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Abstract. Natural selection favors certain synony-
mous codons which aid translation inEscherichia coli,
yet codons not favored by translational selection persist.
We use the frequency distributions of synonymous poly-
morphisms to test three hypotheses for the existence of
translationally sub-optimal codons: (1) selection is a
relatively weak force, so there is a balance between mu-
tation, selection, and drift; (2) at some sites there is no
selection on codon usage, so some synonymous sites are
unaffected by translational selection; and (3) translation-
ally sub-optimal codons are favored by alternative selec-
tion pressures at certain synonymous sites. We find that
when all the data is considered, model 1 is supported and
both models 2 and 3 are rejected as sole explanations for
the existence of translationally sub-optimal codons.
However, we find evidence in favor of both models 2 and
3 when the data is partitioned between groups of amino
acids and between regions of the genes. Thus, all three
mechanisms appear to contribute to the existence of
translationally sub-optimal codons inE. coli.
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Mutation selection drift —E. coli — Polymorphism

Introduction

There can be little doubt that synonymous codon bias is
the consequence of natural selection inEscherichia coli:
there is preferential use of codons which match the com-

monest tRNA or bind the tRNA with optimal base pair-
ing (Ikemura 1985), and the level of synonymous codon
bias is strongly correlated to gene expression level (Gouy
and Gautier 1982; Ikemura 1985). These two observa-
tions suggest that it is some factor during translation
which exerts selection upon synonymous codon use inE.
coli.

However, we still do not know what the precise basis
of the selection might be. It has been suggested that
selection might be acting on the rate of elongation, the
cost of proof-reading, or the accuracy of translation (Bul-
mer 1991), but it has proved difficult to differentiate
between them (Akashi and Eyre-Walker 1998). It is also
unclear whether selection for translational efficiency is
the only selective force acting upon synonymous codon
use; it has been suggested there may be alternative con-
flicting selection pressures acting upon synonymous
codon use, such as selection for the regulation of gene
expression, or selection upon mRNA and DNA second-
ary structure (Eyre-Walker 1996; Eyre-Walker and Bul-
mer 1995; Hartl et al. 1994).

These issues relating to the nature of selection im-
pinge upon the problem addressed in this paper: why are
sub-optimal codons found given that some codons are
evidently optimal for translation? Translationally sub-
optimal codons are always found, even in the most
highly expressed genes (Eyre-Walker 1996). Throughout
this paper we will use the terms optimal and sub-optimal
to refer to translational selection alone. Thus a transla-
tionally sub-optimal codon may be preferred at some site
for some other selective reason, for example, it may en-
code part of a ribosomal binding site, but it would still be
referred to as a sub-optimal codon.Correspondence to:N.G.C. Smith;email: n.g.c.smith@sussex.ac.uk
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There are at least four explanations for why sub-
optimal codons persist. First, selection might favor opti-
mal codons, but be so weak that sub-optimal codons can
be fixed by genetic drift; there would then be a balance
between mutation, selection, and genetic drift. Second,
selection might consistently favor the optimal codon, but
vary between sites so that selection is ineffective at some
sites, while very effective at others; synonymous codon
bias would be caused by the sites at which selection was
strong, while sub-optimal codons would persist at the
sites where selection was effectively neutral. This is the
situation we might expect if selection acts upon transla-
tional accuracy, since errors at some codons are more
costly than at others. Third, selection might vary between
sites, but not always favor the optimal codon, because of
conflicting selection pressures, for example, a codon
might form part of the ribosome binding site (Eyre-
Walker 1996; Eyre-Walker and Bulmer 1993). Fourth,
sub-optimal codons might exist because the system is not
at equilibrium; this could be because the selection pres-
sures on synonymous codon use have changed, as we see
in Drosophila melanogaster(Akashi 1996), or because
of some other process such as amino acid substitution
which can generate sub-optimal codons if different
amino acids have optimal codons which differ at their
degenerate sites.

These hypotheses are not mutually exclusive. How-
ever, we can characterize the main reasons for the exis-
tence of sub-optimal codons in sequences as follows;
sub-optimal codons may exist because there is a balance
between mutation, selection, and genetic drift; there is no
selection on synonymous codon use at some codons;
there is selection favoring the sub-optimal codon at some
sites; and the system is not at equilibrium. We call these
the MSD (Mutation-Selection-Drift),neutral, conflict,
andnon-equilibriumhypotheses, respectively.

In this paper we develop methods to discriminate be-
tween the MSD, neutral, and conflict models using the
frequency distribution of optimal codons in samples
taken from a single population. The comparison of fre-
quency distributions has proved a useful tool for the
elucidation of selection in different species and at differ-
ent classes of sites (Akashi 1994; Akashi 1995; Akashi
and Schaeffer 1997; Hartl et al. 1994; Sawyer and Hartl
1992; Sawyer et al. 1987). However, such studies have
employed models of irreversible mutation, which means
that mutations must be polarized. In other words, the
direction of mutation must be accounted for, either by
using an outgroup sequence to infer the direction of mu-
tation (synonymous mutations from a sub-optimal codon
to an optimal codon are defined as preferred, and muta-
tions in the opposite direction are unpreferred, see Aka-
shi 1995), or by consolidating frequency data to combine
alternative directions of mutation (in a sample ofn se-
quences, polymorphisms segregating inr sequences are

consolidated with polymorphisms segregating inn-r se-
quences, see Hartl et al. 1994). In contrast, we have used
a model of reversible mutation, which eliminates the re-
quirement for either outgroup sequence data or the con-
solidation of frequency data. Our data consists of mul-
tiple sequences of severalE. coli genes, from which we
derive distributions of the frequencies of optimal codons.

We then use the frequency distribution data to dis-
criminate between the MSD, neutral and conflict hypoth-
eses for the existence of suboptimal codons. The MSD
and neutral hypotheses make simple testable predictions
about the pattern of polymorphism we expect to see in a
population. If we just consider sites at which we have
optimal and sub-optimal codons segregating in the popu-
lation, then we expect to see the optimal codon at higher
frequency under the MSD hypothesis, since optimal
codons are mildly advantageous, and sub-optimal codons
are mildly deleterious. In contrast, under the neutral hy-
pothesis we expect the average frequency of optimal and
sub-optimal codons at segregating sites to be similar,
since the sites where selection is strong will contribute
little to polymorphism, leaving the neutral sites to con-
tribute most of the variation. The conflict hypothesis
makes less clear-cut predictions: whether translationally
optimal or sub-optimal codons are found at higher fre-
quencies at segregating sites depends on the relative
strengths of the conflicting selection pressures. We do
not test the non-equilibrium hypothesis (but see Discus-
sion).

