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Abstract
We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evo-
lution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact 
on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy 
production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our 
results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven 
by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates 
of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret 
molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes.

Keywords Non-equilibrium thermodynamics · Minimum entropy production principle · Evolutionary potential · Horizontal 
gene transfer · Mutations

Introduction

The evolution of biological systems is of fundamental scien-
tific interest. For decades, research from various disciplines 
has contributed to a deeper understanding of this fascinat-
ing topic. In particular, physical considerations have played 
a major role in recent research (Jeffery et al. 2019; Sum-
mers 2023; Kussell and Vucelja 2014). Driven by the high 
complexity of the problem, reductionist approaches have 
often been developed, attempting to describe evolutionary 
processes in terms of fundamental principles (Jeffery et al. 
2019). In this respect, especially Schrödinger has set the 
direction with the introduction of the negentropy concept 
(Schrödinger 1951), and further approaches brought entropy 
as a central quantity into the focus of corresponding studies 
(Brooks et al. 1988; Styer 2008; Sherwin 2018; Weber et al. 
1990; Sabater 2022; Martyushev and Seleznev 2006; Dem-
etrius 2000). More specifically, the concept of negentropy 

or negative entropy states that the entropy of living systems 
decreases or remains constant, contrary to the second law of 
thermodynamics (Schrödinger 1951). If one loosely associ-
ates entropy with the amount of disorder, this means that 
living species crucially differ from inanimate systems. Such 
assumptions have of course led to much discussion, as both 
are part of a single nature which can be described by the 
laws of thermodynamics. As an alternative to this paradox, 
information theory was also often considered to explain evo-
lutionary relations (Jeffery et al. 2019). This obvious con-
nection was motivated by considerations about Shannon’s 
information entropy (Shannon 1948) and the occurrence of 
order during evolution (Kauffman 1993). Accordingly, also 
statistical approaches were used to rationalize the principles 
of life and order following comparable concepts (Nielsen 
2006; Kauffman 1993; Ben-Jacob et al. 2000; Barato and 
Seifert 2015; England 2013; Perunov et al. 2016; Ramstead 
et al. 2018; Seifert 2012).

In contrast to such idealized approaches which are based 
on isolated living individuals without interactions and 
metabolism, network concepts for evolution are based on 
a more macroscopic and global description. Accordingly, 
a detailed description of the system behavior is replaced 
by simple regulating and empirical considerations, which 
thus drastically reduce the complexity of the assumptions. 
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In consequence, the emphasis here is on the second law 
of thermodynamics and the interactions between species, 
which should provide an approach to the emergence of life 
and order in the context of pattern formation and directed 
processes (Jeffery et al. 2019). Pioneering work in this area 
was published by Eigen and Schuster 1982; Eigen 1971a, 
b; Gánti 2003, 1997; Prigogine et al. 1972; Prigogine and 
Nicolis 1971. In particular, Gánti characterized the cell as 
the fundamental unit of life and as a chemical automaton 
by means of three essential points relevant for evolution 
(Schwille 2015). Accordingly, the main functionalities must 
be a self-replicating chemical motor, e.g., the cell metabo-
lism, a chemical information system, e.g., DNA/RNA, 
and a chemical boundary system such as cell membranes 
(Gánti 2003; Schwille 2015). These principles can thereby 
also be combined with descriptions of temporal evolution 
and the concepts of non-equilibrium thermodynamics for 
the consideration of dissipative systems in terms of pattern 
formation (Demetrius 2000; Toussaint and Schneider 1998; 
Nicolis and Prigogine 1971; Glansdorff and Prigogine 1971; 
Prigogine et al. 1972; Prigogine and Nicolis 1971).

