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Abstract. Natural selection favors certain synony- monest tRNA or bind the tRNA with optimal base pair-
mous codons which aid translation itscherichia coli  ing (Ikemura 1985), and the level of synonymous codon
yet codons not favored by translational selection persistbias is strongly correlated to gene expression level (Gouy
We use the frequency distributions of synonymous poly-and Gautier 1982; Ikemura 1985). These two observa-
morphisms to test three hypotheses for the existence afons suggest that it is some factor during translation
translationally sub-optimal codons: (1) selection is awhich exerts selection upon synonymous codon uge in
relatively weak force, so there is a balance between mueoli.

tation, selection, and drift; (2) at some sites there is no  However, we still do not know what the precise basis
selection on codon usage, so some synonymous sites as¢ the selection might be. It has been suggested that
unaffected by translational selection; and (3) translationsglection might be acting on the rate of elongation, the
ally sub-optimal codons are favored by alternative seleccost of proof-reading, or the accuracy of translation (Bul-
tion pressures at certain synonymous sites. We find thaher 1991), but it has proved difficult to differentiate
when all the data is considered, model 1 is supported angetween them (Akashi and Eyre-Walker 1998). It is also
both models 2 and 3 are rejected as sole explanations fQyclear whether selection for translational efficiency is
the eX|stence' of trgnslatlpnally sub-optimal codons.ihe only selective force acting upon synonymous codon
However, we find evidence in favor of both models 2 and,;qe- it has been suggested there may be alternative con-
3 when the data is partitioned between groups of amingjicting selection pressures acting upon synonymous
acids and between regions of the genes. Thus, all threg, 4o yse, such as selection for the regulation of gene
mechanisms appear to contribute to the existence 0f,ression, or selection upon MRNA and DNA second-
translationally sub-optimal codons & coli. ary structure (Eyre-Walker 1996; Eyre-Walker and Bul-
mer 1995; Hartl et al. 1994).

These issues relating to the nature of selection im-
pinge upon the problem addressed in this paper: why are
sub-optimal codons found given that some codons are
evidently optimal for translation? Translationally sub-
Introduction optimal codons are always found, even in the most

highly expressed genes (Eyre-Walker 1996). Throughout
There can be little doubt that synonymous codon bias ishis paper we will use the terms optimal and sub-optimal
the consequence of natural selectiorEgtherichia coli  to refer to translational selection alone. Thus a transla-
there is preferential use of codons which match the COMtjonally sub-optimal codon may be preferred at some site
for some other selective reason, for example, it may en-
code part of a ribosomal binding site, but it would still be
Correspondence td\.G.C. Smith;email: n.g.c.smith@sussex.ac.uk  referred to as a sub-optimal codon.
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There are at least four explanations for why sub-consolidated with polymorphisms segregatingnin se-
optimal codons persist. First, selection might favor opti-quences, see Hartl et al. 1994). In contrast, we have used
mal codons, but be so weak that sub-optimal codons caa model of reversible mutation, which eliminates the re-
be fixed by genetic drift; there would then be a balancequirement for either outgroup sequence data or the con-
between mutation, selection, and genetic drift. Secondsolidation of frequency data. Our data consists of mul-
selection might consistently favor the optimal codon, buttiple sequences of severial coli genes, from which we
vary between sites so that selection is ineffective at somé@erive distributions of the frequencies of optimal codons.
sites, while very effective at others; synonymous codon We then use the frequency distribution data to dis-
bias would be caused by the sites at which selection wasfiminate between the MSD, neutral and conflict hypoth-
strong, while sub-optimal codons would persist at theeses for the existence of suboptimal codons. The MSD
sites where selection was effectively neutral. This is theand neutral hypotheses make simple testable predictions
situation we might expect if selection acts upon transla-2bout the pattern of polymorphism we expect to see in a
tional accuracy, since errors at some codons are moroPulation. If we just consider sites at which we have
costly than at others. Third, selection might vary betweerPPtimal and sub-optimal codons segregating in the popu-
sites, but not always favor the optimal codon, because gftion, then we expect to see the optimal codon at higher
conflicting selection pressures, for example, a codor{’®duéncy under the MSD hypothesis, since optimal
might form part of the ribosome binding site (Eyre- codons are mildly advantageous, and sub-optimal codons

Walker 1996; Eyre-Walker and Bulmer 1993). Fourth are mildly deleterious. In contrast, under the neutral hy-

sub-optimal codons might exist because the system is né’[OIheSis we expect the average frequgncy of optim.al .and
at equilibrium; this could be because the selection pres§,Ub'Opt'ma! codons at segr_egayng sites t(.) be &_rmlar,
ce the sites where selection is strong will contribute

sures on synonymous codon use have changed, as we ﬁ%tt : | hi leaving th iral sites
in Drosophila melanogastefAkashi 1996), or because € 10 polymorphism, eaving e neutral sites to con-
H|bute most of the variation. The conflict hypothesis

of some other process such as amino acid substitutio S .
which can generate sub-optimal codons if differentmakes less clear-cut predictions: whether translationally
. . : . . .-optimal or sub-optimal codons are found at higher fre-

amino acids have optimal codons which differ at their . . : i
degenerate sites guencies at segregat_mg sites dgpends on the relative
) strengths of the conflicting selection pressures. We do

These hypotheses are not mutually exclusive. HOV\./'not test the non-equilibrium hypothesis (but see Discus-

ever, we can characterize the main reasons for the ex'sé'ion).
tence of sub-optimal codons in sequences as follows;
sub-optimal codons may exist because there is a balance

between mutation, selection, and genetic drift; there is nog, Population Genetics Model of Synonymous
selection on synonymous codon use at some COdon%odon Evolution

there is selection favoring the sub-optimal codon at some

sites; and the system is not at equilibrium. We call thesei:ollowing Li (1987) and Bulmer (1991) let us imagine

thedMSD (M}Ij.ftlon}]sele?on'l)”ft)’neu'{_rall’ conflict  iat each site has two allelesl and A2, whereAl is
andnon-equilibriumhypotheses, respectively. preferred for translation and has a selective advangge,

