message constraint. value in the phenotype of the orgamis . .” Thehypoth-

The proximal mechanisms that generate potentiaESiS that the 20 canonical amino acids form a unique and
variation in genetic codes could also have intrinsicallyirreducible basis of life is contradicted by the aforemen-
restricted the diversification of encoded amino acids. Ationed experiment by Wong (1983).
proximal mechanism for code change that has been pro- On the basis of the present study, we describe the
posed is the duplication and divergence of tRNAs (Fitchfollowing novel, subtle aspect of the message constraint
and Upper 1987; Schultz and Yarus 1994; DiGiulio " code_evolution that_ may have promoted redundancy
1995). Restriction in vocabulary from this mechanismin genetic codes. Various phenomena cause the same
could have come from specific transformation of anc0don to be found simultaneously in different, possibly
amino acid to its metabolic product after acylation to diSSimilar, “types” of sites at once in the same genome.
{RNA, as has been naturally observed in organelles by?/lTerent types of sites in this sense correspond to dis-
Schim et al. (1988). However, this particular case is al- inct sets of locations in proteins with different biochemi-

most certainly a derived rather than an ancestral condigal requirements, among which amino acids have differ-

tion. If code changes did not generally occur through theent relative fitnesses. The distribution of the same codon

metabolic transformation of amino acids after acyla_over different types of sites induces spatial heterogeneity

tion to tRNA, then duplication and divergence of tRNAs of selection on its meaning. The message constraint then
L favors the assignment of amino acids to the code with
(and aminoacyl-tRNA synthetases) need not favor the

donation of codons to metabolic relatives. Indeed, ex_relatlvely generalized biochemical properties, as a sort of

) : ) : functional compromise to the various different types of
perimental evidence on misacylation supports that char P yp

ina errors occur between phvsicochemicall relatedéites in which codons occur. We show that this promotes
9 by y redundancy and restricted diversification of amino acids

ag:mo agldlsf(Fersht 1986?' I mrllsa(;ylat|ofn IS da re:son—in genetic codes, without need of additional stereochem-
able moget for a proximal mechanism ot code ¢ ang(%cal, historical, or mechanistic constraints. Nor is it nec-
through duplication and dlvergencg, then this ewdgnce%sary to postulate that messages became larger and
would seem to favor the encoding of novel amino more complex in order to increase the message con-

acids that are stereochemically or physicochemically re3traint, as Crick postulated. The phenomena that cause

lated, rather than metabolically related, to an ancestrghg gjstribution of codons in multiple types of sites in-
ligand. o clude the persistence of nonsynonymous mutations at

It remains to be seen whether historical and mechyytation-selection equilibrium, and the positive selec-
anistic constraints can comprehensively explain th&jon of codons in multiple types of sites. Thus, the mes-
limited amino-acid vocabularies of genetic codes. FOlsage mutation rate and selective tolerance to missense
example, analyses incorporating the metabolic coevoluinfluence how specialized and diverse the vocabulary of
tionary hypothesis tend to examine only canonically en-3 genetic code may evolve to become.
coded amino acids (Amirnovin 1997; DiGiulio and Me-
dugno 1999; Freeland et al. 2000). Such studies cannot
explain why some amino acids within a metabolic path'Methods
way are included and others not.

WFf'b_er and Miller (:!'981) take a dlfferem app,roaCh_toThe model described in the appendix has been implemented in the
explaining the exclusion of non-canonical amino acidsprogram cMmc, written in C++, and available upon request from the
from the standard code. They use biochemical reasoninguthors. The appendix also defines terms we use below that may be
to argue that certain classes of amino acids were exunfamiliar or are used unconventionally (such as “codon usage”).

cluded from the code through selection against adversgi9ensystem solutions for determining the growth refg) and equi-
librium codon usagéJ(c), associated with a genetic codeccording

effects that they caus_ed on p_roteln Syn_theSIS and prOtel{a the model, were obtained using the iterative method (Press et al.
structural and catalytic chemistry. Their post hoc argu-19gs). All values were calculated to double precision t£0 Ties in
ments are testable and based on considerable biocheniive genetic code take-over condition were broken arbitrarily by picking
cal knowledge and experience. However, it is impossiblghe first code observed with maximal invasion fitness.