A Population Genetics Model of Synonymous
Codon Evolution

Following Li (1987) and Bulmer (1991) let us imagine
that each site has two alleles,A1 and A2, whereA1 is
preferred for translation and has a selective advantage,s,
over A2. Let the mutation rate fromA1 to A2 be u, and
the mutation rate in the opposite direction bev. Under
this model Wright (1949) showed that the equilibrium
distribution of gene frequencies at a single site in a hap-
loid population isF(x) where

F(x) 4 CESxx(V−1)(1 − x)(U−1) (1)

whereS4 2Nes, U 4 2Neu, V 4 2Nev, C is a constant
which normalizes the function so the integral sums to
one, andx is the frequency of theA1 allele. Under the
infinite sites assumption, (i.e.U andV tend to zero) and
the assumption of unbiased mutation (U 4 V), the equa-
tion can be simplified (McVean and Vieira 1999).

F(x) 4 CESxx−1(1 − x)−1 (2)

If we assume that sites evolve independently, if there
is free recombination and no epistasis between sites, then
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by the principle of ergodicity (Ewens 1979) we can use
the expected pattern at a single site to predict the pattern
at many sites (McVean and Vieira 1999). The expected
proportion of segregating sites withi optimal alleles seg-
regating in a sample ofn sequences,G(i), is found using
a binomial probability model (Hartl et al. 1994), assum-
ing random sampling from the population.

G~i! = C*
x=1/Ne

1−1/Ne n!

i!~n − i!!
xi~1 − x!n−i F~x!dx (3)

C is a constant which ensures thatSn−1
i41G(i) 4 1. The

value of G(i) is highly insensitive to changes inNe as
long asNe is large, and in this study we have usedNe 4
106 throughout. The expected frequency of preferred al-
leles at polymorphic sites is given byK.

K = (
i=1

n−1 G~i!i

n
(4)

The MSD Model

Under the simplest MSD model the strength of selection
in favor of the optimal codon,S, is same for all sites. As
can be seen from Fig. 1, the frequency of the optimal
codon at segregating sites,K, increases asS increases.
More precisely, changes inS affect the shape of the
distribution of segregating sites, with high positiveS
yielding a distribution skewed towards optimal alleles
segregating at high frequencies (Fig. 2).

The Neutral Model

The neutral model assumes that all sub-optimal codons
are at neutral sites, and that translational selection at
other sites is sufficiently strong that such sites make no
contribution to polymorphism. Thus, the predictions of
the neutral model are equivalent to a MSD model for
which S 4 0 for all segregating polymorphisms, which
means thatK 4 0.5 (Fig. 1) and that the shape of the
distribution of segregating sites is symmetrical (Fig. 2).

The Conflict Model

There are many different conflict models including ones
which generate sub-optimal codons because selection is
weak or non-existent at some sites. However, the sim-
plest conflict model is one which does not require ge-
netic drift and mutation for the persistence of sub-
optimal codons; sub-optimal codons exist because there
is strong selection favoring them. A simple conflicting
selection pressures model is as follows; let us imagine
that one half of the sites are subject to conflicting selec-
tion pressures, and that the conflicting selection pressure
favors the optimal codon,A1, in half the cases, and the

sub-optimal codon,A2, in the other half. LetSt be the
translational selection in favor of the optimal codon, and
Sc be the strength of the conflicting selection pressure (St

>> 1 andSc >> 1 because selection is strong).
Thus, we have three classes of sites, for each of which

we apply the MSD model with different selection coef-
ficients: (1) translational selection only,S4 St, (2) trans-
lational and conflicting selection working in the same
direction,S 4 St + Sc, (3) translational and conflicting
selection working in different directions,S4 St − Sc. We
know from our model that these selection pressures ap-
ply at 1⁄2, 1⁄4, and1⁄4 of all sites respectively, but we also
need to account for the differing contributions of the
different classes to polymorphism in order to predictG(i)
for the conflict model: the class of site at which selection
is weakest will make the greatest contribution to poly-
morphism (see Appendix for details).

If some sites are to be fixed for sub-optimal codons
thenSc must be greater thanSt, assuming that the alter-
native selection pressures are unlikely to balance each
other exactly. IfSc >> 2St, then the sites under the weak-
est selection are those affected by translational selection
only (Sc + St > Sc − St > St), and so the greatest contri-
bution to polymorphism is by selection in favor of opti-
mal codons, and thus, we find most of the polymor-
phisms segregating ati 4 n − 1 (conflict model 1 in Fig.
2: St 4 200,Sc 4 500). If Sc << 2St, then the sites under
the weakest selection are those at which the alternative
selection pressures are conflicting (Sc + St > St > Sc − St),
and so the greatest contribution to polymorphism is by
selection in favor of non-optimal codons, and thus, we
find most of the polymorphisms segregating ati 4 1
(conflict model 2 in Fig. 2:St 4 200,Sc 4 250). There-
fore, we predict that most polymorphisms will be single-
tons if the strong selection conflict model is correct, in
contrast to the MSD model which suggests a greater
distribution of polymorphism (see Fig. 2).