In this paper we develop methods to discriminate be<,y e a2 | et the mutation rate from1 to A2 be u, and

tween the MSD, neutral, and conflict models using thethe mutation rate in the opposite direction weUnder

frequency distribution of optimal codons in samplesis madel Wright (1949) showed that the equilibrium
taken from a single population. The comparison of fre-istribution of gene frequencies at a single site in a hap-
quency distributions has proved a useful tool for the|y;qg population isF(x) where

elucidation of selection in different species and at differ-

ent classes of sites (Akashi 1994; Akashi 1995; Akashi F(x) = CES%V" D1 -x)U™D (1)
and Schaeffer 1997; Hartl et al. 1994; Sawyer and Hartl

1992; Sawyer et al. 1987). However, such studies havghereS = 2N, U = 2N.u, V = 2N, Cis a constant
employed models of irreversible mutation, which meanswhich normalizes the function so the integral sums to
that mutations must be polarized. In other words, theone, andx is the frequency of thé\1 allele. Under the
direction of mutation must be accounted for, either byinfinite sites assumption, (i.&) andV tend to zero) and
using an outgroup sequence to infer the direction of muthe assumption of unbiased mutatidh & V), the equa-
tation (synonymous mutations from a sub-optimal codontion can be simplified (McVean and Vieira 1999).

to an optimal codon are defined as preferred, and muta-

tions in the opposite direction are unpreferred, see Aka- F(x) = CE% Y (1-x71 )
shi 1995), or by consolidating frequency data to combine
alternative directions of mutation (in a samplerose- If we assume that sites evolve independently, if there

quences, polymorphisms segregating isequences are is free recombination and no epistasis between sites, then
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by the principle of ergodicity (Ewens 1979) we can use 1

the expected pattern at a single site to predict the pattern n=20
at many sites (McVean and Vieira 1999). The expected :;;0
proportion of segregating sites witloptimal alleles seg-

regating in a sample of sequence<3(i), is found using  go.s

a binomial probability model (Hartl et al. 1994), assum- o )
ing random sampling from the population. nes /~///

_—
n=10 = —
G =C 1-1/Ne Nl n " B 3 nzzo’
(i) = x=1/Ne il(n—i)! XL =" FOgdx (3) ° 4 2 0 2 4
S

Cis a constant which ensures it G(i) = 1. The

o . . Fig. 1. Th lationshi he MSD |
value of G(i) is highly insensitive to changes N, as ~ @ expected refationship under the MSD model betuen

the product of effective population size and the selection coefficient

long asN, is large, and in this study we have us¥d = affecting codon usage, ari¢, the frequency of the selected allele at
10° throughout. The expected frequency of preferred al-polymorphic sites (derived from Equations 2-4). The expected rela-
leles at polymorphic sites is given k. tionship is shown for three different samples sized\ote thatk = ¥-
whenS = 0, and thatk covaries withS,
3 G0
K= —= (4)
=1 N

sub-optimal codonA2, in the other half. LetS be the
translational selection in favor of the optimal codon, and
The MSD Model S be the strength of the conflicting selection press&e (
, _>>1 andS, >> 1 because selection is strong).
pnder the S|mple§t MSD mode_l the strength Of, selection Thus, we have three classes of sites, for each of which
in favor of the optimal codor§, is same for all sites. As apply the MSD model with different selection coef-

can be seen from Fig. 1, the frequency of the optimakisienys: (1) translational selection on§,= S, (2) trans-
codon at segregating sitels, increases as$ increases. |a4ional and conflicting selection working in the same

More precisely, changes i affect the shape of the iection 5 = § + S, (3) translational and conflicting
distribution of segregating sites, with high positi® g etion working in different directions,= S - .. We
yielding a distribution skewed towards optimal alleles o\, from our model that these selection pressures ap-
segregating at high frequencies (Fig. 2). ply at¥z, ¥a, and¥ of all sites respectively, but we also
need to account for the differing contributions of the
The Neutral Model different classes to polymorphism in order to pre@¢i)
for the conflict model: the class of site at which selection
The neutral model assumes that all sub-optimal codongs weakest will make the greatest contribution to poly-
are at neutral sites, and that translational selection ghorphism (see Appendix for details).
other sites is sufficiently strong that such sites make no | some sites are to be fixed for sub-optimal codons
contribution to polymorphism. Thus, the predictions of then§ must be greater thag, assuming that the alter-
the neutral model are equivalent to a MSD model forpative selection pressures are unlikely to balance each
which S = 0 for all segregating polymorphisms, which qther exactly. IfS, >> 23, then the sites under the weak-
means thak = 0.5 (Fig. 1) and that the shape of the est selection are those affected by translational selection
distribution of segregating sites is symmetrical (Fig. 2).only (S, + § > S. - § > S), and so the greatest contri-
bution to polymorphism is by selection in favor of opti-
The Conflict Model mgl codons, anc_i th_us, we find m_ost of the poly_mor-
phisms segregating at= n — 1 (conflict model 1 in Fig.
There are many different conflict models including ones2: § = 200,S. = 500). If S, << 2S, then the sites under
which generate sub-optimal codons because selection the weakest selection are those at which the alternative
weak or non-existent at some sites. However, the simselection pressures are conflictig ¢ S>S>S - 9),
plest conflict model is one which does not require ge-and so the greatest contribution to polymorphism is by
netic drift and mutation for the persistence of sub-selection in favor of non-optimal codons, and thus, we
optimal codons; sub-optimal codons exist because therénd most of the polymorphisms segregatingiat 1
is strong selection favoring them. A simple conflicting (conflict model 2 in Fig. 2S5 = 200,S. = 250). There-
selection pressures model is as follows; let us imagindore, we predict that most polymorphisms will be single-
that one half of the sites are subject to conflicting selectons if the strong selection conflict model is correct, in
tion pressures, and that the conflicting selection pressureontrast to the MSD model which suggests a greater
favors the optimal codorAl, in half the cases, and the distribution of polymorphism (see Fig. 2).
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Materials and Methods and overalK is significantly greater than 0.5 (me#n=
0.57, Wilcoxon signed rank tegi,< 0.001), as expected
We have defined optimal codons as those codons which increase innder the MSD model and some conflict models (for

