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Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a multipurpose crop grown for food, fodder, and bioenergy production. Its cul-
tivated varieties, along with their wild counterparts, contribute to the core genetic pool. Despite the availability of several 
re-sequenced sorghum genomes, a variable portion of sorghum genomes is not reported during reference genome assembly 
and annotation. The present analysis used 223 publicly available RNA-seq datasets from seven sweet sorghum cultivars to 
construct superTranscriptome. This approach yielded 45,864 Representative Transcript Assemblies (RTAs) that showcased 
intriguing Presence/Absence Variation (PAV) across 15 published sorghum genomes. We found 301 superTranscripts were 
exclusive to sweet sorghum, including 58 de novo genes encoded core and linker histones, zinc finger domains, glucosyl 
transferases, cellulose synthase, etc. The superTranscriptome added 2,802 new protein-coding genes to the Sweet Sorghum 
Reference Genome (SSRG), of which 559 code for different transcription factors (TFs). Our analysis revealed that MULE-like 
transposases were abundant in the sweet sorghum genome and could play a hidden role in the evolution of sweet sorghum. 
We observed large deletions in the D locus and terminal deletions in four other NAC encoding loci in the SSRG compared to 
its wild progenitor (353) suggesting non-functional NAC genes contributed to trait development in sweet sorghum. Moreo-
ver, superTranscript-based methods for Differential Exon Usage (DEU) and Differential Gene Expression (DGE) analyses 
were more accurate than those based on the SSRG. This study demonstrates that the superTranscriptome can enhance our 
understanding of fundamental sorghum mechanisms, improve genome annotations, and potentially even replace the refer-
ence genome.
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Introduction

Sweet sorghum (Sorghum bicolor (L.) Moench) is an ideal 
crop for future food, feed, and fuel security because of its 
high cellular biomass, stalk sugar content, and average 
grain yield. The crop is further characterized by high pho-
tosynthetic, water, and nutrient use efficiency; it helps to 
withstand changing environmental conditions (Rao et al. 
2019). Therefore, it is a potential alternative to fossil fuels 
to achieve future bioenergy needs. The current breeding 
schemes need an overhaul to adapt to changing environ-
mental conditions. Instead of relying solely on recombi-
nation within one population, we should consider explor-
ing variability across sorghum species and sub-types. Its 
diverse primary races and intermediate varieties offer 
substantial natural variation (Venkateswaran et al. 2018). 
However, intensive selection and breeding have led to a 
loss of genetic diversity in modern germplasm, especially 
in specific agroecological zones (Smith et al. 2019).

Studies from the past suggest that natural selection 
played a big role in the evolution of sweet sorghum. 
Midrib color and stem juiciness are controlled by non-
functional alleles for genes related to secondary cell wall 
development (Zhang et al. 2018). Interestingly, the midrib 
color strongly correlates with traits such as sugar yield, 
juice volume, and moisture content (Burks et al. 2015). 
Both sweet and grain sorghum show remarkable differ-
ences at the phenotypic level and are supposed to carry 
genome-level changes due to accumulating mutation load 
during crop domestication (Jiang et al. 2013; Smith et al. 
2019). The primary gene pool of sweet sorghum consti-
tutes 35,467 genes along with several Structural Variations 
(SV). Past studies reported deletions were more frequent 
in sweet sorghum than duplications, marking an impor-
tant aspect of sweet sorghum evolution (Cooper et  al. 
2019). Comparative genomics of sweet and grain sorghum 
genomes identified distinct genes that were associated with 
variations which helped to distinguish between these sub-
types at the genome level (Zheng et al. 2011).

Most genome-wide studies emphasize the number of 
genes annotated in the reference genome; however, some 
part of the genome is only shared by a subset of individu-
als within the species, termed as dispensable genome (Yao 
et al. 2015). In addition, dispensable genes were associated 
with complex genomic regions affected by SV, and are 
likely to be missed during the reference genome assembly 
(Gerdol et al. 2020). The comparative studies using refer-
ence genomes from a single organism or sub-types are 
unreliable, as the population shows considerable varia-
tion in intraspecies genomes (Bhatti et al. 2020). The third 
revolution in sequencing technologies leads to a decreased 
cost of sequencing (Jiao and Schneeberger 2017), allowing 

researchers to sequence more individuals to trap a major 
portion of dispensable genes among the population. RNA-
seq offers a cost-effective alternative to genome sequenc-
ing for identifying functional genes and regulatory ele-
ments in plants with complex genomic architecture (Jin 
et al. 2016).

Representative Transcript Assemblies (RTAs) are a group 
of genes in the cluster that work as a superstructure and are 
a great way to characterize core, dispensable, and private 
genes in a population using RNA-seq datasets (Hirsch et al. 
2014). In the present investigation, we have constructed 
RTAs or superTranscripts; these superTranscripts facili-
tated population-level identification of genes and non-coding 
RNAs and helped improve existing sorghum genome annota-
tions. The superTranscript-based gene presence/absence on 
15 sorghum genomes helped to provide a better understand-
ing of the evolution of domesticated sorghum.

Material and Methods

Sorghum Genomes/Transcriptomes 
and Pre‑Processing

The Sweet Sorghum Reference Genome version 2.1 (SSRG), 
along with 13 cultivated sorghum genomes belonging to 
diverse racial types were retrieved from Phytozome [https:// 
phyto zome- next. jgi. doe. gov] and SorghumBase [https:// 
www. sorgh umbase. org] from past studies (McCormick et al. 
2018; Varoquaux et al. 2019; Cooper et al. 2019; Voelker 
et al. 2023) (Supplemental Table S1). This includes 9 parent 
genotypes from the Carbon-Partitioning Nested Association 
Mapping (CP-NAM) population representing diverse bio-
energy sorghum sub-types and 4 cultivated sorghum refer-
ence genomes (Boatwright et al. 2021) and one elite sweet 
sorghum cultivar Wray (Broadhead et al. 1981). To compare 
the number of annotated genes and PAVs between cultivated 
sorghum (Sorghum bicolor subsp. bicolor) and its wild pro-
genitor, one wild sorghum genome (Sorghum bicolor subsp. 
Verticilliflorum, accession 353) was included from sorghum 
pan-genome study (Tao et al. 2021). The pan-genome rep-
resenting 390 diverse bioenergy sorghum accessions was 
downloaded from the ICRISAT repository [http:// datav erse. 
icris at. org] (Ruperao et al. 2021). The 223 sweet sorghum 
RNA-seq accessions for seven diverse sweet sorghum geno-
types namely Rio (Li et al. 2019b; Cooper et al. 2019), Kel-
ler, SIL05 (Mizuno et al. 2016), Della, Dochna (Zhou et al. 
2022), Roma (Sui et al. 2015), and M-81E (Sui et al. 2015) 
from past studies were retrieved from NCBI Sequence Read 
Archive (SRA) database using IBM Aspera Connect data 
transfer protocol and quality trimmed with FastP (Chen et al. 
2018) to remove poor quality reads and adapter contamina-
tion for assembly (Supplemental Data S1).

https://phytozome-next.jgi.doe.gov
https://phytozome-next.jgi.doe.gov
https://www.sorghumbase.org
https://www.sorghumbase.org
http://dataverse.icrisat.org
http://dataverse.icrisat.org
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superTranscriptome Construction

We used the Necklace (Davidson and Oshlack 2018) pipeline 
to build the superTranscriptome with a few improvements. 
It includes individual implementation of genome-guided, de 
novo transcriptome assembly, clustering, superTranscript 
construction, and gene expression counts steps for large 
datasets to avoid time loss due to errors (Fig. 1a; Supple-
mental Figure S1). The RNA-seq reads from sweet sorghum 
were aligned to SSRG using HISAT2 (Kim et al. 2019) with 
default parameters and known splice site information. The 
Sequence Alignment Map (SAM) to Binary Alignment Map 
(BAM) conversion and BAM sorting was done using SAM-
tools (Li et al. 2009). Genome-guided transcript assemblies 
for individual samples were obtained using StringTie (Pertea 
et al. 2015) with default parameters and merged into a single 
*.gtf file with the stringtie –-merge option. Further, merged 
*.gtf was flattened with gtf2flatgtff.pl to extend the gene 
boundaries for getting longer-length, genome-guided tran-
scripts. Finally, genome-guided transcripts were obtained 
with GffRead (Pertea and Pertea 2020). The RNA-seq 
reads further assembled into de novo transcripts by using 
Trinity (Grabherr et al. 2011) with –max_memory 100 G. 