Briefly summarized, the concepts of non-equilibrium 
thermodynamics are based on the study of entropy produc-
tion in open systems (De Groot and Mazur 1984; Glans-
dorff and Prigogine 1971). This means that living species 
as open systems constantly interact and exchange energy or 
material with their environment. Moreover, it is postulated 
that any system subject to evolutionary processes produces 
entropy which is an inherent indicator of system changes. 
This assumption of entropy production is fundamental for 
non-equilibrium thermodynamics, and thus, circumvents the 
paradox of the negative entropy for living systems. Accord-
ingly, it can be shown that most non-equilibrium systems 
relax either into equilibrium or into a stable steady state, 
which are characterized by a minimum of entropy produc-
tion (De Groot and Mazur 1984; Glansdorff and Prigogine 
1971; Lebon et al. 2008; Jaynes 1980). Hence, one no longer 
needs to consider negative entropies, but a minimum state of 
entropy production in the context of a dynamic description 
including thermodynamic fluxes and forces. Moreover, it can 
be shown that pattern formation and the occurrence of regu-
lar structures and directed processes in dissipative systems 
occur as a consequence of instabilities in the entropy produc-
tion (De Groot and Mazur 1984; Glansdorff and Prigogine 
1971; Lebon et al. 2008). One can assume that such instabili-
ties are also relevant for the emergence of life. Accordingly, 
it has been shown that thermodynamic concepts can enable 
simplified descriptions of ordered evolutionary systems 
(Prigogine et al. 1972; Vanchurin et al. 2022a, b).

Recent work on evolutionary principles has also consid-
ered fitness concepts and new theories of learning (Smith 
1993; Smith and Szathmary 1997; Sapp 2003; Orr 2009; 
Vanchurin et al. 2022a, b). A particular interesting approach 

was described in Refs. (Vanchurin et al. 2022a, b), where the 
authors introduced a thermodynamic approach in terms of 
the multilevel theory of learning. In a broader sense, learn-
ing was described as temporal adaption to different and mul-
tiple environmental conditions. Such learning processes can 
be loosely associated with genetic modification and muta-
tion which are expressed in the phenotype of the species 
and, thus, enable a better adaption to changing or challeng-
ing environments. Although the similarity is not obvious, 
this assumption is closely related to machine learning and 
the corresponding improvement of predictions with respect 
to the minimization of loss functions that describe the dif-
ferences between predicted and target values (Vanchurin 
2021). In general, one of the main advantages of this theory 
is the introduction of thermodynamic state variables and 
their corresponding interpretation in the context of evolu-
tion (Vanchurin et al. 2022a, b). The authors were able to 
propose several laws of learning that are closely related to 
genetic adaptation and the corresponding evolutionary pro-
cesses. Thus, molecular evolution is described as a learning 
process leading to optimized genetic adaptation (Vanchurin 
et al. 2022a). The associated evolutionary potential is closely 
linked to the underlying Malthusian fitness of individuals 
(Vanchurin et al. 2022a, b). Hence, genetic adaption inter-
preted as learning process tends to increase the fitness of 
species. Accordingly, the evolutionary species learn to 
adapt to environmental conditions, where progress can be 
described by the values of a loss function which describes 
the difference between the actual and the optimum state. 
This concept ensures a close connection between phenotype 
and genotype in accordance with the idea of adaptable vari-
ables. In more detail, the authors introduced different classes 
of adaptable and, thus, trainable variables such as the set 
of essential genes in a population. Thus, one can identify 
conserved variables that, unlike rapidly changing variables, 
do not have an instantaneous effect on changes of the phe-
notype. In contrast, there also exist certain rapidly changing 
and adaptable variables as essential genes which have an 
impact on the phenotype and, thus, lead to better environ-
mental adaption. Despite the groundbreaking idea of this 
approach, it should be noted that the underlying framework 
is deeply rooted in standard equilibrium thermodynamics. 
More specifically, the authors studied evolutionary processes 
without explicitly considering time dependence. However, 
as already mentioned, the concepts of non-equilibrium ther-
modynamics are particularly suitable for describing these 
phenomena on a macroscopic level (Prigogine et al. 1972; 
Jeffery et al. 2019). Accordingly, a combination of the mul-
tilevel theory of learning with concepts of non-equilibrium 
thermodynamics to describe temporal changes would cer-
tainly be of interest in order to gain deeper insights.