Fig. 1. The expected relationship under the MSD model betweenS,
the product of effective population size and the selection coefficient
affecting codon usage, andK, the frequency of the selected allele at
polymorphic sites (derived from Equations 2–4). The expected rela-
tionship is shown for three different samples sizes,n. Note thatK 4 1⁄2
whenS 4 0, and thatK covaries withS.
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Materials and Methods

We have defined optimal codons as those codons which increase in
frequency between high and low expression level genes (see Table 1),
using the codon usage data given by Sharp et al. (1992). This classi-
fication assumes that translational selection is the dominant form of
selection upon synonymous codon use. We classified 18 amino acids
containing a total of 59 codons (64 codons minus TAA, TAG, TGA,
TGG, and ATG), calculating the relative synonymous codon usage (the
observed number of codons divided by the number expected if codon
usage is random) in the high and low expression level genes, and also
the ratio of the two quantities. If the high/low ratio is greater than one
the codon increases in frequency with expression level and is defined
as an optimal codon, and if the ratio is less than one the codon de-
creases in frequency with expression level and is defined as sub-
optimal. For each amino acid we calculated the optimal/sub-optimal
ratio, defined as the mean high/low ratio for optimal codons divided by
the mean high/low ratio for sub-optimal codons. By definition, the
optimal/sub-optimal ratio must be greater than one, and the greater the
ratio the greater the effect of expression levels on codon usage. We
have ranked the amino acids according to their optimal/sub-optimal
ratios, and have classified the amino acids into high and low optimal/
sub-optimal groups of six and twelve amino acids, respectively. The
amino acids were divided into the two groups on the basis of the
discontinuity in the optimal/sub-optimal ratio between serine and iso-
leucine.

We compiled multiple sequences for 11E. coli genes from the
literature:celC(Hall and Sharp 1992),crr (Hall and Sharp 1992),gapA
(Guttman and Dykhuizen 1994b; Nelson et al. 1991),gnd (Bisercic et
al. 1991; Dykhuizen and Green 1991),gutB (Hall and Sharp 1992),
mdhA (Boyd et al. 1994; Vogel et al. 1987),pabB (Guttman and
Dykhuizen 1994b),phoA (Dubose et al. 1988),putP (Nelson and Se-
lander 1992),sppA(Guttman and Dykhuizen 1994a), andzwf(Guttman
and Dykhuizen 1994a).

For each gene we considered all the synonymous sites at which an
optimal and a sub-optimal codon were segregating, or at which a single
optimal or sub-optimal codon were fixed. From these data we obtained
the observed frequency spectrum for each gene,N(i). For a sample of
n sequences,N(i) is defined fromi 4 0 to i 4 n as the number of sites
at which an optimal codon is found ati sequences. We used the fre-
quency spectra to calculate a number of statistics:p, the nucleotide
diversity at synonymous sites,F, the proportion of sites fixed for the
optimal codon, andK, the mean frequency of optimal codons at seg-
regating sites (see Table 2). With one exception,gnd (p 4 0.188), the
nucleotide diversities are low, indicating that the infinite sites assump-
tion is met (excludinggnd, meanp 4 0.036). The genegnd is not
considered in the following analyses.

In some analyses we have used acombineddataset. This was gen-
erated by choosing eight samples at random for those genes with more
than eight samples. Then the data from all the genes was summed to
give the combined spectrum,N(i) from i 4 0 to i 4 8: {938, 27, 22,
11, 21, 20, 31, 48, 1553} (see Table 3).

Results

The Average Frequency of the Translationally Optimal
Codon at Segregating Sites

Table 2 shows that sub-optimal codons are present at
appreciable frequencies in all the genes we have studied;
on averageF 4 0.62. This is the result we seek to
explain: why isF less than one? Let us first consider the
average frequency of the optimal codon at segregating
sites,K. K is greater than1⁄2 in seven out of ten genes,

and overallK is significantly greater than 0.5 (meanK 4
0.57, Wilcoxon signed rank test,p < 0.001), as expected
under the MSD model and some conflict models (for
example conflict model 1 in Fig. 2). However, the results
suggest that the neutral model cannot by itself explain
why sub-optimal codons are found inE. coli genes and
its seems unlikely that the conflict model can explain the
data either, since singletons do not constitute the major-
ity of polymorphisms.

Maximum Likelihood Estimates ofS Under the
MSD Model

The polymorphism data appear to be inconsistent with
both the neutral and conflict models, but are the data
really consistent with the MSD model? To investigate
this question we ask whether the MSD model provides a
good fit to the data. The likelihood,L, of the observed
polymorphism data,N(i), given the predicted distribution
of polymorphismG(i) (Equation 3), is calculated as a
multinominal distribution.

L =

S(
i=1

n−1

N~i!D!

)
i=1

n−1

N~i!!

)
i=1

n−1

G~i!N~i! (5)

LogL = LogSS(
i=1

n−1

N~i!D!D + (
i=1

n−1

~N~i!Log~G~i!!

− Log~N~i!!!

Under the MSD model,G(i) is determined for a given
value of n by the coefficient of selectionS. So we can
estimateS by finding the value which maximizes the
likelihood of observing the polymorphism data. Confi-
dence intervals can be determined on the basis of double
the difference inLogL being approximatelyx2 distrib-
uted: 95% confidence intervals are given by the range of
values ofSwith LogL less than 1.92 below the maximum
value (sincex2 (0.05)4 3.84). However, the lack of free
recombination inE. coli is likely to cause us to under-
estimate the size of the confidence intervals because we
have not taken into account the variance associated with
the evolutionary process.

The values ofS estimated under the MSD model are
given in Table 2 (SML values). Seven genes yielded an
estimate ofS greater than zero, although onlyputP,
mdhA, andphoAgave estimates ofSsignificantly greater
than zero. However, an estimate of the average selection
strength, found by assuming thatS is the same across all
genes, is significantly greater than zero (S 4 0.80,
DLogL 4 5.20,p 4 0.0013).