Protein-coding ORFs for de novo transcripts were obtained 
with grain sorghum (BTX623, BTX642, and RTX430) pro-
teomes using BLAT (Kent 2002) with parameters -t = dnax 
-q = dnax -minScore = 200 and chimera_braker tool came 
along with necklace pipeline. Genome-guided and de novo 
transcripts were clustered into groups with parameters -min-
Score = 200 -minIdentity = 90 using blat. Finally, a super-
Transcript representing each cluster/group was constructed 
using Lace (Davidson et al. 2017) with cluster and sequence 
information. The entire workflow for superTranscriptome 
construction was divided into three steps and automated with 
Bpipe (Sadedin et al. 2012).

superTranscriptome Quality

The superTranscriptome assembly quality was analyzed with 
TransRate (Smith-Unna et al. 2016) using sequence informa-
tion to obtain N50 values. Additionally, superTranscriptome 
constructed with 98%, 90%, 80%, and 70% sequence identi-
ties were checked with TransRate to see whether cluster-
ing influences contiguity. The superTranscriptome and six 
sorghum reference genomes were further searched for com-
plete, partial, and missing gene orthologs within the Poaceae 

Fig. 1  a The necklace pipeline 
(Davidson and Oshlack 2018) 
used in the present analysis 
integrates reference-guided 
transcriptome assembly and de 
novo transcriptome assembly to 
get a complete protein-coding 
orthologs. b Sweet sorghum 
superTranscriptome constructed 
by using necklace pipeline 
identified with three types 
of sequences: (1) Annotated 
on sweet sorghum reference 
genome (2) Annotated on grain 
sorghum (3) Unannotated
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family with the Poales database using BUSCO (Simão et al. 
2015). Further, RNA-seq samples from Rio were aligned 
to superTranscriptome and six published sorghum genomes 
using HISAT2 (Kim et al. 2019) with default parameters to 
obtain percentage read coverage by each assembly.

Functional Annotation and Characterization 
of Unannotated Genes

The genome-guided assembly reported 13,815 new genomic 
regions on SSRG, which were first annotated with Swis-
sProt (Boutet et al. 2016) for protein-coding genes using 
the Trinotate (Ghaffari et al. 2014) pipeline. The superTran-
scripts missing annotations from Swiss-Prot were searched 
for homology with RNAcentral (Sweeney et al. 2020) using 
BLASTN with parameters pid = 90 & qcov = 90 to report 
various mi-RNAs and sno-RNAs encoding genes respon-
sible for alternative splicing and silencing. The super-
Transcripts that missed annotations from the above three 
approaches were evaluated for coding potentials using CPC2 
(Kang et al. 2017) and characterized into putative protein-
coding and non-coding categories. Finally, lncRNAs from 
putative non-coding transcripts were annotated with the 
PLncDB database using BLASTN (parameters pid = 90 and 
qcov = 90).

superTranscript‑Based Genome Annotation 
and Gene Densities

The superTranscripts were used as c-DNA/ESTs to re-
annotate 15 diverse sorghum genomes using the PASA 
gene structure annotation pipeline (Haas et  al. 2008) 
through the alignAssembly method with blat and gmap 
aligners. To report novel genes, alternative splice sites, 
and gene structure updates, a superTranscript-based 
annotation comparison of 14 sorghum genomes with 
existing ones was done using the PASA annotComapre 
method. Using PASA, alternative splicing updates over 
15 sorghum genomes with superTranscriptome were also 
reported. This identified transcripts with retained intronic 
regions, spliced exons, and splice site donors-acceptors. 
The genome-wide annotations, gene structure, and splicing 
updates were visualized as a bar diagram with the ggplot R 
package. The numbers of genes per chromosome for SSRG 
and superTranscriptome annotated SSRG were obtained 
and a bar diagram showing chromosome-wise gene counts 
was plotted with a custom R script. The superTranscripts 
were annotated on SSRG using the PASA pipeline (Haas 
et al. 2008) produced *.gff3 annotation file and was used 
to obtain gene densities for tile size 100 kb with feature 
exon by using GFFex function of RIdeogram (Hao et al. 
2020) R package. Similarly, gene densities for SSRG 
were obtained using past gene annotation *. gff3 file from 

Phytozome. Finally, an ideogram highlighting transcribed 
regions across ten sorghum chromosomes with the overlay 
method was prepared.

Orthogroups Identification, Synteny Analysis, 
and Identification of De Novo Genes

The superTranscript-based gene models over 15 genomes 
and singleton genes were predicted for protein sequences 
using TransDecoder [https:// github. com/ Trans Decod er/ 
Trans Decod er] with a minimum sequence length of 100. 
This gave several protein sequences per gene. Therefore, 
the longest protein sequence per gene across all cultivars 
was selected for orthogroup identification. Finally, ortho-
group identification was made using OrthoMCL (Li et al. 
2003) with BLASTP e-value <  10−5 and inflation fac-
tor = 1.5 as previously mentioned for sorghum pan-genome 
(Tao et  al. 2021). Gene duplication events are major 
contributors to speciation, we used OrthoFinder (Emms 
and Kelly 2019) to report duplicated orthogroups across 
assemblies. Syntenic gene families across assemblies 
were identified using the MCScanX_h algorithm of MCS-
canX (Wang et al. 2012) with BLASTN e-value <  10−5 
and -max_target_seqs = 5 for homology search. To report 
de novo genes in sweet sorghum we looked for syntenic 
matches with other organisms as described previously for 
rice (Zhang et al. 2019). Briefly, the synteny match of 
sweet sorghum with grain sorghum (McCormick et al. 
2018), wild sorghum (353) (Tao et al. 2021), and several 
other C3 -C4 grasses such as Saccharum spontaneum, 
Panicum hallii, Setaria viridis, Zea mays, Setaria italica, 
Aegilops tauschii, Eragrostis curvula, Triticum aestivum, 
Oryza sativa, Brachypodium distachyon, Avena sativa, 
Hordeum vulgare, and model plant species Arabidopsis 
thaliana from the Gramene database [https:// www. grame 
ne. org/] (Gupta et al. 2016) were obtained using MCS-
canX. Syntenic genes with the mentioned organisms were 
marked as 1 and nonsyntenic as 0. This provided a binary 
matrix (0/1) used for pairwise distance calculations and 
phylogeny construction with the Unweighted Pair-Group 
Method with Arithmetic mean (UPGMA) clustering using 
Phylip (Mansour 2009). The genes with missing syn-
teny match with the above organisms were noted as de 
novo genes. These de novo genes were further looked for 
ORFs using TransDecoder with the default setting. The 
transcriptional evidence for de novo genes was obtained 
based on DGE-assigned p-values using RNA-seq. The de 
novo genes were further investigated to determine if they 
originated from transposases, based on internal sequence 
matches of MULE, TNT, and RE transposases with them 
using BLASTN (e-value <  10–37) as described previously 
for rice (Juretic et al. 2005).

https://github.com/TransDecoder/TransDecoder
https://github.com/TransDecoder/TransDecoder
https://www.gramene.org/
https://www.gramene.org/
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Identification of Core, Dispensable, and Private 
Genes in the Population

superTranscripts locations were annotated on 15 sorghum 
genomes using the PASA pipeline (F. et al. 2006; Haas 
et al. 2008). The superTranscripts shared locations on any 
genomes using the PASA pipeline were marked as 1 else 
0. The core, dispensable, and cloud genes were character-
ized based on their presence/absence on several genomes, a 
similar approach that was previously described (Jobson and 
Roberts 2022). Briefly, superTranscripts were categorized 
as core if they shared locations across all 15 genomes, dis-
pensable if they shared locations across 4–14 genomes, and 
cloud if they shared locations across 1–3 genomes. Private 
superTranscripts were those that were exclusive to a sin-
gle genome. The proportion of core, dispensable, and cloud 
genes per genome was obtained and visualized as a bar dia-
gram, as mentioned in the past investigation on the sorghum 
pan-genome (Tao et al. 2021). The superTranscripts that did 
not share any locations on the above-mentioned 15 sorghum 
genomes were marked as orphan genes because they lacked 
homologs or had partial homologs on those genomes (Yao 
et al. 2017).

Origin of Sweet Sorghum‑Specific Genes

We assigned ages to the genes exclusive to sweet sorghum 
genomes namely Rio, Chinese amber, Leoti and Wray. The 
pairwise sequence alignments of these genes with c-DNA 
sequences of grain sorghum (McCormick et  al. 2018), 
wild sorghum (353) (Tao et al. 2021), several other C3-C4 
plant outgroups, and Arabidopsis was performed using blat 
(pid = 60 and minscore = 100). In pairwise sequence align-
ment, genes were classified based on their hits with target 
species: those showed hits with Arabidopsis sequences were 
categorized as belonging to core angiosperm or Mesangio-
spermae; hits with Hordeum, Oryza, or any other C3 grasses 
were classified as Poaceae origin; hits with Saccharum, Pan-
icum, or any other C4 grasses were identified as Andropogo-
neae origin; sequences aligning with grain or wild sorghum 
were categorized as sorghum-specific or Sorghinae origins; 
and If there were no hits then the gene was designated as 
sweet sorghum-specific. These given hits matrix (0/1) for all 
organisms which is further used for pairwise distance cal-
culations and UPGMA phylogeny construction using phylip 
(Mansour 2009).