frequency between high and low expression level genes (see Table 1éxample conflict model 1 in Fig. 2). However, the results

using the codon usage data given by Sharp et al. (1992). This Classﬁuggest that the neutral model cannot by itself explain
fication assumes that translational selection is the dominant form o

selection upon synonymous codon use. We classified 18 amino acid_g:\’hy SUb'Opt"_nal codons are fo_und i coli genes a_nd
containing a total of 59 codons (64 codons minus TAA, TAG, TGA, itS seems unlikely that the conflict model can explain the
TGG, and ATG), calculating the relative synonymous codon usage (thelata either, since singletons do not constitute the major-
observed number of codons divided by the number expected if codomty of ponmorphisms.

usage is random) in the high and low expression level genes, and also

the ratio of the two quantities. If the high/low ratio is greater than one

the codon_ increases in frequency W_ith_expression level and is define(Maximum Likelihood Estimates & Under the

as an optimal codon, and if the ratio is less than one the codon de-
creases in frequency with expression level and is defined as subMSD Model

optimal. For each amino acid we calculated the optimal/sub-optimal

ratio, defined as the mean high/low ratio for optimal codons divided by The polymorphism data appear to be inconsistent with
the mean high/low ratio for sub-optimal codons. By definition, the both the neutral and conflict models, but are the data
optimal/sub-optimal ratio must be greater than one, and the greater theag|ly consistent with the MSD model? To investigate

ratio the greater the effect of expression levels on codon usage. Wﬁ']is question we ask whether the MSD model provides a
have ranked the amino acids according to their optimal/sub-optimal

ratios, and have classified the amino acids into high and low optimal/gOOd fit to the data. The likelihood,, of the observed

sub-optimal groups of six and twelve amino acids, respectively. ThePOlymorphism datal\(i), given the predicted distribution
amino acids were divided into the two groups on the basis of theof polymorphismG(i) (Equation 3), is calculated as a
discontinuity in the optimal/sub-optimal ratio between serine and iso-myltinominal distribution.
leucine.

We compiled multiple sequences for EL coli genes from the
literature:celC (Hall and Sharp 1992§rr (Hall and Sharp 1992papA n-
(Guttman and Dykhuizen 1994b; Nelson et al. 199t (Bisercic et N@) !
al. 1991; Dykhuizen and Green 199HutB (Hall and Sharp 1992), i n-1
mdhA (Boyd et al. 1994; Vogel et al. 1987pabB (Guttman and L=—————— G(i)N(i) (5)
Dykhuizen 1994b)phoA (Dubose et al. 1988putP (Nelson and Se- n-1 i=1
lander 1992)sppA(Guttman and Dykhuizen 1994a), anaif(Guttman H N(i)!
and Dykhuizen 1994a). i=1

For each gene we considered all the synonymous sites at which an
optimal and a sub-optimal codon were segregating, or at which a single el
optimal or sub-optimal codon were fixed. From these data we obtained . . .
the observed frequency spectrum for each gaif®, For a sample of LogL=Log 2 N@) JY )+ 2 (N(i)Log(G(i))
n sequences\(i) is defined from = 0toi = nas the number of sites i=1 =1
at which an optimal codon is found asequences. We used the fre- — Log(N(i)!)
quency spectra to calculate a number of statistigsthe nucleotide

diversity at synonymous sitek, the proportion of sites fixed for the - . .
optimal codon, and, the mean frequency of optimal codons at seg- Under the MSD mOdeB(') is determined for a given

regating sites (see Table 2). With one exceptignt (= = 0.188), the ~ vValue ofn by the coefficient of selectios So we can
nucleotide diversities are low, indicating that the infinite sites assump-gstimateS by finding the value which maximizes the
tion is met (excludinggnd meanw = 0.036). The gengndis not  |ikelihood of observing the polymorphism data. Confi-
considered in the following analyses. . dence intervals can be determined on the basis of double
In some analyses we have usedambineddataset. This was gen- . . . . 2 i
erated by choosing eight samples at random for those genes with mor@e difference inLogL being approximately” distrib-
than eight samples. Then the data from all the genes was summed féted: 95% confidence intervals are given by the range of
give the combined spectrurhl(i) fromi = Otoi = 8: {938, 27,22,  values ofSwith LogL less than 1.92 below the maximum
11, 21, 20, 31, 48, 1553} (see Table 3). value (sincex? (0.05) = 3.84). However, the lack of free
recombination inE. coli is likely to cause us to under-
estimate the size of the confidence intervals because we
Results have not taken into account the variance associated with
the evolutionary process.
The Average Frequency of the Translationally Optimal ~ 1he values ofSestimated under the MSD model are
Codon at Segregating Sites given in Table 2 (g, values). Seven genes yielded an
estimate ofS greater than zero, although onputP,
Table 2 shows that sub-optimal codons are present ahdhA andphoAgave estimates @significantly greater
appreciable frequencies in all the genes we have studiedhan zero. However, an estimate of the average selection
on averageF = 0.62. This is the result we seek to strength, found by assuming thats the same across all
explain: why isF less than one? Let us first consider the genes, is significantly greater than zer® &€ 0.80,
average frequency of the optimal codon at segregatindLoglL = 5.20,p = 0.0013).
sites,K. K is greater thar¥z in seven out of ten genes,  The data suggest a tendency for the strength of selec-