The data suggest a tendency for the strength of selec-
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Table 1. Relative synonymous codon usage

Amino Acid Codon Codon Class

Expression Level1

Optimal/Sub-Optimal
Ratio

Optimal/Sub-Optimal
Rank, ClassLow High Ratio

Lys AAA optimal 1.42 1.61 1.13 1.69 1, low
AAG sub-optimal 0.58 0.39 0.67

Val GTT optimal 1.43 1.85 1.29 1.69 2, low
GTA optimal 0.91 0.96 1.05
GTC sub-optimal 0.75 0.36 0.48
GTG sub-optimal 0.91 0.83 0.91

Ala GCT optimal 1.05 1.39 1.32 2.05 3, low
GCG optimal 0.81 1.13 1.40
GCC sub-optimal 0.83 0.46 0.55
GCA sub-optimal 1.32 1.02 0.77

Glu GAA optimal 1.29 1.58 1.22 2.07 4, low
GAG sub-optimal 0.71 0.42 0.59

Cys TGC optimal 0.80 1.21 1.51 2.30 5, low
TGT sub-optimal 1.20 0.79 0.66

Gln CAG optimal 1.09 1.68 1.54 4.38 6, low
CAA sub-optimal 0.91 0.32 0.35

Asp GAC optimal 0.53 1.23 2.32 4.43 7, low
GAT sub-optimal 1.47 0.77 0.52

Thr ACT optimal 1.11 1.37 1.23 7.18 8, low
ACC optimal 0.87 2.22 2.55
ACA sub-optimal 1.36 0.12 0.09
ACG sub-optimal 0.66 0.29 0.44

His CAC optimal 0.65 1.57 2.42 7.58 9, low
CAT sub-optimal 1.35 0.43 0.32

Tyr TAC optimal 0.50 1.44 2.88 7.71 10, low
TAT sub-optimal 1.50 0.56 0.37

Phe TTC optimal 0.59 1.57 2.66 8.73 11, low
TTT sub-optimal 1.41 0.43 0.30

Ser TCT optimal 1.17 2.32 1.98 10.49 12, low
TCC optimal 0.62 1.86 3.00
AGC optimal 0.95 1.28 1.35
TCA sub-optimal 1.49 0.17 0.11
TCG sub-optimal 0.61 0.23 0.38
AGT sub-optimal 1.16 0.13 0.11

Ile ATC optimal 0.64 2.30 3.59 14.69 13, high
ATT sub-optimal 1.41 0.69 0.49
ATA sub-optimal 0.95 0.00 0.00

Leu CTG optimal 1.34 5.08 3.79 15.34 14, high
TTA sub-optimal 1.63 0.10 0.06
TTG sub-optimal 0.92 0.16 0.17
CTT sub-optimal 1.09 0.25 0.23
CTC sub-optimal 0.52 0.38 0.73
CTA sub-optimal 0.50 0.02 0.04

Pro CCG optimal 0.72 3.06 4.25 16.31 15, high
CCT sub-optimal 1.10 0.38 0.35
CCC sub-optimal 0.86 0.03 0.03
CCA sub-optimal 1.32 0.53 0.40

Asn AAC optimal 0.59 1.78 3.02 19.34 16, high
AAT sub-optimal 1.41 0.22 0.16

Gly GGT optimal 1.16 2.19 1.89 31.07 17, high
GGC optimal 0.82 1.70 2.07
GGA sub-optimal 1.16 0.04 0.03
GGG sub-optimal 0.86 0.08 0.09

Arg CGT optimal 1.42 4.11 2.89 104.47 18, high
CGC optimal 1.06 1.81 1.71
CGA sub-optimal 0.79 0.03 0.04
CGG sub-optimal 0.76 0.02 0.03
AGA sub-optimal 1.26 0.03 0.02
AGG sub-optimal 0.70 0.00 0.00

1 Data based on Sharp et al. (1992).
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tion to vary between genes (the move from gene specific
selection coefficients to a single selection coefficient
over all genes entails a reduction inLogL of 5.41), but
the effect is not significant (thex2 approximation indi-
cates that a reduction inLogL of 8.46 would be required
for the gene-specific selection model to provide a sig-
nificant improvement, at the 5% level, over the single
selection model, given the difference of 9 degrees of
freedom). A larger collection of genes may be required to
demonstrate gene-specific selection coefficients.

We also estimatedS from the average frequency of
optimal codons at segregating sites,K, using Equation 4.
The estimates derived fromK are very similar to our
maximum likelihood estimates based on the full poly-
morphism distribution (see Table 2, SK values), suggest-
ing that the data conform to the MSD model fairly well.

To assess the fit quality of the MSD model we used a
G-test, which was performed on the combined spectrum
(see Materials and Methods). The combined spectrum

yields a ML estimate ofS 4 0.78, which provides an
adequate fit to the data (G 4 4.34,p 4 0.50, see Fig. 3).

Variation in Selection Between Amino Acids

Although we cannot reject the MSD model on the basis
of its goodness of fit to the data, it is possible that other
models may fit the data better. In particular, the pattern
of synonymous codon bias in relation to gene expression
levels suggests that selection is stronger on the codons of
some amino acids than others (see Table 1, Eyre-Walker
and Bulmer 1995; McVean and Vieira 1999). For some
amino acids, like lysine, there is little or no change in the
pattern of codon usage across expression levels, whereas
for others, like glycine, there are dramatic changes
(Eyre-Walker and Bulmer 1995). We used the data given
by Sharp et al. (1992) to divide the amino acids into two
groups: the codon usage of amino acids in the high op-
timal/sub-optimal group changes markedly with gene ex-
pression, while the codon usage of amino acids in the
low optimal/sub-optimal group is relatively insensitive to
gene expression (see Table 1).

The fixed site data show the expected trends: the high
optimal/sub-optimal amino acids have 608 fixed optimal
codons and 296 fixed sub-optimal codons, while the low
optimal/sub-optimal amino acids have 932 fixed optimal
codons and 638 fixed sub-optimal codons. Thus, the fre-
quency of the optimal codon at fixed sites,F, is signifi-
cantly higher for the high optimal/sub-optimal group of
amino acids (X2 4 15.2,p 4 0.0001), which is consis-
tent with stronger selection for codon usage in such
amino acids.