to comprehensively explain the exclusion of amino acids A simulation of code-message coevolution according to our model

. . . |s fully determined by picking values for the message mutation rate
that do not violate the rules they enunciate, but that mlghLarametem’ the missense tolerance parameferand a sef of 20

have 'had a positive. di\./erSity advantage. _ uniform randomly distributed values between 0 and 1. These values
Using an adaptationist approach to explain the twentytepresent both the physicochemical requirements of the 20 site-types in
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proteins and the physicochemical properties of the 20 encodable aminTseizl C2c= Evsiution in 12 Erceding Fatesy Faramstar Regon o = LI, 291 = 0
acids. In the following, the sek of 20 randomly distributed values is Mzaz
called an “amino-acid/site-type space” or simply “amino-acid space.” '
For simplicity, the values themselves are called “amino acids.”

We examined the effects of variation in the parameters on the =t
number of explicitly encoded amino acids,(), the number of explicit EE

encoding codonsN,), and a measure of physicochemical diversity - wEE
calledNER to be defined below, both in frozen genetic codes and over | —— 1
simulation time. We examined parameter valuesbofanging from =6 S =3 -=3 =20 =1
¢ =2.8x10"tod = 0.9999 and values qf ranging fromw = 5.0 cEEE CEEE DEEE 2B 2B e
x 10°%to w = 1.0 x 10° In order to control for any idiosyncratic | | |
effects of particular randomly generated amino-acid/site-type spaces HE EIE EE g; g g
we examined the mean and standard deviation (and sometimes tF =12 =13 =4 =2 = t=17
median and interquartile range) of these observables over simulation mmmE T PO O
run with 40 different uniformly distributed amino-acid spaces. | 5

The measure of physicochemical diversity of amino acids in a code %—E H H 5 ; ;
that we used was the range of physicochemical properties that it ex =1 e = = == ==
plicitly encoded divided by the maximum range for the amino acid I
space with which it evolved. Denote lyC) O A the set of amino ; ;
acids explicitly encoded by a genetic caden the codon seEf, and
by d(Blo) = |B - «| the physicochemical distance between any two = ==
amino acidsx, 8 O A : T ERr—— =

TheNormalized Encoded Range (NE#t)a codec given an amino- bl el i ;
acid spaceA and associated physicochemical distadds: ¢ er B2 A% 04 G5 OF

Amino A58 SE-Trpe Sgade

max, soack) d(Blew) Fig. 1. A typical code evolution in the Encoding Plateau region of

NER= “max 5o dBla) (1) parameter space. Four-base, 2-position genetic codes are represented as
BOA 4-by-4 grids. The initial uniformly ambiguous coding state is indicated

by the striped pattern. The one-dimensional scale at the bottom of the
graph is the amino-acid/site-type space with which this code evolved.
Results Codes are shown above the step number in which they were uniquely
established in the population. The code of a subsequent step was the
unique invading mutant that most increased the fitness of messages

Redundancy in Codes Increases Directly with Both equilibrated to its predecessor. No mutant codes could invade the mes-

Mutation Rate and the Tolerance of Missense sages of the code frozen at step 25. The colors of codons indicate the
. physicochemistry of their assigned amino acids as shown in the scale.
in Messages

Figure 1 shows a simulated evolutionary trajectory of athe optimal amino acid of any site with some probabil-
4-base, 2-position genetic code from an initial uniformly ity). Instead, all codons eventually became explicitly as-
ambiguous state to a diversified and explicit frozen statesigned to some amino acid during all runs.
This trajectory was typical for these parameterg.@ind In Fig. 2 we show that this result of redundancy and
. A complete depiction of the code-message coevoludimited amino-acid diversity was typical of frozen codes
tionary trajectory would include graphs of the equili- evolved with any of 40 different random amino-acid/site-
brated usage of all 16 codons within each of the 20type spaces over a broad range of message mutation rates
site-classes at each step. However, for simplicity, theand missense tolerances. Indeed, over the entire param-
codon usage patterns are not shown. eter-space that we examined, averages of bith(top