[h

1
[y

n-1
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Expression Levél

Optimal/Sub-Optimal

Optimal/Sub-Optimal

Amino Acid Codon Codon Class Low High Ratio Ratio Rank, Class

Lys AAA optimal 1.42 1.61 1.13 1.69 1, low
AAG sub-optimal 0.58 0.39 0.67

Val GTT optimal 1.43 1.85 1.29 1.69 2, low
GTA optimal 0.91 0.96 1.05
GTC sub-optimal 0.75 0.36 0.48
GTG sub-optimal 0.91 0.83 0.91

Ala GCT optimal 1.05 1.39 1.32 2.05 3, low
GCG optimal 0.81 1.13 1.40
GCC sub-optimal 0.83 0.46 0.55
GCA sub-optimal 1.32 1.02 0.77

Glu GAA optimal 1.29 1.58 1.22 2.07 4, low
GAG sub-optimal 0.71 0.42 0.59

Cys TGC optimal 0.80 1.21 151 2.30 5, low
TGT sub-optimal 1.20 0.79 0.66

GIn CAG optimal 1.09 1.68 1.54 4.38 6, low
CAA sub-optimal 0.91 0.32 0.35

Asp GAC optimal 0.53 1.23 2.32 4.43 7, low
GAT sub-optimal 1.47 0.77 0.52

Thr ACT optimal 111 1.37 1.23 7.18 8, low
ACC optimal 0.87 2.22 2.55
ACA sub-optimal 1.36 0.12 0.09
ACG sub-optimal 0.66 0.29 0.44

His CAC optimal 0.65 1.57 2.42 7.58 9, low
CAT sub-optimal 1.35 0.43 0.32

Tyr TAC optimal 0.50 1.44 2.88 7.71 10, low
TAT sub-optimal 1.50 0.56 0.37

Phe TTC optimal 0.59 1.57 2.66 8.73 11, low
TTT sub-optimal 1.41 0.43 0.30

Ser TCT optimal 1.17 2.32 1.98 10.49 12, low
TCC optimal 0.62 1.86 3.00
AGC optimal 0.95 1.28 1.35
TCA sub-optimal 1.49 0.17 0.11
TCG sub-optimal 0.61 0.23 0.38
AGT sub-optimal 1.16 0.13 0.11

lle ATC optimal 0.64 2.30 3.59 14.69 13, high
ATT sub-optimal 1.41 0.69 0.49
ATA sub-optimal 0.95 0.00 0.00

Leu CTG optimal 1.34 5.08 3.79 15.34 14, high
TTA sub-optimal 1.63 0.10 0.06
TTG sub-optimal 0.92 0.16 0.17
CTT sub-optimal 1.09 0.25 0.23
CTC sub-optimal 0.52 0.38 0.73
CTA sub-optimal 0.50 0.02 0.04

Pro CCG optimal 0.72 3.06 4.25 16.31 15, high
CCT sub-optimal 1.10 0.38 0.35
CCC sub-optimal 0.86 0.03 0.03
CCA sub-optimal 1.32 0.53 0.40

Asn AAC optimal 0.59 1.78 3.02 19.34 16, high
AAT sub-optimal 141 0.22 0.16

Gly GGT optimal 1.16 2.19 1.89 31.07 17, high
GGC optimal 0.82 1.70 2.07
GGA sub-optimal 1.16 0.04 0.03
GGG sub-optimal 0.86 0.08 0.09

Arg CGT optimal 1.42 411 2.89 104.47 18, high
CGC optimal 1.06 181 171
CGA sub-optimal 0.79 0.03 0.04
CGG sub-optimal 0.76 0.02 0.03
AGA sub-optimal 1.26 0.03 0.02
AGG sub-optimal 0.70 0.00 0.00

1 Data based on Sharp et al. (1992).
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Table 2. Synonymous codon usage statistics ‘ 60 - Dcombinedabsenved EINSD ft
Gene w F K n Sl S« ‘ -
celC 0.032 0.49 0.59 11 0.96 0.98 ‘
crr 0.034 0.74 0.67 12 1.83 1.85 | “©
gapA 0.009 0.91 0.68 18 1.73 1.75  [Frequency
gutB 0.024 0.57 0.49 11 -0.10 -0.10 | o
mdhA 0.028 0.72 0.73 16 2.36 2.41
pabB 0.037 0.52 0.54 12 0.46 0.45 20
phoA 0.050 0.53 0.60 8 1.28 1.29
putP 0.070 0.53 0.59 8 1.11 1.09 | 10
SppA 0.032 0.61 0.43 12 -0.69 -0.69 |
zwf 0.036 0.62 0.48 11 -0.20 -0.20 0
1 2 3 4 5 6 7
i

Fig. 3. The observed distribution of polymorphic synonymous sites

o neurel e WD mom D0 T mﬂ'@ (using the “combined” data—see Materials and Methods) compared
- with the distribution of polymorphic sites expected under the MSD
| 09 model with the value o$fitted by ML. The observed distribution is the
t 08 | number of polymorphic sites at which the optimal codon is present at
| 07 frequencyi in the sample of eight sequences. The expected distribution
0.6 is the expected proportion of polymorphic sites at which the optimal
G 0.5 codon is found at a frequency ofin a sample of eight sequences
| 04 (calculated according to Equations 2, 3), multiplied by 180, the total
‘ g-; number of polymorphic synonymous sites.
0.1 ”
0 +—o

yields a ML estimate oS = 0.78, which provides an
i adequate fit to the dat&(= 4.34,p = 0.50, see Fig. 3).