Differential Exon Usage (DEU) Analysis

The DEU comparison was performed as per the methodol-
ogy described (Davidson et al. 2017). The RNA-seq reads 
of sweet sorghum Rio from past studies (Cooper et  al. 
2019) were aligned to SSRG and superTranscriptome using 

HISAT2. Novel splice sites were extracted for superTran-
scriptome to understand blocking within the superTran-
scripts. The *.gtf file for superTranscript blocks was pre-
pared with the make_block tool in the necklace pipeline. 
The exon bin or blockwise expression count was obtained 
using FeatureCouts, (Liao et al. 2014). Statistical signifi-
cance for exon usage was tested with DEXSeq, (Anders et al. 
2012) R package. Per gene q-values for differential exon 
usage were obtained for both approaches. Once, per gene 
q-values were obtained, the true positives and true negatives 
were selected based on q-value cutoffs. The superTranscripts 
with a q-value below 0.05 were considered true positive, and 
superTranscripts with a q-value of 0.9 and above were con-
sidered true negative. The Sci-Kit-learn Python module was 
used to train the datasets with a logistic regression method. 
This helped to report the differences between actual and pre-
dicted labels for the above two approaches using machine 
learning. The ROC curve showing DEU performance was 
plotted with a custom R script. Similar to this, the KNeigh-
borsClassifier method of the Sci-Kit-learn module was used 
to train datasets and prepare the confusion matrix for both. 
A DEU analysis of Rio and PR22 internode was also done 
to report differentially spliced transcripts between these two 
genotypes during internode growth.

Differential Gene Expression Analysis

To report changes in differential gene expression with two 
different references, i.e. SSRG, and superTranscriptome, the 
RNA-seq reads from leaf, meristem, and internode tissues 
from six-time points of sweet sorghum Rio were aligned to 
both, followed by expression counts using FeatureCounts 
(Liao et al. 2014) with a transcript count method. Finally, 
time point transcript count normalization and log2fold 
changes were estimated with the Likelihood Ratio Test 
(LRT) method using the DESeq2 (Love et al. 2014) R pack-
age. The volcano plots representing DGE for SSRG and 
superTranscriptome were plotted using the EnhancedVol-
cano (Blighe K et al. 2022) R package. The top 50 highly 
expressed genes with a P value < 0.05 from the above two 
methods were visualized as a heat map with the geom_tile 
function of the ggplot2 (Gómez-Rubio 2017) R package.

Similarly, differential gene expression analysis of Rio 
and PR22 during internode growth was done using super-
Transcriptome as a reference. The top 50 highly expressed 
genes between these two genotypes during internode growth 
were visualized as a heatmap. The gene ontology enrich-
ment analysis was performed to report significantly enriched 
GO terms with AnnotationForge (Pagès et al. 2022) based 
custom database using superTranscriptome annotations. Sig-
nificantly enriched GO terms (P value < 0.05) between Rio 
and PR22 during internode growth were reported using the 
clusterProfiler (Wu et al. 2021) R package.
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Identification of Agronomically Essential Genes 
and Phylogenetic Analysis

The agronomically essential genes involved in DNA pack-
aging, transcription, sugar transport, sugar metabolism, and 
stress responses were selected for MSA. These include genes 
encoding for histones, cytochrome b5, hexokinases, zinc finger 
domain, MULE-like transposase, NAC, MYB, SWEET and 
SUT transporters, Invertase (INV), expansin, Universal Stress 
Protein (USP), etc. The phylogenetic analysis was performed 
to report sequence level changes across these genes in sweet 
sorghum in comparison with grain sorghum, other C4-C3 out-
groups, and Arabidopsis. The shared ortholog sequences for 
these genes with grain sorghum, Saccharum sp., maize, barley, 
and Arabidopsis were obtained from Phytozome [https:// phyto 
zome- next. jgi. doe. gov/]. The multiple sequence alignment of 
shared orthologs was done using MUSCLE (Edgar 2004). 
To refine alignment, the alignment trimming was performed 
using trimAl (Capella-Gutiérrez et al. 2009) with parameters 
(-gt 0.5 -resoverlap 0.5 -seqoverlap 50). Finally, a maximum-
likelihood phylogenetic analysis was performed using IQ-tree 
(Nguyen et al. 2015) with standard substitution model selec-
tion (-m TEST) for 1000 bootstrap repetitions. The phyloge-
netic tree for these genes was visualized and annotated using 
iTOL (Letunic and Bork 2021).

Genomic Landscape of Sweet Sorghum Evolution

Through the utilization of ScanPAV (Giordano et  al. 
2018), we conducted a comparison of the genomes of grain 
(BTX623) and wild sorghum (353) to SSRG. Our findings 
revealed significant deletions (> 1 kb) that hold evolutionary 
significance. ScanPAV uses a sliding window (SW) approach 
for aligning sequences to reference using BWA (Li and Dur-
bin 2010), reports missing blocks in reference i.e. > 1 kb, 
and writes missing blocks as well as their genomic coordi-
nates in *.fasta and *.vcf file format. To characterize, genic 
and intergenic deletions in grain and wild sorghum, miss-
ing blocks with SSRG were looked for protein-coding gene 
overlap using BEDTools (Quinlan and Hall 2010). Similarly, 
missing regions on cultivated sorghum i.e. Rio and BTX623 
genomes compared to wild sorghum were identified. This 
reported several large deletions that occurred in cultivated 
sorghum compared to wild sorghum throughout sorghum 
domestication.

Results

superTranscriptome Construction

Collectively, 223 RNA-seq accessions of seven diverse 
sweet sorghum genotypes from the public repository formed 

45,049 genome-guided transcripts with SSRG and 886,115 
de novo transcripts, constituting 45,864 gene clusters. 
The representative sequence of each cluster was prepared 
using Lace (Davidson et al. 2017). The superTranscrip-
tome reported 45,864 genes with three types of sequences: 
genome-guided sequences, which were already annotated on 
SSRG; unannotated or novel transcribed genomic regions, 
which require further functional annotation; and de novo 
spliced isoforms or novel genes, which showed less than 
90% similarity with SSRG genome-guided contigs but they 
were annotated on grain sorghum cultivars genomes such as 
BTX623, BTX642, and RTX430. The third sequence types 
were Open Reading Frames (ORFs) from transcripts using 
protein sequences retrieved from Phytozome [https:// phyto 
zome- next. jgi. doe. gov/] (Fig. 1b). This approach yielded 
886,115 de novo transcripts but only 163,651 were reported 
with ORFs. Of these 163,651; 161,712 successfully incor-
porated known protein-coding superTranscripts from SSRG 
to retrieve complete protein-coding sequence ortholog. The 
remaining 1,939 de novo transcripts did not show significant 
similarity with any genome-guided transcript formed 815 
separate clusters. This suggests there were some genes in 
sweet sorghum from grain sorghum background exclusively. 
The superTranscripts number may vary when we change the 
clustering parameters; it leads to the loss of some annotated 
genes from the reference genome. However, no significant 
change in contiguity was reported when we changed the 
clustering parameters (Supplemental Table S2).

superTranscriptome Quality

Contiguity analysis for superTranscriptome was done 
using the TransRate tool. This reported the N50 value 
of 3,551 bp for superTranscriptome. We found 30,697 
(66.93%) and 572 (1.24%) superTranscripts were above 
1 kb and 10 kb sequence lengths respectively. Only 184 
(0.4%) superTranscripts were below 200 bp in sequence 
length (Table  1; Supplemental Data S2) and the rest 
14,411 (31.42%) sequences showed lengths ranging from 
200–800 bp. The result suggested that most sequences 
were contiguous, could be complete gene orthologs, and 
highlighted the diversity of superTranscript length dis-
tribution (Supplemental Figure S2a). BUSCO assembly 
completeness analysis suggested that 94.19% of super-
Transcripts shared complete orthologs with Poales and 
a 6% duplication rate. Therefore, duplication could be 
the reason for reporting more orthologs for some essen-
tial genes (Fig. 2). The superTranscriptome also reported 
incomplete/partial genes in comparison with Rio, SC187, 
BTX642, RTX430, and BTX623 sorghum genomes, sug-
gesting that there were specific genes in the population 
with missing start/stop codons or both codons that play an 
essential role in trait development. To check the quality of 

https://phytozome-next.jgi.doe.gov/
https://phytozome-next.jgi.doe.gov/
https://phytozome-next.jgi.doe.gov/
https://phytozome-next.jgi.doe.gov/
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the assembly, 48 RNA-seq accessions of sweet sorghum 
Rio were aligned to superTranscriptome along with six 
published sorghum genomes using HISAT2 (Kim et al. 
2019). We reported that SSRG showed the highest aver-
age read alignment (84.06%) among the six genomes, 
followed by grain sorghum genomes BTX623 (82.29%), 
BTX642 (82.07%), SC187 (82.06%), RTX430 (81.87%), 
and superTranscriptome (79.18%) in that particular order. 

Results suggest that an average of 5% read coverage was 
reduced in superTranscriptome over SSRG (Supplemental 
Figure S2b).