In this example, the initial ambiguous state persistedf Fig. 2) andNER (bottom) were less than their theo-
until step 23; 7 of 9 reassignments occurred before thé&etical maximum values of 16 and 1.0, respectively. Av-
code evolved to become fully explicit. The code froze aterageN,, remained between 10 and 13 (redundancy re-
step 25 with only 10 different encoded amino acids for amained between 0.1875 and 0.375), and avefdg&
final redundancy of 1 %g = 0.375. The amino acids that Stayed at about 0.9, for 1= =103and 0.1= ¢ =
were encoded did not include the most physicochemi0.95, a stability in the parameter space that we call the
cally extreme amino acids, labeled as 1 and 20. Insteadsncoding Plateau
most of the encoded amino acids, and all of the redun- We extended our studies to extremes of strong selec-
dantly encoded amino acids, came from the middle oftion and low mutation rates to see if we could force the
amino-acid space, despite that the target protein selecteaverage behavior of the genetic codes we evolved to
for the encoding of all 20 amino acids. encode the maximum of 16 amino acids and the maxi-

The genetic code in Fig. 1 did not freeze with any mum encodable physicochemical range. These data are
codons in the initially ambiguous state. In fact, in none ofshown in Fig. 3. Even at the strongest selection we ex-
our simulations did any genetic code freeze that was noamined, & = 2.8 x 107, » = 0.0001,N = 40), both
fully explicit (despite that the ambiguous state encodeghe average and median number (not shown) of encoded
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amino acids was less than 15. That is to say, the majority Changing the mutation and selection parameters
of frozen codes evolved encoded less than 15 amingaused profound differences in the level of redundancy.
acids under these conditions. At lower mutation rates, thérozen genetic codes encoded both more and increas-
rate of convergence of our calculated eigensystems wasigly diverse amino acids, on average, when they
too slow to statistically average over many different runscoevolved with messages mutating at lower rates or
with different site-type/amino acid spaces. However,stronger missense selection (Figs. 2 and 3). With lafver
both of the two genetic codes evolved under the mosbr p, the reduction of redundancy in genetic codes
extreme conditions that we examinell € 0.0001,u = tended to occur through the encoding of amino acids
5.0 x 10° N = 2) remained partially redundant and did from the middle of amino-acid space rather than its ex-
not encode the most physicochemically extreme amindremes. This is evident, for instance, within the Encoding
acids. Both frozen genetic codes encoded 15 differenPlateau (Fig. 2), where the rate of increaseNip with
amino acids, and had adER of approximately 0.97. In  the strength of missense selection is greater than that for
the majority of simulations under almost all parameterNER

conditions that we examined, some redundancy remained Decreasing selection above threshold values caused
in our frozen genetic codes. THEER was below its sharp reductions in botN,, and NER on average (Fig.
maximum of 1.0 in all frozen codes that we evolved. 2). The value of the threshold depended on the mutation
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Fig. 3. Average and standard deviation (error barsNip andNER e . L. .
of amino acids in final frozen codes evolved under conditions of ex-Versification. In our model, this diversification generally