The average frequency of optimal codons at segregat-

Table 2. Synonymous codon usage statistics

Gene p F K n SML SK

celC 0.032 0.49 0.59 11 0.96 0.98
crr 0.034 0.74 0.67 12 1.83 1.85
gapA 0.009 0.91 0.68 18 1.73 1.75
gutB 0.024 0.57 0.49 11 −0.10 −0.10
mdhA 0.028 0.72 0.73 16 2.36 2.41
pabB 0.037 0.52 0.54 12 0.46 0.45
phoA 0.050 0.53 0.60 8 1.28 1.29
putP 0.070 0.53 0.59 8 1.11 1.09
sppA 0.032 0.61 0.43 12 −0.69 −0.69
zwf 0.036 0.62 0.48 11 −0.20 −0.20

Fig. 2. The expected distributions of polymorphism under different
models of evolution. The expected proportion of polymorphic sites at
which the optimal codon is found at a frequency ofi in a sample of ten
sequences is given by G(i). The neutral model is equivalent to a MSD
model (see Equations 2, 3) for whichS, the measure of selection on the
optimal codon at all sites, is zero. MSD 1 and MSD 10 represent
models of evolution under which all sites are under the same selection
coefficients ofS 4 1 andS 4 10, respectively. The conflict models
invoke two forms of selection, translation selection,St, and conflicting
selection,Sc. For conflict model 1 we haveSt 4 200 andSc 4 500, and
for conflict model 2 we haveSt 4 200, andSc 4 250 (G(i) values
derived as shown in the Appendix).

Fig. 3. The observed distribution of polymorphic synonymous sites
(using the “combined” data—see Materials and Methods) compared
with the distribution of polymorphic sites expected under the MSD
model with the value ofSfitted by ML. The observed distribution is the
number of polymorphic sites at which the optimal codon is present at
frequencyi in the sample of eight sequences. The expected distribution
is the expected proportion of polymorphic sites at which the optimal
codon is found at a frequency ofi in a sample of eight sequences
(calculated according to Equations 2, 3), multiplied by 180, the total
number of polymorphic synonymous sites.
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ing sites,K, was significantly greater than 0.5 in the high
optimal/sub-optimal group (K 4 0.65, Wilcoxon signed
rank,p < 0.001), but not significantly greater than 0.5 in
the low optimal/sub-optimal group (K 4 0.52, Wilcoxon
signed rank,p 4 0.565). FurthermoreK was signifi-
cantly different between the high and low optimal/sub-
optimal groups (Mann-Whitney U test,p < 0.0001). The
difference between high and low optimal/sub-optimal
amino acids is also shown by the ML estimates ofS,
based on the combined spectra (see Table 3); for the high
optimal/sub-optimal groupS 4 1.96 (95% confidence
intervals 1.09 to 2.90), while for the low optimal/sub-
optimal groupS4 0.00 (95% confidence intervals −0.68
to 0.68).

Intragenic Variation in Selection

It has been suggested that conflicting selection pressures
might be responsible for the reduction in codon bias at
the start and ends of genes (Eyre-Walker 1996; Eyre-
Walker and Bulmer 1993). In order to investigate this
hypothesis, we separately analyzed the first 50 codons of
the genes (the start) and all subsequent codons (the rest).
In agreement with published results (Bulmer 1988; Chen
and Inouye 1990; Eyre-Walker and Bulmer 1993) we
find that the frequency of codons fixed for the optimal
codon,F, is significantly lower at the start compared to
the rest of the gene (see Table 3, X2 4 7.54,p 4 0.006).
However, the frequency of the optimal codon at segre-
gating sites,K, is not significantly higher at the start (K
4 0.56 for the start versusK 4 0.58 for the rest, Mann-
Whitney U test,p 4 0.72); and the ML estimates ofS
based on the combined spectra also fail to indicate sig-
nificant intragenic differences (S 4 0.64 for the start,
95% confidence intervals from −1.17 to 2.57,S 4 0.80
for the rest, 95% confidence intervals from 0.26 to 1.35).
These results are inconsistent with both the MSD and
neutral models. Under the MSD model we expect similar
results for fixed and segregating data, andF should posi-
tively covary with bothK andS. Under the neutral model
F can vary as the proportion of neutral sites varies, butK
should be 0.5 and the estimated value ofS should be
zero.

However, the data are consistent with a conflicting
selection pressures model in which a proportion of the
sites are subject to strong conflicting selection pressures,
and contribute little to polymorphism, while the rest of
the sites are in a mutation-selection-drift balance. Under
this conflict model the patterns of fixed and segregating
sites can become uncoupled. Our data are thus qualita-
tively consistent with the hypothesis that conflicting se-
lection pressures are responsible for the reduction in
codon bias at the start of genes. We can test the conflict
hypothesis further by looking at patterns of diversity:
under this conflict model we predict a reduction in di-
versity at the start of genes, due to the effect of strong
selection. In keeping with this prediction we find that the
proportion of segregating sites is much lower for the start
of genes than for the rest of genes (for the start of the
genes there are 446 fixed and 17 segregating sites, for the
rest of the genes there are 2028 fixed and 169 segregating
sites, X2 4 9.51,p 4 0.002).

The Use of Fixed and Segregating Data

The evolutionary models discussed so far have invoked
the infinite sites and unbiased mutation assumptions.
While the infinite sites assumption appears to be justified
for sites at which nucleotide diversity is low (Kimura
1971), and although the assumptions considerably sim-
plify the analysis, there are some drawbacks. For in-
stance, the infinite sites assumption restricts data analysis
to segregating sites only. Thus, the infinite sites model
does not allow a direct examination of the quantitative
question of how many sites should be fixed for a sub-
optimal codon. Furthermore, mutation may be biased
with respect to optimal and sub-optimal codons (see Dis-
cussion).

The solution to these problems is to use the full
Wright distribution to predict the frequencies of both
fixed and segregating sites. The equations are similar to
the case of infinite sites, except thatU and V are no
longer assumed to tend to zero (Equation 1), the integra-
tion of F(x) is carried out between 0 and 1 (Equation 6)
and we have used a Poisson probability model for the
likelihood, summing fromi 4 0 to i 4 n (Equation 7,
see Hartl et al. 1994).

Table 3. The “combined” spectra of fixed and segregating sites

Full
“Combined”

Start of
Genes

Rest of
Genes

High
Optimal/Sub-Optimal

Low
Optimal/Sub-Optimal

0 (Sub-Optimal Fixed) 938 195 743 298 640
1 27 2 25 7 20
2 22 1 21 5 17
3 11 1 10 5 6
4 21 4 17 8 13
5 20 2 18 8 12
6 31 2 29 14 17
7 48 3 45 30 18
8 (Optimal Fixed) 1553 255 1298 610 943

231



F~x! = C ESxx~V−1!~1 − x!~U−1! (1)

G~i! = C*
x=0

1 n!

i!~n − i!!
xi~1 − x!n−i F~x!dx (6)

LogL = (
i=0

n

LogFE−N~i! G~i!N~i!