Fig. 2. The expected distributions of polymorphism under different

models of evolution. The expected proportion of polymorphic sites atVariation in Selection Between Amino Acids

which the optimal codon is found at a frequencyi af a sample of ten

sequences is given by G(The neutral model is equivalent to a MSD  Although we cannot reject the MSD model on the basis

model (see Equations 2, 3) for whi€hthe measure of selection on the of jts goodness of fit to the data, it is possible that other
optimal codon at all sites, is zero. MSD 1 and MSD 10 representyy,qe|s may fit the data better. In particular, the pattern
models of evolution under which all sites are under the same selection L. . .
coefficients ofS = 1 andS = 10, respectively. The conflict models of synonymous codon b|a§ In relat'on to gene expression
invoke two forms of selection, translation selectisp,and conflicting ~ |€Vels suggests that selection is stronger on the codons of
selectionS.. For conflict model 1 we havg = 200 andS, = 500,and ~ some amino acids than others (see Table 1, Eyre-Walker
for conflict model 2 we haves = 200, andS, = 250 (G() values  and Bulmer 1995; McVean and Vieira 1999). For some
derived as shown in the Appendix). amino acids, like lysine, there is little or no change in the
pattern of codon usage across expression levels, whereas

tion to vary between genes (the move from gene specififor others, like glycine, there are dramatic changes
selection coefficients to a single selection coefficient(Eyre-Walker and Bulmer 1995). We used the data given
over all genes entails a reduction liegL of 5.41), but by Sharp et al. (1992) to divide the amino acids into two
the effect is not significant (thg?® approximation indi-  groups: the codon usage of amino acids in the high op-
cates that a reduction inoglL of 8.46 would be required timal/sub-optimal group changes markedly with gene ex-
for the gene-specific selection model to provide a sig-pression, while the codon usage of amino acids in the
nificant improvement, at the 5% level, over the single low optimal/sub-optimal group is relatively insensitive to
selection model, given the difference of 9 degrees ofgene expression (see Table 1).
freedom). A larger collection of genes may be requiredto  The fixed site data show the expected trends: the high
demonstrate gene-specific selection coefficients. optimal/sub-optimal amino acids have 608 fixed optimal

We also estimate® from the average frequency of codons and 296 fixed sub-optimal codons, while the low
optimal codons at segregating sités,using Equation 4. optimal/sub-optimal amino acids have 932 fixed optimal
The estimates derived frod are very similar to our codons and 638 fixed sub-optimal codons. Thus, the fre-
maximum likelihood estimates based on the full poly-quency of the optimal codon at fixed sitds, is signifi-
morphism distribution (see Table 2, 8alues), suggest- cantly higher for the high optimal/sub-optimal group of
ing that the data conform to the MSD model fairly well. amino acids X* = 15.2,p = 0.0001), which is consis-

To assess the fit quality of the MSD model we used atent with stronger selection for codon usage in such
G-test, which was performed on the combined spectrunamino acids.
(see Materials and Methods). The combined spectrum The average frequency of optimal codons at segregat-



231

Table 3. The “combined” spectra of fixed and segregating sites

Full Start of Rest of High Low
“Combined” Genes Genes Optimal/Sub-Optimal Optimal/Sub-Optimal
0 (Sub-Optimal Fixed) 938 195 743 298 640
1 27 2 25 7 20
2 22 1 21 5 17
3 11 1 10 5 6
4 21 4 17 8 13
5 20 2 18 8 12
6 31 2 29 14 17
7 48 3 45 30 18
8 (Optimal Fixed) 1553 255 1298 610 943

ing sites K, was significantly greater than 0.5 in the high  However, the data are consistent with a conflicting
optimal/sub-optimal groupk( = 0.65, Wilcoxon signed selection pressures model in which a proportion of the
rank,p < 0.001), but not significantly greater than 0.5 in sites are subject to strong conflicting selection pressures,
the low optimal/sub-optimal grougK(= 0.52, Wilcoxon and contribute little to polymorphism, while the rest of
signed rank,p = 0.565). Furthermor&K was signifi-  the sites are in a mutation-selection-drift balance. Under
cantly different between the high and low optimal/sub-this conflict model the patterns of fixed and segregating
optimal groups (Mann-Whitney U tegt,< 0.0001). The sites can become uncoupled. Our data are thus qualita-
difference between high and low optimal/sub-optimaltively consistent with the hypothesis that conflicting se-
amino acids is also shown by the ML estimatesSf lection pressures are responsible for the reduction in
based on the combined spectra (see Table 3); for the higtodon bias at the start of genes. We can test the conflict
optimal/sub-optimal grous = 1.96 (95% confidence hypothesis further by looking at patterns of diversity:
intervals 1.09 to 2.90), while for the low optimal/sub- under this conflict model we predict a reduction in di-
optimal groupS = 0.00 (95% confidence intervals —0.68 versity at the start of genes, due to the effect of strong
to 0.68). selection. In keeping with this prediction we find that the
proportion of segregating sites is much lower for the start
of genes than for the rest of genes (for the start of the
genes there are 446 fixed and 17 segregating sites, for the

It has been suggested that conflicting selection pressurdgst of the genes there are 2028 fixed and 169 segregating
might be responsible for the reduction in codon bias afites, X = 9.51,p = 0.002).