Functional Annotation and Characterization 
of Unannotated Genes

The sweet sorghum superTranscriptome comprises 45,864 
genes. Among these, 31,234 were annotated with SSRG, 
815 with grain sorghum, and 13,815 remain unannotated. 
Within this unannotated group, the Trinotate pipeline identi-
fied and annotated 2,802 new protein-coding genes/super-
Transcripts with SwissProt. Among these newly annotated 
protein-coding genes, 559 encodes for various transcription 
factors (TFs) including NAC, MYB, and chromo-domain 
proteins as determined by their DNA-binding domains 
using PLantTFcat (Dai et al. 2013), PLantTFDB (Guo et al. 
2008) and iTAK (Zheng et al. 2016) online server databases 
(Supplemental Data S3, sheet2). The rest of the 11,013 
sequences, 572 genes/superTranscripts, were annotated 
with diverse roles in intron splicing, gene silencing, and 
ribosomal assembly when searched for non-coding RNA 
annotation against the RNAcentral database. The remain-
ing 10,441 superTranscripts were checked for coding poten-
tial with CPC2 and reported 954 protein-coding and 9,487 
non-coding regions. Putative 9,487 non-coding genes/super-
Transcripts were potential sources of lncRNAs, of which 
6,516 were annotated with PLncDB (Jin et al. 2021) using 
BLASTN (Fig. 3; Supplemental Figure S3, Supplemental 

Table 1  Assembly statistics with TransRate for the sweet sorghum superTranscriptome showing several sequences, the total number of bases, 
the contiguity of the sequences, mean contigs length, smallest and largest sequence in assembly etc

Assembly Parameter Description Number

n_seqs The number of contigs in the assembly 45,864
Smallest The size of the smallest contig 96
Largest The size of the largest contig 40,930
n_bases The number of bases included in the assembly 104,953,927
mean_len The mean length of the contigs 2,287.73
n under 200 The number of contigs shorter than 200 bases 184
n over 1 k The number of contigs greater than 1,000 bases long 30,697
n over 10 k The number of contigs greater than 10,000 bases long 572
n with orf The number of contigs that had an open reading frame 29,610
mean orf percent For contigs with an ORF, the mean % of the contig covered by the ORF 47.54
N90 The largest contig size at which at least 90% of bases are contained in contigs at least this length 1,205
N70 The largest contig size at which at least 70% of bases are contained in contigs at least this length 2,405
N50 The largest contig size at which at least 50% of bases are contained in contigs at least this length 3,551
N30 The largest contig size at which at least 30% of bases are contained in contigs at least this length 5,065
N10 The largest contig size at which at least 10% of bases are contained in contigs at least this length 8,726
GC % of bases that are G or C 0.48
bases n The number of bases that are N 126
proportion n The proportion of bases that are N 0

Fig. 2  BUSCO assembly completeness analysis with Poacecae data-
base by using superTranscriptome and six published sorghum ref-
erence genomes showing complete (single copy/duplicated), frag-
mented and missing genes
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Data S3). The results suggest that about 21.93% of sweet 
sorghum genomes transcribe non-coding RNAs involved in 
diverse functions, including gene silencing, intron splicing, 
and gene regulation. Long non-coding RNAs occupied 14% 
of total expressed sequences; however, this proportion may 
increase when an independent study is performed.

superTranscript‑Based Genome Annotation 
and Gene Densities

Of a total of 45,864 genes/superTranscripts, 41,169 
(89.76%) were annotated on 15 diverse sorghum genomes 

using the PASA gene structure annotation tool (Haas et al. 
2008) and 4,695 (10.24%) remains singleton. These genes 
were selectively transcribed across sorghum genotypes and 
contributed to variability. In comparison to other genomes, 
the SSRG recorded the highest number of annotated genes 
40,901(89.17%). This was much higher in contrast to the 
previous study on sweet sorghum genome annotation 
(Cooper et al. 2019). Additionally, chromosome-wise gene 
counts and gene density in SSRG were reported higher 
when annotated with superTranscriptome using PASA 
(Supplemental Figure S4a, b); Supplemental Data S4). The 
superTranscripts showed several gene structure updates on 
14 diverse sorghum genomes (excluding wild progenitor 
353). The updates include new gene additions, single gene 
model updates, and alt-splice site additions. Additionally, 
the superTranscript-based approach reported extensive alter-
native splicing on these 15 cultivar genomes. The results 
demonstrate that superTranscriptome improved genome 
annotations, gene structures, and alternative splicing (Fig. 4; 
Tables 2, 3).

Orthogroups Identification, Synteny Analysis, 
and Identification of De Novo Genes

A total of 454,772 protein-coding gene models across 15 
genome assemblies and 4,695 singletons genes were used 
for orthogroups identification. Of the total 459,467 genes, 
448,293 (97.57%) were assigned with orthologroups and the 
rest of the 11,174 (2.43%) were unassigned groups. The pre-
sent analysis reported a total of 44,222 orthogroups in the 

Fig. 3  Donut plot showing functional annotations of superTranscrip-
tome with proportion of annotated sequences with different databases

Fig. 4  Bar diagram showing 
various types of gene structure 
updates on 15 published sor-
ghum genomes when annotated 
with superTranscriptome using 
PASA pipeline
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sweet sorghum (Supplemental Data S5 and Supplemental 
Data S5(a)). Similar results for orthogroups identifications 
were obtained previously for sorghum pan-genome analy-
sis (Tao et al. 2021). Our OrthoFinder analysis reported 
several orthogroups that showed duplications on 15 culti-
var genomes. This includes the top three namely RTX430 
(3,001), BTX642 (1471), and Rio (792) with the highest 
number of duplicated orthogroups (Supplemental Fig-
ure S5a). This infers gene duplication is frequent in sorghum 
and cultivars RTX430, BTX642, and Rio were selected with 
duplicated genes during domestication. Of 540,286 super-
Transcript-based gene models across 15 genome assemblies, 
516,825 (95.66%) were syntenic genes, forming 20,419 syn-
tenic gene families. The results demonstrate that more than 
90% of genes across 15 sorghum genome assemblies were 
collinear with few syntenic re-arrangements. This reported 
1,422,576 syntenic gene pairs were located on the same 
chromosome or scaffold over 15 genome assemblies. How-
ever, 7,885 were reported with syntenic re-arrangements. 
We compared the synteny of sweet sorghum (SSRG) with 
wild progenitor (353) and grain sorghum (BTX623). This 
reported 108,856 syntenic gene pairs on the same chromo-
some/scaffold and 1,528 syntenic re-arrangements between 
these genomes. We have taken subsets of these syntenic 
genes and visualized them as ideograms (Supplemental 
Figure S5b); Supplemental Data S5(b)). The tandem dupli-
cations during synteny analysis were also reported these 
include several tandem duplicates across each assembly. Rio 
reported the highest number of tandem duplicates 2,154 fol-
lowed by RTX430 (2,101), Wray (613), PI510757 (342), 
PI329311 (332), etc. (Supplemental Table S3). Most of the 
tandem duplications in Rio genes were related to the Gene 
Ontologies (GOs) such as protein binding, DNA binding, 
protein kinase activity, nucleic acid binding, catalytic activ-
ity, nucleotide binding, DNA-binding transcription factor 
activity, and metabolic processes (Supplemental Data S5, 
Sheet 3 and 4). This infers that duplication among these 
genes was frequent in sweet sorghum and could significantly 
contribute to its evolution.

To report de novo genes, 37,003 genes on SSRG were 
used for synteny comparison. We found that 34,288 were 
syntenic with grain sorghum, wild sorghum, other C3-C4 
grasses, and Arabidopsis (Fig. 5). The remaining 2,715 
were de novo genes because they lacked synteny with the 
above organisms. These 2,715 genes were evaluated for 
de novo ORFs and transcriptional evidence using RNA-
seq. These reported 1,669 with complete/partial ORFs and 
1,543 with transcriptional evidence in the leaf, meristem, 
and internode tissues of Rio. The minimum and maximum 
ORF lengths for de novo genes were 91 and 8,346 amino 
acids (aa) respectively. Of 1,669 de novo ORFs only 895 
were transcribed in Rio and 774 were non-transcribed. A 
total of 1,046 de novo genes lack ORFs of which 648 were 

transcribed in Rio. This infers that further mutations may 
trigger their transnational activity because they lack a start 
codon for transnational activity. The rest of the 398 de novo 
genes were non-transcribed non-ORF types and could be 
pseudogenes (Supplemental Table S4). Most of the de novo 
genes encoded elements such as TNT-1, RE-1, RE-2, DUF 
domain, MYB/SANT-like domain, reverse transcriptase, 
zinc finger domain, core and linker histones, ribonuclease H, 
etc. (Supplemental Data S5(c)). A total of 173 de novo genes 
were found to retain internal sequences from MULE, TNT, 
and RE transposases when the internal sequences of these 
transposases were queried using BLASTN (e-value <  10–37) 
(Supplemental Data S5(c), sheet 3). This highlights the role 
of these transposases in de novo gene formation.