N~i!!
G (7)

We can use the full Wright distribution to see whether
the MSD model provides a reasonable fit to both the
fixed and the segregating data. Although the infinite sites
assumption is no longer required, we shall again consider
all genes exceptgnd, in order to compare the two ap-
proaches. The use of the full Wright distribution requires
that we estimate the three parametersS, U, andV. The
combined spectrum yields estimates ofS 4 0.82,U 4
0.032, andV 4 0.024. This result is supportive of the
infinite sites and unbiased mutation assumptions, since
the estimate ofSis similar to the value obtained using the
infinite sites assumption on the combined polymorphism
data (S4 0.78). The MSD model provides a reasonable
fit to the data (see Figure 4), as confirmed by aG test (G
4 4.34,p 4 0.50).

We can examine the evidence for gene specific evo-
lutionary parameters by specifying a number of MSD
models with different numbers of parameters, and then
comparing their fits to the data using thex2 approxima-
tion to 2DLogL. The models are compared on the basis of
the full data of all seven genes for which there is suffi-
cient data to estimate three parameters (crr, mdhA, pabB,
phoA, putP, sppA, andzwf). MSD model 1 has all genes
with the sameS, U, andV parameter values (3 param-

eters). MSD model 2 has all genes sharing the sameU
and V values but allows gene specific values ofS (9
parameters). MSD model 3 has all genes sharing the
sameSvalue but allows gene specific values ofU andV
(15 parameters). MSD model 4 allows gene specific val-
ues forS, U, andV (21 parameters).

As expected the more complex the model the better
the fit to the data, as shown by the maximumLogL
values increasing from MSD model 1 to MSD model 4
(MSD model 1LogL 4 −202.722, MSD model 2LogL
4 −177.155, MSD model 3LogL 4 −159.033, MSD
model 4 LogL 4 −154.184). We can compare those
models which are nested within one another: this means
we can perform all pairwise model comparisons except
MSD model 2 versus MSD model 3. When compared
with MSD model 1, all three alternative models provide
a significantly better fit to the data (model 2p 4 2 ×
10−9, model 3p 4 2 × 10−13, model 4p 4 8 × 10−13).
When we compare MSD model 2 with MSD model 4, we
find that model 4 provides a significantly better fit to the
data (p 4 7 × 10−6). But when we compare MSD model
3 with MSD model 4, we find that the improved fit of
model 4 does not justify the extra parameters required (p
4 0.138). This means that MSD model 3 is the best
MSD model of those considered, taking into account the
number of parameters required. Thus, we have signifi-
cant evidence of variation in mutation, but the evidence
of variation in selection is non-significant, as we also
found using polymorphic data only.

Since we need to combine the data from many genes
for accurate parameter estimation, these results suggest
that the use of the polymorphic data under the infinite
sites assumption may be preferable to the use of the fixed
and polymorphic data using the full Wright distribution,
since then variation in mutation rates can be ignored.
Although the full Wright distribution avoids the infinite
sites assumption and allows the use of additional fixed
site data, its use does require the estimation of many
additional parameters.

Discussion

Although some synonymous codons appear to be favored
by natural selection over others, they are not used at
every site in every gene. We have tested three hypotheses
for why translationally sub-optimal codons exist: (1)
there is a balance between mutation, selection and ge-
netic drift (the MSD model), (2) selection is absent at
certain codons (the neutral model), and (3) sub-optimal
codons are favored at some sites by alternative, conflict-
ing selection pressures (the conflict model). We have
attempted to differentiate between these hypotheses by
considering frequency distributions of translationally op-
timal codons inE. coli.

Fig. 4. The observed distribution of fixed and polymorphic synony-
mous sites (the “combined” data—see Materials and Methods) com-
pared with the expected values obtained for the full Wright MSD model
using the ML values ofS, U, andV. The observed distribution is the
number of fixed or polymorphic sites at which the optimal codon is
present at frequencyi in the sample of eight sequences. The expected
distribution is given by G(i), the expected proportion of polymorphic
sites at which the optimal codon is found at a frequency ofi in a sample
of eight sequences (calculated according to Equations 1, 9), multiplied
by 2671, the total number of observed synonymous sites. The Y-axis is
plotted on a log scale to aid visualization.
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Codon usage inE. coli supports the MSD hypothesis

WE find that on average optimal codons segregate at
higher frequencies than sub-optimal codons. The MSD
model with a single selection coefficient fits the data
well, and this result suggests that sub-optimal codons
persist primarily because selection is weak relative to
drift. The polymorphism data are inconsistent with the
neutral and conflict models as sole explanations for the
persistence of sub-optimal codons: under the neutral
model we expect sub-optimal and optimal codons to seg-
regate at similar frequencies, and under most conflict
models we expect all polymorphisms to segregate at very
low frequencies with a strong bias towards the optimal or
sub-optimal codon being rare, depending on the specific
model.

Evidence for the Neutral and Conflict Hypotheses
Applying at Some Sites

However, we do find some evidence for the neutral and
conflict hypotheses in sub-sets of the data. It has been
noted previously that some amino acids such as lysine
show little change in codon usage across expression lev-
els (Eyre-Walker and Bulmer 1995; McVean and Vieira
1999), suggesting selection on codon usage is absent or
weak for those codons. Our results confirm these obser-
vations, since amino acids which show little variation in
codon usage across expression levels show frequency
distributions consistent with neutrality (for the low opti-
mal/sub-optimal group of amino acids we estimateS to
be 0.00 with 95% confidence intervals of −0.68 and 0.68;
however note that possible biases discussed below will
probably causeS to be underestimated).