the start and ends of genes (Eyre-Walker 1996; Eyre- ) )

Walker and Bulmer 1993). In order to investigate this | N€¢ Use of Fixed and Segregating Data

hypothesis, we separately analyzed the first 50 codons dfhe evolutionary models discussed so far have invoked
the genes (the start) and all subsequent codons (the restie infinite sites and unbiased mutation assumptions.
In agreement with published results (Bulmer 1988; ChernWhile the infinite sites assumption appears to be justified
and Inouye 1990; Eyre-Walker and Bulmer 1993) wefor sites at which nucleotide diversity is low (Kimura
find that the frequency of codons fixed for the optimal 1971), and although the assumptions considerably sim-
codon,F, is significantly lower at the start compared to plify the analysis, there are some drawbacks. For in-
the rest of the gene (see Table %, % 7.54,p = 0.006).  stance, the infinite sites assumption restricts data analysis
However, the frequency of the optimal codon at segreto segregating sites only. Thus, the infinite sites model
gating sitesK, is not significantly higher at the stai( does not allow a direct examination of the quantitative
= 0.56 for the start versus = 0.58 for the rest, Mann- question of how many sites should be fixed for a sub-
Whitney U testp = 0.72); and the ML estimates &  optimal codon. Furthermore, mutation may be biased
based on the combined spectra also fail to indicate sigwith respect to optimal and sub-optimal codons (see Dis-
nificant intragenic differencesS(= 0.64 for the start, cussion).

95% confidence intervals from -=1.17 to 2.5 = 0.80 The solution to these problems is to use the full
for the rest, 95% confidence intervals from 0.26 to 1.35).Wright distribution to predict the frequencies of both
These results are inconsistent with both the MSD andixed and segregating sites. The equations are similar to
neutral models. Under the MSD model we expect similarthe case of infinite sites, except thdt and V are no
results for fixed and segregating data, &nshould posi- longer assumed to tend to zero (Equation 1), the integra-
tively covary with bothK andS. Under the neutral model tion of F(X) is carried out between 0 and 1 (Equation 6)
F can vary as the proportion of neutral sites variesout and we have used a Poisson probability model for the
should be 0.5 and the estimated valueS$hould be likelihood, summing fromi = 0 toi = n (Equation 7,
Zero. see Hartl et al. 1994).

Intragenic Variation in Selection



232

8 Drcombined" obsered EINSD ft eters). MSD model 2 has all genes sharing the shime
and V values but allows gene specific values $f(9
parameters). MSD model 3 has all genes sharing the
sameSvalue but allows gene specific valuesldiandV

(15 parameters). MSD model 4 allows gene specific val-
ues forS, U, andV (21 parameters).

As expected the more complex the model the better
the fit to the data, as shown by the maximumgL
values increasing from MSD model 1 to MSD model 4
(MSD model 1LogL = —-202.722, MSD model 2ogL
| = -177.155, MSD model 3ogL = -159.033, MSD
L model 4LogL = -154.184). We can compare those
Fig. 4. The observed distribution of fixed and polymorphic synony- Models which are nested within one another: this means
mous sites (the “combined” data—see Materials and Methods) comwe can perform all pairwise model comparisons except
pared with the expected values obtained for the full Wright MSD modelMSD model 2 versus MSD model 3. When compared
using the ML values of5, U, an_dV._The obse_rved distripution is the_ with MSD model 1, all three alternative models provide
number of fixed or polymorphic sites at which the optimal codon is N .
present at frequendyin the sample of eight sequences. The expecteda significantly better fit to the data (model2 = 2 x
distribution is given by G}, the expected proportion of polymorphic 10°°, model 3p = 2 x 10°*°, model 4p = 8 x 1079).
sites at which the optimal codon is found at a frequendyimf sample  \WWhen we compare MSD model 2 with MSD model 4, we
s s oy e T i it model 4 provides a signifcanty beter i (o te
pl{)tted c;n a log scale to aid visualizatign. ’ data b=7x 10_6)' But Whe_n we compgre MSD quel

3 with MSD model 4, we find that the improved fit of
model 4 does not justify the extra parameters requiped (
F(x)=C ES&(V—l)(l_X)(U—l) o) = 0.138). This means that MSD rr_lodgl 3 is the best
MSD model of those considered, taking into account the
. nl _ _ number of parameters required. Thus, we have signifi-
G(@i)=C ———X(1-x"" F(x)dx (6) cant evidence of variation in mutation, but the evidence
=oil(n—i)! of variation in selection is non-significant, as we also
_ _ found using polymorphic data only.
. ENO G(i)N Since we need to combine the data from many genes
LoglL = 2 Log N(i)! @) for accurate parameter estimation, these results suggest
that the use of the polymorphic data under the infinite
sites assumption may be preferable to the use of the fixed

th W'\;.\chn USZ tTe fuII_\éVnght d|str|but|k<))|n t?ts;ee gvrlﬁtr:ﬁrand polymorphic data using the full Wright distribution,
€ modet provides a reasonable fit 1o bo Csince then variation in mutation rates can be ignored.

fixed and the segregating data. Although the infinite Sitesy 1 the full Wright distribution avoids the infinite

ites assumption and allows the use of additional fixed
site data, its use does require the estimation of many
additional parameters.