tremely low missense tolerance apd= 0.0001. As beforeN = 40  occurred through codon reassignments except under con-
amino-acid/site-type spaces for each point. ditions of very low tolerance to missense. Small changes
) __in parameter values could radically change the timing
rate and much less on the form of the amino-acid/sitexnq nature of codon reassignments that occurred in code
type space. Under conditions of high mutation rate andyq|ytion, and thus, the timing of amino-acid diversifi-
extremely weak missense selection, near-total redunzation.
dancy evolved, a phenomenon we call Erecoding Ca- Recall that codon reassignments occurred rather fre-
tastrophe _ quently in the Encoding Plateau region of parameter
Figure 4 shows the effect of the Encoding Catastrophgpace shown in Fig. 1. Seven reassignments occurred
on the morphology of final codes. All 9 codes shown pefore every codon evolved explicit meaningdssign-
were evolved in simulations using the same singleénents pefore expligitand 2 reassignments occurred af-
amino-acid/site-type space and different combinations ofgy, for a total of 9 in all. A close look shows that many
p and ¢ parameters as indicated. It is clear that whenyt these reassignments tended to be diversifying. For
diversity decreased and redundancy increased in the E'é‘xample, in step 4, a codon that had just been assigned
coding Catastrophe, they did so towards the center ofmning acid 4, at the low extreme of amino-acid space,
amino-acid space. It may be shown that amino acidgecame reassigned in the next step to the even more
from the center of amino-acid space are preferably engyireme amino acid 2. Another diversification through
coded in the various circumstances we describe beca“$8assignment occurred just before freezing, at step 24.
they have the highest geometric mean fitness over site- \yhen we looked at the average behavior over 40
types in our model. Therefore, we call such amino acidsyitferent amino-acid/site-type spaces, between 8 and 11
‘versatile” or “generalist” amino acids, compared 10 reassignments of codon meaning occurred in genetic
those at the extremes of amino-acid space, which arggges coevolving in the Encoding Plateau (depending on
relatively “specialized” to site-types at the same ex-the mutation rate), mostly occurring before the code was
tremes of site-type space. explicit (Fig. 5). In the Encoding Catastrophe ¢aer p
. . ) L were increased), codes rapidly froze without any reas-
Early \/ersus Late Diversification of Amino Acids in signments at all. Reassignments also decreased under
Genetic Codes conditions of low missense tolerance relative to the En-
Mutation and selection affected not only the extent butcoding Plateau, suggesting as expected that selection
also the timing and evolutionary path of amino-acid di- against missense inhibited changes in codon meaning.
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meaning.N = 40 runs with different
D amino-acid/site-type spaces.

We call this part of parameter space Bieong Selection the genetic code in Fig. 1, this genetic code evolved to
region. become explicit much earlier (step 19 versus step 23),

However, in a region of parameter space between th&ith many more reassignments of meaning occurring
Encoding Plateau and the Encoding Catastrophe, therafter explicit (18 versus 2). The initial explicit state was
was a major transition in the timing of codon reassign-more redundant than that which evolved in the Encoding
ments, best seen in the inset figures of Fig. 5. In thisPlateau. The amino acids that it encoded tended to be
transitional region, genetic codes first evolved to be ex{from the middle of amino-acid space. Like in the Encod-
plicit without reassignments, and then went through aing Plateau, reassignments tended to diversify the code,
prolonged epoch of up to almost 20 reassignments beforbut the frozen code in step 37 was more redundant and
finally freezing. For reasons explained in the discussionjess diverse than the code that evolved in the Encoding
we call this region of parameter space tBenneborn Plateau (Fig. 1).

Region These differences in dynamical behavior are shown to
The transition in the timing of reassignments corre-be general in Fig. 7, which illustrates how the different
sponded exactly in parameter space to the decrease iegions of parameter space affected the median time-

average encoded amino-acid diversity which culminatedcourse number of explicit codon®J, number {,,),
in the Encoding Catastrophe (Figs. 2 and 5). A typicaland Normalized Encoded Rang®lER of encoded
evolutionary trajectory of a genetic code coevolving inamino acids, and the cumulative distribution over time of
the Sonneborn Region is shown in Fig. 6. Compared taodes frozen (out of 40 runs for each valuebo§hown).
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Typical Evolution in the “Sennetarm’ Paramater Region (mu = (L0001, phi = 0.8835)

Fig. 6. A typical code evolutionary
trajectory in the Transitional Region of
= a7 = | parameter space between the Encoding

1 s D Plateau and the Encoding Catastrophe
3+ & 210 12 14 18 15 2 | that we call the Sonneborn Region for
o reasons given in the discussion. The

-
G
i

4
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"
-
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1 B2 03 04 05 BE 07 05 08
; o : amino-acid/site-type space shown is the
Amino Acid'Site-Type Space same as in Fig. 1.