Identification of Core, Dispensable, and Private 
Genes in the Sweet Sorghum

The Pan-genome analysis classified the gene families into 
core, dispensable, and cloud categories for many plants such 
as sorghum (Ruperao et al. 2021; Tao et al. 2021; Wang 
et al. 2021), rice (Sun et al. 2017; Zhao et al. 2018; Qin 
et al. 2021), maize (Hirsch et al. 2014), and pea (Yang et al. 
2022). The superTranscripts annotated 15 diverse sorghum 
genomes based on genomic presence/absence and were clas-
sified into core (20,743), dispensable (18,915), and cloud 
(1,511) genes (Fig. 6a, b). The remaining 4,695 singleton 
superTranscripts were marked as orphan genes because 
they either lack homologs on the above 15 genomes or 
have only partial homologs. Collectively, 24,625 (53.69%) 
superTranscripts were reported with remarkable presence/
absence variation on 15 sorghum genomes (excluding single 
genome superTranscripts and core genes), suggesting that 
these genes contributed to variability in sorghum (Supple-
mental Data S6, Sheet 2). The GO enrichment analysis of 
these genes suggests that they encoded various Transpos-
able Elements (TEs), proteolytic enzymes, and regulatory 

Fig. 5  Synteny-based phylogenetic grouping of organisms using 
UPGMA clustering
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elements of biological processes. This suggests that prote-
olysis, transposition, and gene regulation of several biologi-
cal processes were significant contributors to the observed 
variability in sorghum (Supplemental Figure S6a). Addi-
tionally, some superTranscripts were exclusively located on 
specific cultivar genomes (Fig. 6c), suggesting that sweet 
sorghum carries some genes from cellulosic, grain, and for-
age backgrounds; however, the function of these genes in 
sweet sorghum was not known and might carry some modi-
fications. Phylogenetic analysis based on gene presence/
absence across 15 cultivar genomes was performed using 
the UPGMA clustering previously described for genome-
wide SNPs and PAVs (Tao et al. 2021). This reported the 
PAV-based grouping of 15 genotypes according to their 
geographical origin. We found that US-origin (Rio and 
Wray) and Asia-Europe origin (Chinese amber and Leoti) 
sweet sorghum formed a group; suggesting that the gene 
set carried by sweet sorghum varies with geographical ori-
gin (Fig. 6d). Further, 301 superTranscripts were exclusive 

to sweet sorghum genomes (Rio, Wray, Leoti, and Chinese 
amber). These include genes encoding hexokinases, core 
and linker histones i.e. H2A, H3, H4, and H1, cytochromes, 
MULE-like transposase, glucosyl transferases, chitinases, 
cell wall-associated receptor kinases, MYB-TF, and some 
known/novel lncRNAs. Gene ontology studies of these 
genes showed that most of them were connected to the trans-
port of different kinds of molecules across membranes, like 
electrons, metal ions, organic and inorganic ions, and more. 
They were also linked to catalytic enzymes, cell signaling, 
gene regulation, chromosome assembly, and DNA packag-
ing. The results showed that sweet sorghum has extra alleles 
for maintaining cellular homeostasis, managing energy and 
carbohydrates, controlling chromatin, and DNA packaging 
(Supplemental Figure S6b; Supplemental Data S6, Sheet 3). 
These genes were exclusive to sweet sorghum genomes and 
probably evolved later. The orphan genes contribute 9.64% 
of superTranscriptome for which KEGG Orthology (KO) 
analysis was performed using KAAS (Moriya et al. 2007). 

Fig. 6  a Pie chart showing number of core, dispensable and cloud 
genes identified on 15 published sorghum genomes. b Bar diagram 
showing proportion of core, dispensable and cloud genes across each 
sorghum genome when annotated with superTranscriptome using 
PASA. c Flower plot showing distribution of core, shell and private 
genes across 15 diverse sorghum genomes; helps to report sweet sor-

ghum specific genes and genes from various cultivar background in 
sweet sorghum. d Unweighted Pair-Group Method with Arithmetic 
mean (UPGMA) based phylogenetic grouping of 15 cultivars based 
on gene presence/absence reveals that Asia-Europe and the US-origin 
sweet sorghum carry distinct sets of genes
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The majority of orphan genes were coded for TFs, signaling 
molecules, transporters, and catalytic enzymes that play a 
significant role in cellular physiology, cell wall development, 
abiotic and biotic stress resistance and probably help in the 
development of sweet sorghum-specific traits (Supplemental 
Figures S6c, d).

Origin of Sweet Sorghum‑Specific Genes

Of 301 sweet sorghum-specific genes, only 25 were reported 
hits with Arabidopsis; infer that these sequences have 
Mesangiospermae origin. A total of 185 sequences reported 
hits with C3 grasses of which 160 were added over Arabi-
dopsis, suggesting that those sequences were exclusively 
from the Poaceae family. Next, 238 sequences showed hits 
with C4 grasses of which 53 were added over Poales, indi-
cating that those 53 sequences have Andropogoneae origin. 
A total of 270 sequences were reported hits with wild sor-
ghum (353) and 283 with grain sorghum (BTX623). These 
include 32 and 13 added sequences to wild and grain sor-
ghum respectively. This demonstrates that those sequences 
were sorghum-specific or Sorghinae origin. The remaining 
18 were specific to sweet sorghum, did not display any hits, 
and encoded histone H1/H5, unknown proteins and non-cod-
ing genes. This infers that these 18 genes were selected in 
sweet sorghum (Figs. 7a, b); Supplemental Data S7a). Inter-
estingly, out of these 301 sweet sorghum-specific genes, only 
58 were identified as de novo genes and assigned gene ages 
(Supplemental Figure S7; Supplemental Data S7b). Based 
on the taxonomic age of the target organism or family, the 
ages of all 301 genes were determined using the TimeTree5 
database (Supplemental Table S5) (Kumar et al. 2022). 
We found that a total of 270 (89.70%) genes have ages > 9 
Million Years (MYA), while the rest of the 31 (10.30%) 
have ages < 3.55 MYA evidenced that they were evolved in 
sorghum.

Differential Exon Usage (DEU) Analysis

The traditional genome-based approach with a standard 
blocking scheme reported only 148,847 exons on SSRG. 
superTranscripts followed a dynamic blocking scheme when 
aligned with RNA-seq reads which reported 461,355 exon 
bins, suggesting that exon splicing was extensive in super-
Transcripts. For example, the standard blocking scheme 
employed for DEU analysis with SSRG yielded five exons 
for the NLP2 TF coding gene which was located on chro-
mosome 6 (SbRio.06G148100), of which three were dif-
ferentially used for spliced transcript formation under six 
developmental stages. Where superTranscriptome followed 
a dynamic blocking scheme for the same gene (NLP2 TF, 
gene id: SbRio.06G148100), it identified 19 different exon 
bins, of which eight were differentially used for transcript 

formation (Supplemental Figures  S8a, b); Supplemen-
tal Data S8). This suggested that superTranscript-based 
dynamic blocking was more informative for the same gene 
than the SSRG-based standard blocking. Additionally, this 
increased the probability of finding more alternatively 
spliced transcripts; those may be involved in adaptation, 
stress responses, and trait development. The DEU testing 
using two references i.e. SSRG and superTranscriptome, 
reported 20,942 and 22,554 genes with differential exon 
usage. The true positives (with q-value < 0.05) and true 
negatives (with q-value > 0.9) reported with SSRG and 
superTranscriptome were 12,793 (61.08%), 4,583 (21.88%) 
and 13,556 (60.10%), 5,749 (25.48%) respectively. The 
superTranscriptome-based approach found a better clas-
sifier for true labels than the SSRG when trained datasets 
using the logistic regression method (Fig. 8a). Additionally, 
the confusion matrix prepared for the above two approaches 
using the KNeighborsClassifier method reported more true 
labels in superTranscritome than the SSRG-based standard 

Fig. 7  aThe 301 genes were exclusive to sweet sorghum genomes, 
assigned gene ages based on their sequence similarity hits with 
c-DNA sequences of several C3-C4 grasses and Arabidopsis. b 
Sequence similarity hits (0/1) of 301 sweet sorghum-specific genes 
with several other C3- C4 grasses and Arabidopsis facilitated phylo-
genetic grouping based on shared genes using UPGMA clustering
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approach (Fig. 8b, c)). The results established that the genes 
identified by the superTranscriptome were real transcripts, 
as shown by their ability to give more accurate estimates 
of DEU when tested with supervised machine learning and 
differential splicing. The DEU analysis of Rio and PR22 
during internode growth reported that 8,787 and 5,769 genes 
were differentially spliced (q-value < 0.05) in Rio and PR22 
(Supplemental Figures S8c, d). This clearly showed that the 
differential splicing of the genes plays a crucial role in phe-
notype development.