5
Log

Frequency
4

i=0

all genes excepgnd in order to compare the two ap-
proaches. The use of the full Wright distribution requires
that we estimate the three paramet8rdJ andV. The
combined spectrum yields estimates®f 0.82,U =
0.032, andv = 0.024. This result is supportive of the
infinite sites and unbiased mutation assumptions, sinc®jscussion
the estimate o8is similar to the value obtained using the
infinite sites assumption on the combined polymorphism
data & = 0.78). The MSD model provides a reasonableAlthough some synonymous codons appear to be favored
fit to the data (see Figure 4), as confirmed b éest (G by natural selection over others, they are not used at
= 4.34,p = 0.50). every site in every gene. We have tested three hypotheses
We can examine the evidence for gene specific evofor why translationally sub-optimal codons exist: (1)
lutionary parameters by specifying a number of MSDthere is a balance between mutation, selection and ge-
models with different numbers of parameters, and themetic drift (the MSD model), (2) selection is absent at
comparing their fits to the data using tyé approxima-  certain codons (the neutral model), and (3) sub-optimal
tion to 2ALogL. The models are compared on the basis ofcodons are favored at some sites by alternative, conflict-
the full data of all seven genes for which there is suffi-ing selection pressures (the conflict model). We have
cient data to estimate three parameters, (ndhA, pabB, attempted to differentiate between these hypotheses by
phoA, putP, spppandzwf). MSD model 1 has all genes considering frequency distributions of translationally op-
with the sameS, U andV parameter values (3 param- timal codons inE. coli.
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Codon usage irE. coli supports the MSD hypothesis  sented here do not help us differentiate between these

. i possibilities.
WE find that on average optimal codons segregate at

higher frequencies than sub-optimal codons. The MSD
model with a single selection coefficient fits the data A Consideration of the Assumptions of the Population
well, and this result suggests that sub-optimal codon&enetics Model
persist primarily because selection is weak relative to
drift. The polymorphism data are inconsistent with theWe have used a simple population genetics model in
neutral and conflict models as sole explanations for theédrder to discriminate between alternative hypotheses for
persistence of sub-optimal codons: under the neutrdihe existence of sub-optimal codons. The simple model
model we expect sub-optimal and optimal codons to segrequires a number of assumptions which may not apply
regate at similar frequencies, and under most conflicto the E. coli data we have analyzed. Here we consider
models we expect all po|ymorphisms to segregate at Veri,jve important assumptions: equilibrium, unbiased muta-
low frequencies with a strong bias towards the optimal ortion, random sampling, constant evolutionary param-
sub-optimal codon being rare, depending on the specifi€ters, and independence of sites.
model.
Equilibrium

We assume that mutation, selection, and population
size have been constant for long enough so that all evo-
lutionary processes are at equilibrium. We do not test the

However, we do find some evidence for the neutral andon-equilibrium hypothesis in this paper, although we
conflict hypotheses in sub-sets of the data. It has beeRote that synonymous codon bias appears to be relatively
noted previously that some amino acids such as lysinstable in enteric bacteria suggesting that a state of equi-
show little change in codon usage across expression leJibrium exists (Maynard Smith and Smith 1996), that the
els (Eyre-Walker and Bulmer 1995; McVean and Vieiral€vels of codon bias irE. coli and S. typhimuriumare
1999), suggesting selection on codon usage is absent 8tmilar (Sharp 1991), and the rate of synonymous sub-
weak for those codons. Our results confirm these obserstitution is considerably greater than the rate of non-
vations, since amino acids which show little variation in Synonymous substitution, suggesting that any effects of
Codon usage across expression |eve|s ShOW frequen@'nino acid substitution will be short lived (Shal‘p 1991)
distributions consistent with neutrality (for the low opti-
mal/sub-optimal group of amino acids we estim&te®®  Unbiased Mutation
be 0.00 with 95% confidence intervals of —0.68 and 0.68; In the majority of the paper we use the infinite sites
however note that possible biases discussed below wilinodel, which means that mutation rates are very low,
probably causé&to be underestimated). and we also assume unbiased mutation, that there is no
It has also been noted that codon bias is lower at théendency for the mutation rate from an optimal codon to
start of enterobacterial genes (Bulmer 1987; Chen and sub-optimal codon to be greater or less than the muta-
Inouye 1990; Eyre-Walker and Bulmer 1993; Hartl et al. tion rate in the opposite direction. While this assumption
1994). This could be due to weaker translational selecmay appear reasonable, a possible mutational bias could
tion at the start of genes or conflicting selection pres-result from compositional correlations. Most optimal
sures. If it was the former we would expect the averagecodons end in G or C (16 out of 25, see Table 1), while
frequency of the optimal codon at segregating sites to benost sub-optimal codons end in A or T (21 out of 34, see
lower at the start of the gene, and the resulting strengtifable 1). So if there are mutational biases with regard to
of selection estimated from the polymorphism data to becomposition, there are probably mutational biases with
lower. This we do not find since the average frequency ofregard to codon usage.
the optimal codon at segregating sites and the estimated The assumption of unbiased mutation can be justified
selection strength are very similar at the start of the geneean the basis that when mutation rates are low, mutation
and in the rest of the genes. However, the overall level ofs effectively unbiased, evenW/V is not precisely unity.
diversity is significantly lower at the start of the genes When the assumption of unbiased mutation rates and
and this suggests that strong conflicting pressures ar@finite sites is relaxed with the use of the full Wright
acting at some sites, while others are evolving in a mu-distribution (Equation 1) rather than the simplified form
tation-selection-drift balance. It has been suggested thgEquation 2), we find no qualitative effect on our results.
these conflicting selection pressures might be associated particular, we can be sure that our support of the MSD
with selection to regulate gene expression by the use dfiypothesis over the neutral hypothesis is not an artefact
sub-optimal codons at the start of the gene (Chen andf our assumption of unbiased mutations rates.
Inouye 1990), selection to avoid secondary structure, or Furthermore, the effect of mutation bias on the distri-
selection upon particular ribosome binding motifs within bution of optimal codon frequencies is very weak when
genes (Eyre-Walker and Bulmer 1993). The results premutation rates are low. If we compare the expected fre-