It has also been noted that codon bias is lower at the
start of enterobacterial genes (Bulmer 1987; Chen and
Inouye 1990; Eyre-Walker and Bulmer 1993; Hartl et al.
1994). This could be due to weaker translational selec-
tion at the start of genes or conflicting selection pres-
sures. If it was the former we would expect the average
frequency of the optimal codon at segregating sites to be
lower at the start of the gene, and the resulting strength
of selection estimated from the polymorphism data to be
lower. This we do not find since the average frequency of
the optimal codon at segregating sites and the estimated
selection strength are very similar at the start of the genes
and in the rest of the genes. However, the overall level of
diversity is significantly lower at the start of the genes
and this suggests that strong conflicting pressures are
acting at some sites, while others are evolving in a mu-
tation-selection-drift balance. It has been suggested that
these conflicting selection pressures might be associated
with selection to regulate gene expression by the use of
sub-optimal codons at the start of the gene (Chen and
Inouye 1990), selection to avoid secondary structure, or
selection upon particular ribosome binding motifs within
genes (Eyre-Walker and Bulmer 1993). The results pre-

sented here do not help us differentiate between these
possibilities.

A Consideration of the Assumptions of the Population
Genetics Model

We have used a simple population genetics model in
order to discriminate between alternative hypotheses for
the existence of sub-optimal codons. The simple model
requires a number of assumptions which may not apply
to theE. coli data we have analyzed. Here we consider
five important assumptions: equilibrium, unbiased muta-
tion, random sampling, constant evolutionary param-
eters, and independence of sites.

Equilibrium
We assume that mutation, selection, and population

size have been constant for long enough so that all evo-
lutionary processes are at equilibrium. We do not test the
non-equilibrium hypothesis in this paper, although we
note that synonymous codon bias appears to be relatively
stable in enteric bacteria suggesting that a state of equi-
librium exists (Maynard Smith and Smith 1996), that the
levels of codon bias inE. coli and S. typhimuriumare
similar (Sharp 1991), and the rate of synonymous sub-
stitution is considerably greater than the rate of non-
synonymous substitution, suggesting that any effects of
amino acid substitution will be short lived (Sharp 1991).

Unbiased Mutation
In the majority of the paper we use the infinite sites

model, which means that mutation rates are very low,
and we also assume unbiased mutation, that there is no
tendency for the mutation rate from an optimal codon to
a sub-optimal codon to be greater or less than the muta-
tion rate in the opposite direction. While this assumption
may appear reasonable, a possible mutational bias could
result from compositional correlations. Most optimal
codons end in G or C (16 out of 25, see Table 1), while
most sub-optimal codons end in A or T (21 out of 34, see
Table 1). So if there are mutational biases with regard to
composition, there are probably mutational biases with
regard to codon usage.

The assumption of unbiased mutation can be justified
on the basis that when mutation rates are low, mutation
is effectively unbiased, even ifU/V is not precisely unity.
When the assumption of unbiased mutation rates and
infinite sites is relaxed with the use of the full Wright
distribution (Equation 1) rather than the simplified form
(Equation 2), we find no qualitative effect on our results.
In particular, we can be sure that our support of the MSD
hypothesis over the neutral hypothesis is not an artefact
of our assumption of unbiased mutations rates.

Furthermore, the effect of mutation bias on the distri-
bution of optimal codon frequencies is very weak when
mutation rates are low. If we compare the expected fre-
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quency distributions at fixed and segregating sites for
contrasting strong mutational biases under weak selec-
tion, we find the differences in frequency between the
two mutational extremes to be low (between 1% and 7%,
depending on the frequency class, using Equations 1 and
9, with n 4 10 andS4 1 in both cases, and eitherU 4
0.02 andV 4 0.04 or U 4 0.02 andV 4 0.04). So
although we may expectK > 0.5 under neutrality if mu-
tation rates are biased, the deviation is expected to be
very small (using Equations 1 and 9, withn 4 10, S4
0, U 4 0.02 andV 4 0.04, we obtainK 4 0.506).

Random sampling
We assume that samples are obtained at random from

the population. This assumption is unlikely to met, with
sampling strategies likely to lead to overdispersion of
samples (see primary literature cited in Materials and
Methods). The effect of such overdispersed sampling on
the frequency distribution of polymorphism is unclear,
since it is dependent on the shape of the phylogeny un-
derlying the sampling, but the effect is unlikely to be
extreme since the MSD model provides a reasonably
good fit to the polymorphism data (see Figure 3).

Constant evolutionary parameters
We assume that the selection and mutation param-

eters,S, U, and V, do not vary between sites. If the
evolutionary parameters do vary between sites, as often
appears to be the case (Yang 1996), then estimates based
on the assumption of no variation may be biased.

Independence of sites
Sites can evolve independently if there is no epistasis

and free recombination. However, the latter is unlikely to
apply in E. coli, and so we must consider the possible
effects of selection interference. In general, selection at
one site will reduce the efficacy of selection at linked
sites (Hill and Robertson 1966). All forms of selection
can cause selection interference: strong positive selection
causes hitchhiking (Gillespie 2000; Maynard Smith and
Haigh 1974), strong negative selection causes back-
ground selection (Charlesworth et al. 1993), and weak
selection causes weak selection interference (Comeron et
al. 1999; Li 1987; McVean and Charlesworth 2000).

The effect of selection interference will be to cause
selection coefficients based on the frequency distribution
of optimal codons to be underestimated. Weak selection
interference will change the frequency distribution of
optimal codons in very nearly the same way as a reduc-
tion in the selection coefficient. Background selection
will make little difference to the frequency distribution
other than through a reduction in the effective population
size (strongly deleterious mutations only reach low fre-
quencies before removal by selection). Hitchhiking will
increase the proportion of singleton polymorphisms in
addition to reducing the effectiveness of selection, but as

long as we assume that hitchhiking events are indepen-
dent of synonymous codon usage, the additional effect
on the inferred level of selection should be small.

The Paradox of Similar Codon Usage Across Species
and Genes

Our results suggest that a large proportion of sub-optimal
codons are maintained because they are held in a balance
between mutation, selection, and genetic drift. However,
this presents us with a puzzle. The MSD model is pa-
rameter sensitive: ifNeS << 1 then selection has little
effect and synonymous codon use is determined by mu-
tation bias, and ifNeS>> 1 then selection is so strong that
we expect optimal codons at every site. Yet, synonymous
codon bias is similar across a broad range of bacteria,
which might be expected to have different population
sizes, and also across different genes, which might be
expected to have different synonymous selection coeffi-
cients.