In this article, we will rigorously apply a non-equilib-
rium thermodynamic description to the multilevel theory of 
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learning for the study of molecular evolution processes. As 
main outcomes, we are able to identify the key contributions 
of thermodynamically described evolutionary processes and 
to characterize their biological meaning. The corresponding 
expression of entropy production for evolutionary processes 
depends heavily on two contributions that reveal distinct fea-
tures of mutational and gene transfer effects. Furthermore, 
we show that species that strive for optimal adaptation to 
environmental conditions can be characterized by the princi-
ple of minimum entropy production. Although our approach 
is based on strong simplifications, empirical assumptions 
and a macroscopic perspective, we assume that fundamen-
tal principles of molecular evolution can be described and 
interpreted with sufficient accuracy.

The article is organized as follows. The next section 
begins with a concise introduction to the thermodynamic 
description of the multilevel theory of learning (Vanchurin 
et  al. 2022a). Hereafter, we will rigorously apply vari-
ous concepts of non-equilibrium thermodynamics to this 
approach. The obtained expressions will be discussed and 
interpreted in a biological context in Section 4. We conclude 
our considerations with a brief summary and an outlook in 
the last section.

Background: Multilevel Theory of Learning

The multilevel theory of learning can be understood as a 
new thermodynamic approach which relies on the context of 
learning for the description of evolution and a connection to 
the origin of life (Vanchurin 2021; Vanchurin et al. 2022a, 
b). The respective framework introduces thermodynamic 
potentials and state variables but with a revised interpreta-
tion in the context of evolution (Vanchurin et al. 2022a). 
Moreover, certain empirical laws were introduced in close 
analogy to standard thermodynamics. In its most general 
form, the first law of learning reads

where U denotes the average additive fitness with the evo-
lutionary temperature T, the total entropy of the biological 
learning system S, the evolutionary potential � and the num-
ber of adaptable variables K. In general, the previous rela-
tion is closely connected to the first law of thermodynam-
ics which describes the internal energy change of a certain 
thermodynamic system. Compared to thermodynamics, the 
individual contributions TdS and �dK have a different mean-
ing but comparable mathematical properties. For instance, 
the average additive fitness U is also an extensive variable 
such as the internal energy change in thermodynamics. The 
entropy and the temperature have similar properties as in the 
first law of thermodynamics, but are brought into the context 

(1)dU = TdS + �dK,

of molecular evolution. Accordingly, the entropy S describes 
the amount of order or information in the learning system 
while the evolutionary temperature can be loosely associ-
ated with the corresponding general impact of environmen-
tal challenges which require a specific amount of relevant 
information for adaption. Finally, the evolutionary potential 
shows similar properties as the chemical potential in ther-
modynamics, but is connected to the number of adaptable 
variables instead of the number of particles or molecules. 
As can be seen, the evolutionary approach does not focus 
on different particle species, such that one defines K in the 
context of one evolutionary and, thus, learning individual. In 
addition, one can note that the average loss associated with 
the occurrence of a single nontrainable or a single adaptable 
variable can be identified, respectively, with T and � , and the 
total number of nontrainable and adaptable variables with S 
and K, respectively. This correspondence stems from the 
fact that S and K are extensive and, thus, additive variables, 
whereas T and � are intensive ones, as in conventional ther-
modynamics (Vanchurin et al. 2022a).