Evidence for the Neutral and Conflict Hypotheses
Applying at Some Sites
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quency distributions at fixed and segregating sites folong as we assume that hitchhiking events are indepen-

contrasting strong mutational biases under weak seleadent of synonymous codon usage, the additional effect

tion, we find the differences in frequency between theon the inferred level of selection should be small.

two mutational extremes to be low (between 1% and 7%,

depending on the frequency class, using Equations 1 anfle paradox of Similar Codon Usage Across Species

9, withn = 10 andS = 1 in both cases, and either = and Genes

0.02 andV = 0.04 orU = 0.02 andV = 0.04). So

although we may expedtt > 0.5 under neutrality if mu-  Our results suggest that a large proportion of sub-optimal

tation rates are biased, the deviation is expected to beodons are maintained because they are held in a balance

very small (using Equations 1 and 9, with= 10, S = between mutation, selection, and genetic drift. However,

0,U = 0.02 andv = 0.04, we obtairK = 0.506). this presents us with a puzzle. The MSD model is pa-
rameter sensitive: iN.g << 1 then selection has little

Random sampling effect and synonymous codon use is determined by mu-

We assume that samples are obtained at random frof@tion bias, and iNos>> 1 then selection is so strong that
the population. This assumption is unlikely to met, with W€ €xPpect optimal codons at every site. Yet, synonymous
sampling strategies likely to lead to overdispersion ofCOdOI’l bias is similar across a broad range of bacteria,

samples (see primary literature cited in Materials andVNich might be expected to have different population

Methods). The effect of such overdispersed sampling oryi2€S: and also across different genes, which might be
the frequency distribution of polymorphism is unclear, e'xpeicted to have different synonymous selection coeffi-
cients.

since it is dependent on the shape of the phylogeny un= , . .
derlying the sampling, but the effect is unlikely to be €t us first consider the paradox of similar codon
extreme since the MSD model provides a reasonably!SaJ€ 8cross species. Int_erfe_rence at linked se_lecte_d_ sites,
good fit to the polymorphism data (see Figure 3). either due to we_a!< select|9n mterf(_erence or hitchhiking,
appears a promising solution to this problem. The MSD
_ model is less parameter sensitive if many weakly se-
Constant evolutionary parameters _ lected sites are linked together because the mutations
We assume that the selection and mutation paraMgnq g interfere with each other in such a way as to
eters,S, U andV, do not vary between sites. If the roq,ce the effects of variation in census population size:
evolutionary parameters do vary between sites, as ofteq the census population size increases, interference in-

appears to be the case (Yang 1996), then estimates basgases also, leading to a less than proportional increase

on the assumption of no variation may be biased. in the effective population size (McVean and Charles-
worth 2000). With low rates of recombination, as ex-
Independence of sites pected in bacteria, the effect can be dramatic with little

Sites can evolve independently if there is no epistasi€hange in the observed level of codon bias over changes
and free recombination. However, the latter is unlikely toin the census population size of several orders of mag-
apply in E. coli, and so we must consider the possiblenitude (McVean and Charlesworth 2000).
effects of selection interference. In general, selection at The apparent constancy in the degree of codon bias
one site will reduce the efficacy of selection at linked across species could also be due to hitchhiking. If there
sites (Hill and Robertson 1966). All forms of selection is no recombination then the probability that a weakly
can cause selection interference: strong positive selectioselected segregating mutation will be swept to fixation
causes hitchhiking (Gillespie 2000; Maynard Smith anddepends on whether it is on the chromosome on which
Haigh 1974), strong negative selection causes backthe new mutation occurs. If advantageous substitutions
ground selection (Charlesworth et al. 1993), and wealare frequent enough then the major stochastic force act-
selection causes weak selection interference (Comeron @tg upon mutations of small selective effect is not ge-
al. 1999; Li 1987; McVean and Charlesworth 2000).  netic drift, butgenetic draft(Gillespie 2000), the prob-

The effect of selection interference will be to causeability that they will be linked to the advantageous
selection coefficients based on the frequency distributiormutations. If adaptive evolution is mutation limited, then
of optimal codons to be underestimated. Weak selectiomas the population size increases, the number of advanta-
interference will change the frequency distribution of geous substitutions increases and genetic draft becomes a
optimal codons in very nearly the same way as a reducmore potent force, reducing the efficacy of selection at
tion in the selection coefficient. Background selectionthe weakly selected sites. The details of this model have
will make little difference to the frequency distribution not been worked out for weakly selected mutations, but
other than through a reduction in the effective populationit is anticipated that the continual fixation of advanta-
size (strongly deleterious mutations only reach low fre-geous mutations will tend to uncouple the rate of evolu-
quencies before removal by selection). Hitchhiking will tion for weakly selected mutations from the census popu-
increase the proportion of singleton polymorphisms inlation size, just as it uncouples the level of neutral
addition to reducing the effectiveness of selection, but agenetic variation (Gillespie 2000).
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bias should be proportional to gene expression level, jcs 146:205 307
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tion, the cost of proofreading, or translational accuracy gnd genes from nine natural isolatesEsicherichia coti evidence
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Appendix

In conflict model 1 we hav& = 200 andS. = 500. So we know
We can generalize Equation 3 to accountrfodifferent classes of sites  the proportions of all sitesP; = ¥2, P, = ¥4, andP, = ¥4), and the
which contribute to a proportion; of segregating polymorphisms and  selection coefficients§, = 200,S, = 700, andS; = -300). Withn
at which the optimal codon is favored by the selective coefficgnt = 10, we obtaina, = 0.677,a, = 0.097, anday = 0.226, which
ThenG(i) can be written as yield the distribution of polymorphism shown in Fig. 2.