As in earlier figures, we controlled for idiosyncratic ef- evolved much later, if at all, compared to the Encoding
fects of individual amino-acid/site-type spaces by study-Plateau or Strong Selection regions of parameter space.
ing the central tendencies and dispersion of the result¥here, the number of encoded amino acids increased
over multiple runs with different spaces. The interquar-steadily throughout evolution, and codes froze soon after
tile range (itg) ofN,, N,, and NER are sporadically they became expliciNER on the other hand, increased
indicated with error bars. The five different valuesdof to its maximum almost immediately. This implies that
illustrated survey the regions of parameter space we havemino acids which were encoded later in the Encoding
so far described. From Fig. 5, the dynamical behavior ofPlateau and Strong Selection regions tended to be in the
runs withp. = 0.0005 is dominated by Strong Selection middle of amino-acid space rather than at the extremes.

atd = 0.001, is in the Encoding Plateaudat= 0.4 and Because codons could not revert to the ambiguous
0.8, is in the peak of the Sonneborn Regiondat= state and we know th&ERdid not decrease over time

0.995, and is approaching the Encoding Catastrophe ah our runs, it might be thought that the running median
¢ = 0.999. curves in Fig. 7 should all increase monotonically. They

Genetic codes took almost twice as many steps talon’t because as more and more codes froze under the
freeze in the Sonneborn Region as in other parts of pasame conditions (bottom subfigure of Fig. 7) fewer and
rameters space. On the other hand, codes froze fastefgwer runs contributed to the median. Evidently, runs
(with the least reassignments) at the extremes of paranwhich persisted longer in the Sonneborn Region had
eter space, both in the Strong Selection and EncodingmallerN,, and NER
Catastrophe regions. The overall similarity of the sets of runs with = 0.4

Even though\, increased fastest in the Encoding Ca-andé = 0.8 in Fig. 7 illustrates the dynamic equivalence
tastrophe and Sonneborn Region, amino-acid diversityf runs within the Encoding Plateau.
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Discussion very rare to be reassigned, they assumed that selection
against multiple simultaneous amino-acid replacements

It is widely understood that the usage patterns of codongyill be very strong.

in a general sense, depend on interactions among evolu- We have introduced a quantitative model for the evo-
tionary forces such as mutation, selection on nonsynonylutionary interactions of genetic codes and messages.
mous and synonymous changes, genetic drift, and upoAnalysis of codon usage patterns in our model, not pre-
the genetic code itself. For instance, King and Jukesented here, illuminated several factors that influenced
(1969) demonstrated that amino-acid composition in prohow codons were distributed over sites with different
teins is largely predictable from redundancy patterns inselective requirements. These factors were: the equilib-
the standard genetic code, mutation, and genetic driftium usage of nonsynonymous mutant codons, positive
Yet few studies have treated how these factors will in-selection of the same codon in multiple site-types, trans-
fluence the constraint of messages on genetic code evdational ambiguity, and the genetic code itself. In various
lution. An exception is a theory of derived genetic codeways, these factors caused the fithess consequences of a
change due to Osawa et al. (1992), who consider thehange in meaning of a single codon to depend on the
effects of neutral changes in equilibrium base composifitnesses of amino acids in different selective environ-
tion on codes. By assuming that codons must becomeents at the same time.
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The magnitude of these various effects depended presur final frozen genetic codes under any conditions. It
dictably on the magnitude of evolutionary forces actingalso describes another way in which earlier forms of a
on messages. For example, both high mutation rates armbde may influence its own future evolution though pat-
high selective tolerance to missense increased the peterns of codon usage.
sistence of nonsynonymous mutant codons at mutation- Under our assumptions, the initial ambiguous state of
selection equilibrium. This favored the assignment ofcodons had low fithess under most patterns of codon
amino acids with relatively high average fitness in mul- usage. For example, after a few codons were assigned
tiple site-types, which were those from the middle of explicit meaning in the Encoding Plateau or Strong Se-
amino-acid space. These amino acids, which may béection regions, the frequency of ambiguous codons in
called versatile or generalist amino acids, were the onlynessages was negligible, so that only a few explicit
ones to be encoded at sufficiently high mutation rates ocodons dominated the codon usage in all types of sites. In
missense tolerance (Fig. 4). contrast, in the Encoding Catastrophe and early stages of