Differential Gene Expression (DGE) Analysis

Gene-level abundance estimates and DGE analysis using 
SSRG and superTranscriptome as a reference reported a 
total of 20,940 and 22,036 genes respectively, with signifi-
cant (P value < 0.05) changes in gene expression across the 
leaf, meristem, and internode tissues over six-time points 
(Figs. 9a, b); Table 4; Supplemental Figure S9a). Among 
50 highly expressed genes in the leaf, meristem, and inter-
node tissues, 83% were the same for the above two refer-
ences, and the rest of the 17% genes showed slightly altered 
gene expression (Supplemental Figures S9b, c). Past stud-
ies reported minor differences in gene expression when 
performed de novo and reference-based DGE analysis 
(Davidson and Oshlack 2014); suggesting that the choice 
of references for DGE analysis has little influence on gene 
expression. The ROC curve based on trained datasets using 
the logistic regression, showed that superTranscriptome 
gave better DGE estimates than SSRG (Supplemental Fig-
ure S9d). This infers that the superTranscript-based approach 
identifies more truly expressed genes than SSRG and high-
lights its suitability for DGE analysis. The list of the top 
50 highly expressed genes during internode growth differed 

between Rio and PR22. Rio highlighted several Light Har-
vesting Complexes (LHCs) but did not show expression 
of metallothionein-II within the top 50 genes. Conversely, 
PR22 showed a lower number of LHCs but expressed met-
allothionein-II. This suggested that the internode phenotype 
is likely influenced by active photosynthesis and metal ion 
transport (Fig. 9c). Further, the growing meristem of Rio 
reported expression of metallothionein-II indicated that this 
gene appears to be essential during the active growth of the 
meristem but not necessarily required for the sugar-accumu-
lating internode. Differential gene expression showed that 
GO terms related to moving metal ions, secondary metabo-
lites, cells, and other things were more common in PR22 
during internode growth (Supplemental Figure S9e). There-
fore, active transport of metal ions, secondary metabolites, 
and organic compounds contributes to dry or pithy stems in 
sorghum. Further, both genotypes reported 9,028 common 
genes that showed differential (P value < 0.05) expression 
during internode growth; however, the expression of 6,092 
and 2,840 genes were exclusive to Rio and PR22 respec-
tively. (Supplemental Figure S9f). Interestingly, 487 and 348 
lncRNAs were also reported to be differentially expressed 
during the internode growth of Rio and PR22 respectively. 
It is inferred that the lncRNAs could be hidden players that 
control internode development and confer sugary internode 
(Supplemental Figures S9g, h)). Further, the top 50 highly 
expressed lncRNAs and TFs were listed and their expression 
patterns were correlated with percentage (%) brix readings; 
which were taken previously during internode growth for 
both genotypes (Cooper et al. 2019). This reported sev-
eral lncsRNAs especially novel lnc SBRIO_LNC019054 
along with NAC-2–1 and NAC-60 showed elevated expres-
sion with sugar accumulation in Rio; suggesting that they 
were positive regulators of sucrose-related genes. However, 

Fig. 8  a ROC curve for trained datasets with logistic regression 
method showing superTranscritptome with dynamic blocking giv-
ing better estimates of DEU than SSRG-based standard blocking 
approach. b Confusion matrix prepared for DEU with SSRG show-

ing true and predicted labels when trained datasets using KNeigh-
borsClassifier method. c Confusion matrix prepared for DEU with 
superTranscriptme reported more true labels than SSRG-based 
approach when trained datasets using KNeighborsClassifier method
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Fig. 9  a Volcano plot showing 
differentially (p-value < 0.05) 
expressed genes across Leaf, 
Internodes and Meristems 
tissues when used SSRG as a 
reference for DGE analysis. 
b Volcano plot reported more 
differentially (p-value < 0.05) 
expressed genes across Leaf, 
Internodes and Meristems 
tissues when superTranscrip-
tome used as a reference 
for DGE analysis. c Top 50 
highly expressed genes in Rio 
and PR22 during internode 
growth shows that Rio reported 
comparatively more numbers 
of expressed LHCs along with 
missing expression of Metal-
lothionein II
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during the internode growth of PR22, it was reported that 
FHA-SMAD-21, Tify-13, and conserved SBIC_LNC004344 
showed higher expression with decreasing sucrose levels. 
This implies that they may function as negative regulators 
of sucrose (Supplemental Figures S9i, j).

Identification of Agronomically Essential Genes 
and Phylogenetic Analysis

The agronomically important genes such as histones, 
MULE-like transposase, zinc finger domain, hexokinases, 
cytochrome b5, SWEET, SUT, invertase, expansin, USP, 
NAC, and MYB transcription factor reported more in num-
ber in sweet sorghum than grain sorghum and some of them 
were exclusive to sweet sorghum genomes. We found the 
majority of novel histone genes either formed separate clades 
or clades with Hordeum sp. (Supplemental Figures S10a–d). 
Further, the chromosomal locations of these novel histone 
genes on SSRG showed that they were located at the lower 
arm of chromosome 8; suggesting that this region of chro-
mosome 8 carries duplications of histone genes in sweet 
sorghum (Supplemental Figure S10e). The hexokinases, 
cytochrome b5, and MYB transcription factor genes from 
sweet sorghum were found to be related to sorghum and Sac-
charum sp. This suggests that these genes may be ancestral 
copies of genes from sorghum and sugarcane (Supplemental 
Figures S10f–h). MULE-like transposases were abundant in 
the sweet sorghum genome, of which SwSb − MULE − 21** 
was reported to be exclusive to sweet sorghum genomes and 
found similar to existing ones in sweet sorghum (Supple-
mental Figure S10i). This inferred that MULE genes might 
have duplicated on sweet sorghum genomes. The zinc fin-
ger domain is a major transcription factor family associated 
with abiotic stress responses in plants (Han et al. 2020). 
Of several, five zinc finger loci namely SwSb-zf-2**, SwSb-
zf-3**, SwSb-zf-4**, SwSb-zf-5**, and SwSb-zf-6** were 
exclusive to sweet sorghum and showed similarity with 
existing sweet and grain sorghum genes (Supplemental Fig-
ure S10j). This demonstrated that some zinc finger genes 

were also duplicated in sweet sorghum. The SUT4, one of 
the six SUT genes was identified in sweet sorghum. This 
gene was reported to be deleted on SSRG due to large dele-
tions (Cooper et al. 2019). The present analysis reported 
the presence of a SUT4 ortholog named SwSb − SUT − 6* 
through de novo transcriptome assembly (Supplemental Fig-
ure S10k). The Sugars Will Eventually Exported Types of 
Transporters (SWEET) is a gene family involved in phloem 
loading and unloading. The superTranscriptomic approach 
reported 24 SWEET genes with one additional SWEET 
locus SwSb − SWEET − 24* located on chromosome 8 with 
only one exon (Supplemental Figure S10l). The plant-spe-
cific NAC transcription factor qualitatively controls dry bio-
mass, sugar production, and grain yield (Xia et al. 2018). 
superTranscriptome identified 130 NAC-TF encoding loci, 
of which six were newly reported on SSRG. The new NAC 
loci were more similar to ancestral types i.e. sorghum, Sac-
charum sp., and maize than other outgroup species (Sup-
plemental Figure S10m). Further, the rest of the newly 
annotated genes which include invertase, expansin, and USP 
formed separate clades in phylogeny; suggesting that these 
sequences carry some evolutionary modifications in sweet 
sorghum (Supplemental Figures S10n–p).

The numbers and chromosomal locations of agronomi-
cally important genes on SSRG and grain sorghum refer-
ence genomes (BTX623) reported that these loci were more 
abundant in sweet sorghum than grain sorghum (Figs. 10a, 
b). This suggests that sweet sorghum carries additional loci 
for agronomically important genes. We find more and fuller 
gene orthologs for agriculturally important genes by com-
bining de novo transcriptome assembly and genome-guided 
assembly methods. Nevertheless, we were unable to validate 
the functions of newly discovered genes in sweet sorghum. 
Therefore, further GWAS analysis may provide more infor-
mation about these genes.