As an empirical assumption, it was postulated (Vanchurin 
et al. 2022a) that the number of adaptable variables reads

with the stochasticity factor b and the environmental popula-
tion size NE . The corresponding inverse relation

provides a more intuitive interpretation of Eq. (2), and we 
mainly use both empirical relationships for the sake of gen-
eral applicability in terms of developing a generic concept of 
learning without the need of further specification. Thus, the 
previous equations imply that the effective number of varia-
bles that can be associated with genes or sites in the genome 
that can adapt in a given population depends on the effective 
population size. Accordingly, the general concept can be 
interpreted in two ways. The first interpretation according to 
Eq. (3) is that a larger number of adaptive variables can be 
observed in larger populations due to simple statistical con-
siderations with regard to inheritance. Likewise, an equiva-
lent view applies to an individual, where it is assumed that 
a larger set of adaptive variables is based on the size of the 
population (Eq. (2)). If we now interpret the amount of adap-
tive variables as an actual realization of an ensemble, the 
corresponding approach represents a probability distribution 
over the degrees of freedom of a single organism or a prob-
ability distribution over the entire population of organisms. 
In the limiting case of an infinite number of organisms, the 
two interpretations are indistinguishable, but in the context 
of actual biological evolution, the total number of organisms 
is only exponentially large (Vanchurin et al. 2022a). It has to 

(2)K =
S

b
logNE

(3)NE ∝ exp(K)
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be noted that the corresponding relations rely on empirical 
assumptions, but if we assume that K is also proportional 
to the total number of genes in the genome, the previous 
relation is at least qualitatively supported by comparative 
analysis of microbial genomes (Novichkov et al. 2009; Sela 
et al. 2016; Kuo and Ochman 2009; Bobay and Ochman 
2017). In this context, the number of adaptable variables 
has been loosely associated with the set of essential genes 
responsible for key functions in the organism. According to 
this assumption, the connection between variables and their 
effects on the phenotype and genotype of an organism was 
also discussed (Vanchurin et al. 2022a).

As already mentioned, adaptable variables can be inter-
preted as the corresponding amount of reasonable informa-
tion in the genetic material which can change over time. 
The consideration of adaptable variables in connection with 
thermodynamic state functions can be seen as one of the 
most significant further developments of previous interpreta-
tions. This makes it possible to place genetic evolution in the 
context of thermodynamic considerations and, thus, to math-
ematically explain spontaneous occurrence within the frame-
work of the multilevel theory of learning. Under biological 
conditions, one can interpret the previous relation such that 
diverse and complex environments promote molecular evo-
lution as reflected by the number of adaptable variables. In 
more detail, if a population of NE organisms is capable of 
learning the amount of information about the environment 
as expressed by the environmental entropy S, then the total 
number of adaptable variables K required for such learning 
scales linearly with S and logarithmically with NE.

In more detail, Eq. (2) describes molecular evolution as 
the occurrence of meaningful information in the genome 
which can be measured as the amount of adaptable vari-
ables that change the phenotype of the individual. The intro-
duction of the population size can be seen as the amount 
of already available adaptable variables. Hence, it can be 
assumed that large populations in particular already have a 
sufficiently long evolutionary history, which has already led 
to a certain degree of adaptation in the context of essential 
gene modifications. Despite the fact that one can identify dif-
ferent classes of adaptable variables (Vanchurin et al. 2022a, 
b), we here focus on variables that can change over a reason-
able amount of time. Although this focus on a specific set of 
variables is a drastic simplification of the previous approach 
(Vanchurin et al. 2022a), it helps rationalize the main find-
ings of our study for the sake of clarity. In consequence, we 
assume that any environmental change that drives genetic 
adaption requires a change in the number of adaptable vari-
ables for optimal adaption.

Furthermore, it was postulated in the previous publica-
tions (Vanchurin 2021; Vanchurin et al. 2022a, b) that the 
second law of learning reads

which means that the entropy of the learning system 
decreases or remains constant in equilibrium. In a simpli-
fied interpretation, this means that the amount of informa-
tion either grows over time or remains constant. This clearly 
defines the direction of molecular evolution by means of the 
growth of genetic information, as this makes it clear that 
living organisms adapt to environmental changes over time 
through an increase in the number of adaptable variables.