Analysis of codon usage patterns (not shown) illumi-the Sonneborn Region, ambiguous codons were used
nate that, under some conditions, the genetic code itselfith frequencies similar to explicit codons at mutation-
could wield a strong influence on codon usage patterns iselection equilibrium-(data not shown). Thus, if codons
messages and thereby on its own subsequent evolutiomere distributed over many site-types, an explicit gener-
This effect was greatest in the Encoding Plateau andlist amino acid coding state was more fit than the uni-
Sonneborn Region, where messages evolved at intermé&rmly ambiguous initial coding state. The transition in
diate mutation rates and missense tolerances. If mutatioparameter space that we observed then, between early
rates or missense tolerances were too high, as in thand late amino acid diversification, was actually a tran-
Encoding Catastrophe, codons were distributed so rarsition between two alternative evolutionary routes
domly, with respect to their amino-acid meaning, thatthrough which codes and messages reduced the use of
changes in the code did not alter codon usage patternglatively unfit ambiguous codons: the purification of
and, in turn, did not influence subsequent evolution ofthem from messages through selection or the rapid as-
the code. If, on the other hand, mutation rates and missignment of explicit meaning to them through code mu-
sense tolerances were very low, the frequencies of mutation. This second evolutionary route, ambiguity avoid-
tant codons were very low. Codons were mainly usedance through rapid assignment of explicit sense, is a
where they were positively selected. Low frequencies ofmissense analogue to the scenario proposed by Sonne-
mutant codons caused the outcome of code changes to bern (1965), in which most codons in the early code were
predominantly determined by a few site-types with simi- rapidly assigned some meaning to reduce the frequency
lar fithess requirements. In this case, explicit codonsof nonsense mutations (termination). It is for this reason
could change meaning more independently of the dewe call the transitional region between the Encoding Pla-
tailed organization of amino-acid assignments in theteau and Encoding Catastrophe the Sonneborn Region.
code. This explains why reassignments were more com- In later stages of evolution in the Encoding Plateau, it
mon in the Encoding Plateau and later stages of evolumay be shown that ambiguous codons were used in many
tion in the Sonneborn Region, where they often occurredypes of sites at low frequencies, on the order of the
in consecutive cascades, than in the Encoding Catastranutation rate. Such patterns of usage favored the (re-)
phe or Strong Selection Regions. At intermediate paramassignment of generalist amino acids. If we had consid-
eter values, changes to the code perturbed codon usageed restricted ambiguity over a smaller set of perhaps
patterns in multiple types of sites, often reducing thephysicochemically similar amino acids, then such am-
number of types of sites in which a codon was used. Thidiguous codons could be positively selected in site-types
released constraints on subsequent code changes and faat favored one or more of the amino acids thereby
cilitated amino-acid diversification, often through codon ambiguously encoded. This might happen only if none of
reassignments. the ambiguously encoded amino acids or highly fit sub-

Even at extremely low mutation rates and missensestitutes for them were not explicitly encoded by other
tolerance, we were unable to evolve a majority of non-codons. In such a case, translational ambiguity would
redundant genetic codes. Nonsynonymous mutationalso restrict subsequent amino-acid diversification by fa-
should have had negligible effects on the fitness of coderoring the assignment of an explicit meaning with high
changes in this part of parameter space. However, theelative average fitness in the types of sites in which that
same codon could be positively selected in more thartodon was used. Thus, translational ambiguity, through
one site-type on the basis of its fithesses relative to otheboth the low fitness that it induces, and its possible ten-
codons within a given code. The resulting high usage oflency to distribute codons over sites with different fit-
the same codon in multiple types of sites would thenness requirements, may ultimately promote a less diverse
restrict further specialization of its meaning. This prob-genetic code.
ably partly explains why the most extremely physico- We have described several ways in which code-
chemically diverse amino acids were never encoded iimessage coevolution may lead to a more uniform distri-
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bution of codon usage over sites with different selectiveTakashi Gojobori for the privilege of contributing to this issue in honor

requirements, and shown that this is an intrinsic factorof Dr- T- H. Jukes.