Genomic Landscape of Sweet Sorghum 
Evolution

Compared to sweet sorghum (SSRG), ScanPAV reported 
14,293 (31.6  MB) and 20,869 (47.99  MB) large dele-
tions (> 1 kb) in grain (BTX623) and wild (353) sorghum 
respectively. These include the loss of 2,974 genes in grain 
sorghum and 5,028 genes in wild sorghum. This indicated 
that wild sorghum reported with greater number of dele-
tions in both gene and intergenic regions than grain sor-
ghum. Interestingly, 58 and 51 sweet sorghum-specific 
or private genes were reported with deletions in wild and 
grain sorghum respectively (Table 5ii). The results vali-
dated that sweet sorghum-specific genes showed deletions 
in grain and wild sorghum; suggesting that insertions for 
these genes were selected in sweet sorghum. Sequence loss 

Table 4  Differential Gene Expression (DGE) analysis performed 
using DESeq2 with two different references reported number of genes 
showed significant (P value < 0.05) changes in expression across leaf, 
meristem and internode tissues of sweet sorghum Rio

Reference used for DGE analysis

Tissue type SSRG superTran-
scriptome

Leaf 9,266 8,916
Internode 14,885 15,120
Meristem 16,599 16,767
Total 40,750 40,803
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in cultivated sorghum i.e. grain and sweet sorghum com-
pared to wild sorghum accounted for 20,495 (47.94 MB) 
and 20,501 (48.82 MB) large deletions in grain sorghum 
and sweet sorghum respectively (Table 5i). This included 
deletions of 2,394 and 2,177 genes in grain and sweet sor-
ghum respectively (Table 5iii). This infers that a compara-
tively higher number of gene deletions (2,394) were found 
in grain sorghum than sweet sorghum (2,177); suggesting 
that more genic deletions were selected in grain sorghum. 
Whereas, sweet sorghum showed fewer genic (2,177) and 

a comparatively higher number of intergenic deletions 
(18,324) than grain sorghum (18,101); inferred that more 
intergenic deletions were selected in sweet sorghum. The 
results suggest that both deletion and insertions were fre-
quent in cultivated sorghum and selections of genes with 
SVs lead to subtype development.

Dry locus or D locus (Sobic.006G147400) encodes 
plant-specific NAC transcription factor which qualitatively 
controls midrib color and stem composition in sorghum 
(Xia et al. 2018; Zhang et al. 2018). The present analysis 

Fig. 10  a Genomic locations agronomically important QTLs such as 
histone, cytochrome, hexokinases, MULE-like transposase and MYB-
TF on grain sorghum genome. b Genomic locations agronomically 

important QTLs such as novel histones, cytochrome, hexokinases, 
MULE-like transposase and MYB-TF on sweet sorghum genome
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reported large deletions in the D locus of sweet sorghum 
compared with grain and wild type. This includes 2.05 kb 
and 2.29 kb deletions in the D locus of sweet sorghum com-
pared to wild and grain sorghum respectively (Supplemental 
Figures S11a–c). In comparison with wild sorghum, a total 
of 3 and 5 NAC encoding loci (including the D locus) were 
deleted in grain and sweet sorghum respectively (Table 5iii; 
Supplemental Data S11). This includes an additional four 
NAC encoding loci other than the D locus located on 

chromosomes 1, 2, 4, and 6 reported with deletions in sweet 
sorghum (Supplemental Figures S11d–h). We found that 
these four NAC encoding loci were affected by terminal 
deletions and could be non-functional genes due to the loss 
of upstream/downstream promoter regions. Results demon-
strated that sweet sorghum NAC encoding loci were affected 
by deletions compared with wild progenitor (353). This con-
firms that deletions in NAC encoding genes could be one of 
the reasons for trait development in sweet sorghum.

Fig. 10  (continued)
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Discussion

superTranscriptome identified a total of 45,864 genes, which 
was higher than the previously reported in sorghum (McCor-
mick et al. 2018), sweet sorghum (Cooper et al. 2019), sor-
ghum pan-genome (Ruperao et al. 2021; Tao et al. 2021; 
Wang et al. 2021), rice pan-genome (Zhao et al. 2018; Qin 
et al. 2021), barley (Jayakodi et al. 2020), and much lesser 
than maize pan-genome (Hufford et al. 2021). The results 
validated that the superTranscriptome approach identified 
more expressed genes and suggested that a single reference 
genome cannot report all genes expressed in sweet sorghum. 
Since superTranscripts are probabilistic gene models for 
sweet sorghum, their functions may vary from genome to 
genome depending on the gene structure. The N50 value 
for superTranscriptome was 3551 bp, much higher than 
the N50 value previously reported for pan-transcriptome 
assemblies of maize (Hirsch et al. 2014; Jin et al. 2016), 
alfalfa (Medina et al. 2021), potato (Petek et al. 2020), and 
barley (Ma et al. 2019) and showed the increased contiguity 
in superTranscriptome assembly. BUSCO assembly com-
pleteness studies reported several gene duplications and 
missing/partial genes that could promote trait development 
in sorghum. Past studies on sorghum pan-genome reported 
BUSCO gene completeness ranging from 94.4 to 98% in 
the sorghum (Tao et al. 2021), supporting our findings. Past 
results showed partial genes were associated with the sug-
arcane aphid (SCA) resistance for the cultivated sorghum 
variety TX278 (Wang et al. 2021). Furthermore, a com-
parative analysis of maize genomes also reported that more 
incomplete genes and missing genes contribute to maize 
adaptation under diverse environments and crop improve-
ment (Yang et al. 2017; Li et al. 2019a). The comparative 

analysis of sweet and grain sorghum genomes reported 2,175 
genome re-arrangements, these include several deletions and 
duplications along with 98,723 base substitutions (missense: 
silent ratio = 1:1) in coding regions (Cooper et al. 2019). 
This infers that the sweet sorghum genome carries several 
evolutionary changes during its domestication. The super-
Transcriptome reported an average of 5% less read coverage 
over SSRG; demonstrating that we lost an average of 5% 
transcribed sequences over SSRG during superTranscripts 
construction.

The lncRNAs contribute 14% of superTranscriptome. 
However, past studies on lncRNAs suggest they are highly 
tissue-specific and condition-specific (Statello et al. 2021). 
In the present analysis, we have reported some lncRNAs 
with significant changes in expression during the internode 
development. There were between 8000 and 23,309 lncR-
NAs found in maize (Wang et al. 2015; Lv et al. 2019), 
sorghum (Sun et al. 2020), rice (Zhou et al. 2021), and 
barley (Unver and Tombuloglu 2020) which showed that 
lncRNAs make up most of the RNA. Recent studies on 
ten high-quality genome assemblies of diverse bioenergy 
sorghum genotypes reported similar results for lncRNAs 
(Voelker et al. 2023). The present analysis reported 44,222 
orthogroups in sweet sorghum which was similar to pre-
viously reported for sorghum pan-genome analysis (Tao 
et al. 2021). The genes in the population are most likely 
affected by SVs and duplication events during specia-
tion, which results in the loss or formation of new ortho-
groups (Brasó-Vives et al. 2022; Prabh and Rödelsperger 
2022; Berdan et al. 2024). Our synteny analysis revealed 
that Rio had the highest number of tandem duplicates 
(2,154), which indicates duplications were frequent in 
Rio and could be associated with the activity of various 

Table 5  ScanPAV results show variable regions (MB) and number of genes reported with presence/absence over three genome assemblies i.e. 
SSRG, Sorghum Reference Genome (BTX623), and wild progenitor (353)

i. Variable regions (MB) between SSRG, sorghum reference genome (BTX623), and sorghum wild progenitor (353)

Absent (MB)
Present (MB) SSRG BTX623 353
SSRG 0 14,293 (31.6) 20,869 (47.99)
BTX623 12,155 (27.79) 0 18,346 (42.46)
353 20,494 (48.82) 20,518 (47.94) 0

ii. Number of large deletions (> 1 kb) in protein-coding genes of wild sorghum (353) and grain sorghum (BTX623) in comparison with SSRG

Wild sorghum (353) Grain sorghum (BTX623)
Non-sweet type 4,970 2,923
Sweet sorghum specific 58 51

iii. Number of large deletions (> 1 kb) in protein-coding genes of cultivated sorghum in comparison with wild sorghum (353)

Grain sorghum (BTX623) Sweet sorghum (Rio)
Wild type genes 2,394 2,177
No apical meristem 3 5
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transposases. We reported 2,715 de novo genes in sweet 
sorghum, of which 648 (23.68%) were transcribed with-
out ORFs. This suggests that the absence of start codons 
rendered them non-functional, implying that any muta-
tion could potentially affect their functions. Further, 398 
(14.65%) de novo genes were non-transcribed non-ORFs, 
evidencing they could be pseudogenes. We identified 173 
de novo genes that likely originated from the activity of 
MULE, TNT, and RE transposases. The origins of the 
remaining de novo genes remain undetermined. The dis-
pensable genes, a major player contributing to variability 
that codes for various Transposable Elements (TEs), pro-
teolytic enzymes, and regulators of biological processes; 
their proportion was about 53.69% in the superTranscrip-
tome. However, previous studies reported 63.6% of dis-
pensable genes in sorghum compared with rice, soybean, 
and Brachypodium sp., suggesting that sorghum is more 
genetically diverse than other crops (Xin et al. 2021). The 
past studies on sorghum reported that Transposable Ele-
ments (TEs) may play a role in the gene content variation 
(Voelker et al. 2023) and this work substantiated it but pro-
cesses, such as proteolysis and gene regulation, were not 
reported. Our findings showed that proteolysis and gene 
regulation contribute to the observed sorghum variability. 
Phylogenetic analysis based on gene presence/absence 
reported separate grouping of US and Asia-Europe origin 
sweet sorghum, highlighting geography-based selection of 
genes within sweet sorghum. Similar results were reported 
for gene PAV and SNP-based phylogenetic analysis of ten 
sorghum genome assemblies (Voelker et al. 2023). The 301 
genes are exclusive to sweet sorghum genomes, including 
hexokinases, core histones, cytochromes, etc. These 301 
were assigned gene ages based on their sequence similarity 
hits with c-DNA sequences of several C3–C4 outgroups 
and Arabidopsis which reported 18 were sweet sorghum-
specific ones. The synteny-based comparison revealed that 
out of these 301, only 58 were de novo genes for which 
gene ages were determined. These genes were newly 
evolved in sweet sorghum. A recent study reported that 
some histones and unique chromatin remodeling factors 
were newly evolved in sorghum (Hu et al. 2022).