Non‑equilibrium Thermodynamics 
and the Multilevel Theory of Learning: 
Entropy Descriptions for Molecular 
Evolution Processes

In general, the multilevel theory of learning is closely related 
to the concepts of negentropy as introduced by Schrödinger 
(Vanchurin et al. 2022a; Schrödinger 1951). As an exten-
sion of previous publications (Vanchurin 2021; Vanchurin 
et al. 2022a, b), we apply a full non-equilibrium approach 
to study explicit time dependencies of the underlying evo-
lutionary processes. This explicit time dependency has not 
been discussed so far but is essential to understand the tem-
poral changes in molecular evolution processes, apart from 
the consideration of the actual state which has already been 
anticipated in previous publications (Vanchurin 2021; Van-
churin et al. 2022a, b).

Non‑equilibrium Approach for the First Law 
of Learning

In the following, we assume that the first law of learning 
(Eq. (1)) is the fundamental relation for all upcoming con-
siderations. As a reasonable starting point for any non-equi-
librium description, we rewrite Eq. (1) according to

for all further calculations. This paraphrase can easily be 
justified by the fact that the change in entropy over time 
is fundamental to all the following conclusions in accord-
ance with thermodynamic descriptions (De Groot and Mazur 
1984; Glansdorff and Prigogine 1971; Lebon et al. 2008). 
Moreover, and in agreement with standard non-equilibrium 
thermodynamics (De Groot and Mazur 1984; Glansdorff and 
Prigogine 1971; Lebon et al. 2008), the properties of S, U, 
and K are evaluated in a specific isolated volume Ω = Ld 
with the arbitrarily chosen unit length L in d dimensions. 
Such a volume can be interpreted as a subsystem of a larger 
system with material and energy exchange. As we will later 

(4)
d

dt
S ≤ 0,

(5)dS =
1

T
dU −

�

T
dK
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see in the context of molecular evolution, this subsystem Ω 
can be populated with certain interacting individuals from 
one biological species. Accordingly, the corresponding spe-
cific densities ŝ, û and k̂ are defined by

and

Insertion of these relations into Eq. (5) yields

for i = 1,… ,N  individuals of an evolutionary species in 
the subsystem Ω . Thus, the introduction of the subsystem 
with different individuals gives us the chance to consider 
various organisms in a well-defined local environment. For 
simplicity, we assume that each individual differs slightly in 
the number of adaptable variables. Although all individu-
als come from the same generation, this variation can be 
explained by natural mutations and the corresponding differ-
ent ancestors and their inheritance rules such that the num-
ber of adaptable variables, and hence, meaningful genetic 
information varies. In the following, we explicitly focus on 
the temporal evolution of the state variables according to 
temporal differentiation of Eq. (9) in terms of

under the assumption that the temperature and the evolution-
ary potential are constant. The corresponding expressions 
for dŝ∕dt , dû∕dt and dk̂∕dt can be derived from standard 
continuum equations or balance equations (De Groot and 
Mazur 1984). The corresponding discussion of the con-
tinuum equations in analogy to thermodynamic derivation 
is shown in Appendix A. Insertion of the corresponding 
continuum equations from Eqs. (A1) and (A2) into Eq. (10) 
results in

with the fitness flux Q , the number of individuals density 
� = N∕Ω , the differential operator ∇L = (�∕�Lj) , the flux of 
adaptable variables J and the source term of the adaptable 

(6)S =∫Ω

ŝ dΩ,

(7)U =∫Ω

û dΩ,

(8)K = ∫Ω

k̂ dΩ.