Let us first consider the paradox of similar codon
usage across species. Interference at linked selected sites,
either due to weak selection interference or hitchhiking,
appears a promising solution to this problem. The MSD
model is less parameter sensitive if many weakly se-
lected sites are linked together because the mutations
tend to interfere with each other in such a way as to
reduce the effects of variation in census population size;
as the census population size increases, interference in-
creases also, leading to a less than proportional increase
in the effective population size (McVean and Charles-
worth 2000). With low rates of recombination, as ex-
pected in bacteria, the effect can be dramatic with little
change in the observed level of codon bias over changes
in the census population size of several orders of mag-
nitude (McVean and Charlesworth 2000).

The apparent constancy in the degree of codon bias
across species could also be due to hitchhiking. If there
is no recombination then the probability that a weakly
selected segregating mutation will be swept to fixation
depends on whether it is on the chromosome on which
the new mutation occurs. If advantageous substitutions
are frequent enough then the major stochastic force act-
ing upon mutations of small selective effect is not ge-
netic drift, butgenetic draft(Gillespie 2000), the prob-
ability that they will be linked to the advantageous
mutations. If adaptive evolution is mutation limited, then
as the population size increases, the number of advanta-
geous substitutions increases and genetic draft becomes a
more potent force, reducing the efficacy of selection at
the weakly selected sites. The details of this model have
not been worked out for weakly selected mutations, but
it is anticipated that the continual fixation of advanta-
geous mutations will tend to uncouple the rate of evolu-
tion for weakly selected mutations from the census popu-
lation size, just as it uncouples the level of neutral
genetic variation (Gillespie 2000).
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The paradox of similar codon usage across genes is
raised by simple biochemical models which suggest that
the strength of translational selection upon codon usage
bias should be proportional to gene expression level,
whether the selection is acting upon the rate of elonga-
tion, the cost of proofreading, or translational accuracy
(Bulmer 1991). The levels of gene expression, as mea-
sured by the number of protein molecules in anE. coli
cell, vary by several orders of magnitude, from proteins
such as thelac repressor which is present at a concen-
tration of ten molecules per cell, to the product of the
ompA gene, present at a concentration of 36,000 mol-
ecules per cell (see Eyre-Walker 1996).lacI has minimal
codon bias, but genes such asleuShave significant codon
bias and are found at concentrations of 500 molecules
per cell. Why, then, are there sub-optimal codons in the
ompAgene where the strength of selection is expected to
be 72 times stronger than inleuS, where the strength of
selection is strong enough to cause codon bias? There are
a number of possible reasons. FIrst, the biochemical
models developed by Bulmer (1991) may be incorrect
and the strength of selection on synonymous codon use
may not be proportional to gene expression level; in
particular Bulmer assumed that fitness was proportional
to growth rate, and this may not be the case forE. coli
growing in its natural environment where its doubling
rate is substantially slower than in the laboratory (Sav-
ageau 1983). Second, the differences in expression level,
which are measured in exponentially growing cells may
not reflect the differences in expression level in naturally
growingE. coli. And finally, weak selection interference
may explain the data if there is sufficient recombination
between genes to uncouple the interference experienced
by one gene from that of others.

Many years ago it was suggested that synonymous
sites may be a paradigm of neutral evolution (King and
Jukes 1969). In a strict sense that has turned out not to be
the case, since selection undoubtedly operates on syn-
onymous codon use in many organisms. However the
present results suggest that stochastic processes have had
a major impact on the evolution of synonymous codon
use inE. coli.
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Appendix

We can generalize Equation 3 to account formdifferent classes of sites
which contribute to a proportionaj of segregating polymorphisms and
at which the optimal codon is favored by the selective coefficientSj.
ThenG(i) can be written as

G~i! = C (
j=1

m

ajCj *x=1/Ne

1−1/Ne n!

i!~n − 1!!
xi~1 − x!n−i F~x,Sj!dx

(A1)

Cj is a constant which ensures that the integral ofF(x,Sj) is one.
Thus, the conflict model parameterises asm 4 3, a1 4 1⁄2 (Q1/Q), S1

4 Sti; a2 4 1⁄4 (Q2/Q), S2 4 St + Sc; a3 4 1⁄4 (Q3/Q), S3 = St − Sc; Q
4 Q1 + Q2 + Q3. TheQ parameters are scaling factors which convert
from proportions of all sites, both segregating and fixed, to proportions
of segregating sites only. We can derive theQ parameters using the full
Wright distribution (Equation 1 in the main text and Equation A2
below) from which we can derive the distribution of both fixed and
segregating sites according to Equation A3.U andV are not considered
to be zero, but rather reflect very low and unbiased mutation rates
which cause very little deviation from the infinite sites assumption (U
4 V 4 10−6).

F~x,S! = CF ESxx~V−1!~1 − x!~U−1! (A2)

G~i,S! = CG *
x=0

1 n!

i!~n − i!!
xi~1 − x!n−i F~x,S!dx (A3)

In the case of fixed and segregating sitesG(i) is defined fromi 4

0 to i 4 n. CF is the normalizing constant which ensures that the
integral of F(x,S) betweenx 4 0 andx 4 1 is unity, andCG is the
normalizing constant which ensures that the sum ofG(i,S) betweeni 4

0 andi 4 n is unity. From Equation A3 we can determine the propor-
tion of segregating sites,Q(S).

Q~S! = (
i=1

n−i

G~i,S! (A4)

In the conflict model we have three classes of sites, hencem 4 3,
for which we know the selective coefficient,Sj, and the proportions at
all sites,Pj. We can now determineaj, the proportions at segregating
sites.

aj =
Q~Sj!Pj

(
j=1

m

Q~Sj!Pj

(A5)

In conflict model 1 we haveSt 4 200 andSc 4 500. So we know
the proportions of all sites (P1 4 1⁄2, P2 4 1⁄4, andP3 4 1⁄4), and the
selection coefficients (S1 4 200,S2 4 700, andS3 4 −300). Withn
4 10, we obtaina1 4 0.677,a2 4 0.097, anda3 4 0.226, which
yield the distribution of polymorphism shown in Fig. 2.
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