Our DEU analysis reported more true positive genes 
in the superTranscriptome-based approach than SSRG 
when datasets were trained with the KNeighborsClassi-
fier method and gave better estimates of DEU when trained 
with the logistic regression method. superTranscriptome 
reported more differentially spliced genes; therefore, 
they were true transcripts. Additionally, the count-based 
method we used for gene-level abundance estimates and 
statistical inferences was superior to traditional TPM-
based methods (Soneson et al. 2016). DEU analysis of 
Rio and PR22 during internode development suggested 

that differential splicing is extensive in Rio and could be 
one of the reasons for the trait development in Rio.

Using two different sources, superTranscriptome, and 
SSRG, we have reported more differentially expressed 
genes (P value < 0.05) with superTranscriptome than with 
SSRG. superTranscriptome gives better estimates of DGE 
than SSRG when trained datasets with the logistic regression 
method. This demonstrated superTranscriptome reduces bias 
caused by using a single reference genome for genetic analy-
sis such as DEU and DGE (Davidson et al. 2017; David-
son and Oshlack 2018; Wang et al. 2023). DGE analysis of 
Rio and PR22 during internode development reported more 
LHCs and missing expression of Metallothionein-II in Rio 
under the Top 50 category, suggesting that higher expres-
sion of LHCs and lower expression of Metallothioneins con-
tributes to sugary internode. Metallothioneins move metal 
ions around, like copper  (Cu2+), and a lack of them causes 
metal ions to build up in different parts of plants (R. Ben-
atti et al. 2014). The past studies on Chenopodium murale 
(Llerena et al. 2021), Colobanthus quitensis (Contreras et al. 
2018), and sugarcane (Agarwala et al. 1993) reported cop-
per concentrations stimulate sugar levels in various plant 
parts, indicating the presence of the metal ions inside the cell 
positively regulates sugar accumulation in internode tissues.

SUT, SWEET, MYB, and NAC were important gene fam-
ilies controlling internode development in sorghum (Mizuno 
et al. 2016; Zhang et al. 2018; Hennet et al. 2020). Past 
studies reported six SUT genes with elevated gene expres-
sion in sweet sorghum stem internodes when compared with 
grain sorghum (Li et al. 2014; Babst et al. 2021). In previous 
studies, SUT4 was reported with putative deletions in Rio 
(Cooper et al. 2019); our de novo transcriptome assembly 
analysis with 223 RNA-seq accessions reported its pres-
ence, suggesting that SUT4 is present in the sweet sorghum 
population. Several SUT genes were reported in maize (4–7)
(Leach et al. 2017), rice (5)(Aoki et al. 2003; Hirose et al. 
2010), wheat (4)(Deol et al. 2013), and barley (5)(Rad-
chuk et al. 2017) with a variety of functions in growth and 
development. To date, 23 SWEET genes were reported in 
the sweet sorghum (Mizuno et al. 2016); however, SSRG 
reported only 21 SWEET genes, along with two with puta-
tive deletions, namely SWEET3–3 and SWEET8–2; but we 
reported 24 orthologs using a superTranscriptome-based 
approach. Interestingly, maize and foxtail millet also have 
the same number (24) of SWEET orthologs (Liu et al. 2022), 
suggesting that there could be a history of introgression of 
SWEET genes between sorghum, maize, and foxtail mil-
lets. Genome introgression between wild relatives and crops 
within the same family was reported in other crops also 
(Ellstrand et al. 1999; Hufford et al. 2013; Ananda et al. 
2020). In sorghum, plant-specific NAC-TFs control a variety 
of traits, including high cellular biomass (Xia et al. 2018), 
insect-pest resistance (Zhang et al. 2013), and drought/
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salinity tolerance (Sanjari et al. 2019; Punia et al. 2021), 
etc. In this study, we reported six new loci for NAC genes. 
One of them was involved in secondary cell wall develop-
ment, i.e., NAC-73–2* with remarkable PAV on 15 geno-
types, proposing that this gene contributes to variability in 
sweet sorghum. The number of NAC genes identified by the 
superTranscriptome approach was comparatively less than 
previously reported in the grain sorghum genome (Kadier 
et al. 2017) and the loss of NAC genes might be the reason 
for sweet phenotype development. Novel histone genes were 
located at the lower arm of chromosome 8 on SSRG, sug-
gesting that this region carries duplications of histone genes. 
The comparative genomics of sorghum and rice reported 
that 68.6% of genes were collinear between these two crops 
with several duplicated regions on chromosome 5 and 8 in 
sorghum (Paterson et al. 2009) which supports our findings. 
Most of our sweet sorghum-specific loci that encoded genes 
such as hexokinases, cytochrome b5, MYB, MULE-like 
transposes, and Zinc finger domain were greater in sweet 
sorghum than grain sorghum and formed clades with sor-
ghum and sugarcane in the phylogeny; suggesting that these 
genes might be ancestral copies. Past studies reported that 
most of the sorghum duplications were derived from ances-
tral gene families and a new transposon family was a major 
contributor to recent duplication in sorghum (Guo et al. 
2019). Interestingly, we found that MULE-like transposase 
genes were abundant in sweet sorghum, implying that this 
transposase family may contribute to ancestral gene dupli-
cations in sweet sorghum. However, the functions of those 
duplicated genes in sweet sorghum remained unknown. 
MULE-mediated duplication of host genes usually results 
in pseudogenes rather than new functional protein-coding 
genes (Juretic et al. 2005).

Our comparative analysis of one wild and two cultivated 
sorghum genomes using ScanPAV reported that both dele-
tions and insertions were frequent during sorghum evolution. 
The dry gene or the D locus on chromosome 6 regulates 
internode growth and midrib color qualitatively and natu-
ral mutants for this gene produce sugary internodes (Zhang 
et al. 2018). We reported major deletions ~ 2 kb in the D 
locus in sweet sorghum (Rio) in comparison with the grain 
sorghum (BTX623) and wild type (353); suggesting that the 
partial D locus was a major player that governs internode 
phenotype. These findings were consistent with the earlier 
sorghum report on juicy grain type sorghum (BTX623) that 
carries ~ 1.8 kb deletions in the D locus when compared to 
dry grain type (Ji2731) (Zhang et al. 2018). We also identi-
fied four additional NAC loci in sweet sorghum, beyond the 
previously known D locus, that have been affected by ter-
minal deletions compared to its wild progenitor (353). This 
suggests that deletions in NAC loci might play a significant 
role in the evolution of sweet sorghum. Previous research 
on the genomes of sweet and grain sorghum indicated that 

deletions and duplications could be found in a single gene 
or groups of related genes at the same time (Cooper et al. 
2019). This suggests that deletions or duplications occurring 
in specific genes or clusters of related genes could poten-
tially contribute to the differences observed between wild 
and cultivated sorghum.

Conclusion

The superTranscriptome identified 44,222 orthogroups in 
sweet sorghum consisting of 45,864 genes, with 301 genes 
unique to sweet sorghum. These genes are involved in func-
tions such as chromatin organization, gene regulation, sugar 
metabolism, and cell wall synthesis. A gene age analysis 
suggested that 18 of these genes might be newly evolved 
in sweet sorghum. superTranscript-based Differential Exon 
Usage (DEU) and Differential Gene Expression (DGE) 
analysis provided more accurate estimates than traditional 
methods and showed potential as replacements. The DGE 
analysis of Rio and PR22 showed that the top 50 highly 
expressed gene lists differed between these two genotypes 
during internode growth. In Rio, several Light Harvesting 
Complexes (LHCs) were prominent, while metallothionein-
II was absent in the top 50 categories. This suggests that 
active photosynthesis and metal ion transport play key 
roles in sugary internode development in Rio. Addition-
ally, expression patterns of various long non-coding RNAs 
(lncRNAs) and transcription factors (TFs) were linked to 
sugar accumulation. The superTranscriptome also identified 
more orthologs for agronomically important genes and sev-
eral tandem duplications across 15 genome assemblies. Rio 
reported the highest number (2,154) of tandem duplicates 
across all genomes, possibly due to transposase activity. 
Significant deletions (> 2 kb) in the D locus and terminal 
deletions in the other four NAC encoding loci were observed 
in sweet sorghum compared to its wild type (353) which 
could be one of the contributors to sweet sorghum evolution.
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