(9)dŝ =
1

T
dû −

N
∑

i=1

𝜇i

T
dk̂i

(10)dŝ

dt
=

1

T

dû

dt
−

N
∑

i=1

𝜇i

T

dk̂i

dt

(11)𝜌
dŝ

dt
= −

1

T
∇LQ +

N
∑

i=1

𝜇i

T

(

∇LJi − k̆i
)

variables k̆ . Vectorial quantities are marked by bold sym-
bols. Here, it has to be mentioned that the number of indi-
viduals N in the volume does not necessarily has to coin-
cide with the population size NE . All vectorial quantities 
are denoted by bold symbols. In general, continuum equa-
tions, and thus, also Eq. (11) can be further decomposed 
into source and flux contributions, such that the general 
continuum equation for the entropy reads

with the entropy flux S and the internal entropy production 
source term � . In more detail, the entropy production source 
term � can be interpreted as an expression for the sponta-
neous change of entropy in the system. A simple thermo-
dynamic example for a physical system is internal friction 
that results in energy dissipation. Moreover, the entropy flux 
denotes all entropic changes as induced from fluxes inside 
and outside of the system. With a specific focus on the inter-
nal entropy production, Eq. (11) can be rearranged in terms 
of Eq. (12) such that

which highlights that the internal entropy production within 
the system of volume Ω is not vanishing (De Groot and 
Mazur 1984). In the following, we explicitly focus on the 
entropy production within the system for all our upcoming 
discussions. Under the assumption of a constant evolution-
ary temperature T, the previous relation simplifies to

which can be regarded as the fundamental entropy produc-
tion relation for molecular evolution processes in the chosen 
system with volume Ω for N individuals of a species. The 
assumption of constant evolutionary temperatures becomes 
even more reasonable under the approximation of small sys-
tem sizes such that inhomogeneities can be largely ignored. 
Accordingly, with Eq. (14), we have established a relation 
which allows us to focus on entropic changes as expressed 
in the changes of the adaptable variable number density in 
combination with the gradients in the evolutionary potential 
density.

For further exploration of the gradients in the evolution-
ary potentials, we introduce a resummation due to

(12)𝜌
dŝ

dt
= −∇LS + 𝜎

(13)𝜎 = Q ⋅ ∇L

(

1

T

)

−

N
∑

i=1

Ji ⋅ ∇L

(𝜇i

T

)

−

N
∑

i=1

𝜇ik̆i

T
,

(14)𝜎 = −

N
∑

i=1

Ji

T
∇L𝜇i −

N
∑

i=1

𝜇ik̆i

T
,

(15)𝜎 = −

N−1
∑

i=1

Ji

T
∇L

(

𝜇i − 𝜇Ñ

)

−

N
∑

i=1

𝜇ik̆i

T
,
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where we introduced a reference individual Ñ with evolu-
tionary potential 𝜇Ñ in relation to all other individuals with 
evolutionary potentials �i for i = 1, 2,… ,N − 1 . Hence, the 
introduction of the reference individual results in vanishing 
total fluxes 

∑N

i
Ji = 0 and 

∑N−1

i
Ji = −JÑ which rationalizes 

the form of the first term in Eq. (15) (De Groot and Mazur 
1984). Furthermore, it can clearly be seen that gradients 
between the evolutionary potential of individuals contribute 
significantly to the entropy production. In more detail, one 
can already see that the directed binary fluxes Ji between the 
reference individual and the remaining individuals promote 
vanishing differences in the evolutionary potentials. As we 
will later see, the corresponding fluxes may lead to changes 
in the number of adaptable variables and, thus, the amount 
of genetic information in order to compensate for the dif-
ferences. In principle, Eq. (15) can be regarded as a simple 
relation for the entropy production of molecular evolution 
processes in a volume Ω under the assumption of directed 
binary fluxes between the individuals (Eq. (15)). For a more 
detailed study, we include certain empirical relations for rea-
sons of clarity.