limiting amino-acid diversification in the evolution of

genetic codes. The frozen genetic codes we evolved had

higher fitness with their own messages than mutanfReéferences

codes that increased the range of encoded amino acid

physicochemical properties. Indeed, at each step in evdA-mOf the genetic code. J Mol Evol 44:473_476

lution, the fitness of assigning or reassigning exactly ON€nderson S, Kurland C (1995) Genomic evolution drives the evolution
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avies J, Jones D, Khorana H (1966) A further study of misreading of
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The Amino Acid and Site-Type Sets, Genetic Code, Elementary
Fitness Matrix, and TargetVe assume an immutable gebf M = 20

mino acids that are always metabolically available and encodable
hroughout code evolution. All amino acids are assigned a physico-
chemical coordinate between 0 and 1 from a uniform distributi¢®,
1). The coordinate of an amino acid corresponds to a normalized phys-
icochemical index associated with functionality and fitness in proteins,
such as the Polar Requirement measure of Woese et al. (1966). An
famino acida 0 A may be denoted directly by its coordinate, so that
0 <« < 1. Given two amino acida, 3 0 A, their coordinates allow us
to define a physicochemical distand@|a) = |B — «| between them.

A genetic code (@li) determines the probability of producing
amino acidx [0 A from codoni O Cf in a message through translation.
Translation is independent by codon, so that the probal#{fy|m)
of producing anyprotein which is a vector of L amino acidg =

proteins. Academic Press, New York, pp. 97-166 Py, . ..,p.0p; OA, from a given messaga through translation using
codec is
Appendix L
Pl = [ [cpim). 5
1=1
Model

A siterefers both to the specific locus of a codon in a message and
This model builds on the assumptions, jUStiﬁCﬁtiOﬂS, and results deits corresponding residue location in a protein. We assume that the
tailed and discussed in Sella and Ardell (2001). To specify our modelcontribution to fitness of an amino acid in any site in a protein is
we must define the following quantities: The set of codons and howcompletely determined by thgpeof that site, itssite-type We choose
they mutate; the sets of amino acids, types of sites in proteins, and thghe setSof T = 20 site-types to be in one-to-one correspondence to the
elementary fitness matrix that defines the fitness of amino acids in anyset A of amino acids, such that each site-type is associated with a
type of site; the target, a vector that associates site-types to a vector @fistinct target amino acidwhich is the unique amino acid conferring
codons (called the message); the initial genetic code in the populationinaximal fitness in sites of that type. Note that because we assume 20
the scheme by which genetic codes change; and the coevolutionarymino acids (and hence 20 site-types each with a different target amino
dynamic of codes and messages. acid) no individual can attain the theoretical maximum fitness, as each
individual may only encode a maximum of 16 amino acids.

Thetargetis the vector of L site-types = [3,, ...,50s 0S5
which determines the type of tHéh site of any messags in the
population or any proteip in any individual, and thereby the fitness of
all proteins. The frequencidg I, > 0 of site-typess, t0J Sin the target,
3 = L, are assumed to be all equél & |, forall s, t00 S). The
Ci =BxB={UU,UC,UA ... ,GG. @ teasl'[éstlest is fixed throughout evolutionary‘?ime.t

The choice of the elementary fithess matsik|-) completely de-
The codon mutation matrix is defined in terms of the base mutation fines the fitness of any amino acid in a site of any type. We call our
matrix pg = { pa(YPX)} o Whereps(ylx) is the probability of base  choices ofA, S and » here thephysicochemical accuracy scheme

mutating into basg in one generation. The corresponding codon mu- Denote bys, O S the unique and distinct site-type associated with
tation is then: target amino aci&. The physicochemical accuracy scheme makes the
fitness of an amino aci in a site of a given types, reflect the
B accuracy with which its physicochemical properties matches that of the
Ke(Zwixy) = pe(@usWly) %y, zwWOB, Xy, zwhCi.  (3)  target amino acid. We thus choose the elementary fitness matrix to
reflect the physicochemical distances between amino@e@dda. In

The Codon Set, Codon Mutation Scheme, and Mes¥#genodel
a set of 16 codons, with 2 positions over the set of 4 bBses{U, C,
A, G}. The codon seCP then consists of 16 codons:

We study a one-parameter model of base mutation, namely: mathematical terms, we require that
U E {j ff w(Bls) = f(d(Ble)), ©®)
ufl- = = =
3 3 3
where the functiorf remains to be defined.
cl & 1- W L L The fitnesses(p|s ) of a proteinp given the targe is assumed
Mg = 3 3 3 N to be the product of the fitnesses of its amino acids, so that
W W W
Al = = 1l-p =
3 3 3 .
G| BB B o(Pl® =] Jomls). %
3 3 3 =1

wherep. is themessage mutation parametéhe probability of a base Denote byn the target amino acid of tHéh site-type as determined
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by targets. In the multiplicative scheme for protein fitness we require encode a single amino acid with unit probability, i.€|i) = 1 for
that some amino acid, andc(B|i) = O every other amino acifl # «, (2)
codons change meanings independently of one another within and
L L across generations, (3) the probabilities of changes in meaning are
o(p|3) = H f(d(pi|og)) :f(Ed(pdaS‘)). ® identical over all codons and all amino acids, and (4) the probability
1=1 1=1 Kem Of changing the meaning of any one codon is very small, so that the
probability of two changes in meaning to a code is negligible.

The only functional form that meets this requirement is The probability,(c’|c) of mutating to a code’ from a codec is
then
o(Bls,) = 6" ©)
1-Npen C =C
where for the fitness to decrease with chemical distance we also require pdc'o) = Hem ¢' differs fromc by 12
that 0 <¢ < 1. N one allowed change
We refer tod as themissense tolerance parameteecause it de- 0 otherwise,

termines the overall strength of selection against missense in proteins.
Increasings increases the tolerance of selection to missense over alivhereN = 16 is the number of codons i@F.
sites in proteins.

The number of proteins produced from a message for a given in-  The Code-Message Coevolutionary DynanWdith the assump-
dividual is assumed to be large. The fitnesses of different proteins fromions outlined above, an infinite-sized asexual population with a unique
the same gene, as created for example through translational ambiguitgenetic code will converge to a unique codon usage distributid(c)
are arithmetically averaged to determine overall individual fitness. Let= {u(i|s)} .S in messages, and a unique growth rafe) in muta-
the usage u(ils), be the frequency of codon(l C}} in sites of type  tion-selection equilibrium. Also, assuming that messages are long, the
s Sin a given messag@ , satisfyingu(ils) = 0 for alli O C} and  variance in codon usage among individual messages in the population

s SandXcs u(ils) = I for all s O S The fitnessw(c,M) of an  is small (Sella and Ardell 2001). We call the unique code with which
individual with messagen and codec given a targeg may then be  an equilibrium population translates its messages#tablished code
written as We use these results and Equation 10 to calculateirthasion
fitnessof a mutant code, which is the fitness of an individual using the
~ . i tant code to translate a message with the expected codon usage
e ola]i s) |1, 10 mu . - : :
w(C.m) !;[5.5‘3(% (alo(a] )> (10 frequencies of messages equilibrated to the established code. The in-
]

vasion fitness of an individual with an altered genetic cetland a

messagen, with the equilibrium codon usage distributiei(c) of the
The Initial Code.We model the evolution of coding assignments established code is

after the biochemistry is in place to carry out translation of any codon.

On the grounds that a high frequency of mutation to stop codons is w(c, M) = H H (2 C,(O‘li)"‘)(o‘ls)>uc“|5)' (13
deleterious in any coding system (Sonneborn 1965), we assume an S8 B

initial state where all codons have sense. Extending from the logics of

Woese (1965) and Fitch (1966), who argued for an early sloppiness angthe coevolutionary process on codes and messages proceeds in a series
ambiguity of the primitive translational machinery, we assum&&  of steps in which first a small number of mutant codes compete to
formly ambiguous initial codeThe initial codec, is such that every  jnyade and take over a population of messages equilibrated to an es-
codon inCft encodes all of the 20 amino acids Anwith equal prob-  taplished code (starting with the initial code), assuming that the mes-
ability, i.e., sage distribution does not change; then, if one such mutant code is
successful, messages equilibrate in mutation and selection to it as the
new established code.

More specifically, if at any stem = (¢’, my) > \(c) for some
mutant codec’, the mutant code with the greatest invasion fitness is
assumed to take over the population and become the new established
code (codes with equal maximal invasion fithesses have equal prob-
ability to take over). IfA(c) = w(c’, M.) for all mutant codes’, then

Code MutationWe assumeiniform discontinuous code mutation no mutant code invades and the established code is said to have become
in which: (1) the meaning of a codon may only changesxplicitly frozen

alA

1
Colali) =7 forall iOCE and o OA, 11

whereM is the total number of amino acids A&