As a first step, we focus on the source term k̆ which 
accounts for the internal change in the number of adapt-
able variables. In a recent publication (Vanchurin et al. 
2022a), it was discussed that the number of adaptable vari-
ables can be written in terms of Eq. (2). Although this is 
an empirical relation without any claim of full validity, 
we here use this expression in combination with Eq. (A2), 
such that

which highlights the close connection to the change of the 
population size NE over time. It was already mentioned that 
larger populations correspond to a larger number of adapt-
able variables (Vanchurin et al. 2022a). In simple words, this 
means that larger populations tend to have a larger number 
of adaptable variables when compared to smaller popula-
tions. This is a simple consequence of different realizations 
of genomes which differ in their corresponding values of 
the genetic information. The underlying assumption can 
be linked to the fact that larger populations already have a 
longer evolutionary history behind them and are correspond-
ingly richer in genetic information. We adopt this idea in the 
following, so that the population size NE is also a good esti-
mator of the degree of genetic adaptation of each individual 
within the population. Accordingly, the present state is also 
a reflection of the past, whereby the respective mechanisms 
of inheritance of the information need not be defined in more 
detail. In order to obtain a realistic estimator for the popula-
tion size and, thus, for the degree of genetic information, we 
can use various empirical growth laws from the literature.

(16)k̆ = 𝜌
S

b

d

dt
logNE,

An often used empirical relation is the exponential 
growth law for populations of a chosen biological species 
(Begon et al. 2009) according to

with the growth parameter � . It has to be noted that such 
an approach is only valid as simplified assumption for bac-
terial growth and needs to be replaced by more accurate 
descriptions such as logarithmic growth expressions for 
more realistic considerations (Begon et al. 2009). However, 
for the sake of clarity, we discuss the further evaluation of 
the resulting expressions using such a simplified approach. A 
more realistic expression will be presented in the remainder 
of the article. The corresponding insertion of the exponential 
growth relation (Eq. (17)) into Eq. (16) and Eq. (15) yields

and

which underlines the strong connection of the entropy pro-
duction � with the growth rates due to the explicit occur-
rence of � in the right term. In accordance, one can assume 
that individuals from a fast growing population or a fast 
growing population in the past reveal a significant amount 
of entropy production according to substantial increases in 
the amount of adaptable variables. In more detail, Eq. (19) 
is a rather complex expression which needs to be simpli-
fied in order to draw some general conclusions for certain 
population examples. Such simplifications can be attributed 
to vanishing growth rates and a restriction in the number of 
individuals in the subsystem of volume Ω . The correspond-
ing calculations are presented in the Appendix B. As can 
be seen for vanishing growth rates and a small number of 
individuals, the entropy production for these limiting cases 
becomes more negative or stays constant over the course of 
time. Accordingly, one can conclude that a large number of 
individuals and large growth rates are essential for a sig-
nificant entropy production in terms of increasing numbers 
of adaptable variables and, thus, a larger amount of genetic 
information. As also shown in Appendix B, the full consid-
eration of all empirical relations without any restrictions on 
growth rates and for N individuals reads

in accordance with Eq. (19). For reasons of simplicity, it 
is assumed that the individual factors do not change for 

(17)NE = NE
0
e�t

(18)k̆ = 𝜌𝜔
S

b

(19)𝜎 = −

N−1
∑

i=1

Ji

T
∇L

(

𝜇i − 𝜇Ñ

)

−

N
∑

i=1

𝜔𝜌
𝜇i

T

S

b

(20)𝜎 = −ab2 Sn−2
N−1
∑

i=1

e
b

S
Ki
Ji

T
⋅ uiÑ −

𝜔a Sn

T

N
∑

i=1

e
b

S
Ki
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different evolutionary species. The corresponding relation 
already shows the tendencies of entropy production for inter-
acting individuals with directed non-vanishing fluxes Ji and 
uiÑ = (𝜕ΔKiÑ∕𝜕L) , where ΔKiÑ denotes the difference in the 
number of adaptable variables between the reference indi-
vidual Ñ and the remaining individuals. Moreover, as we 
have also discussed in the Appendix B, also single individu-
als in the system may influence the entropy production due 
to spontaneous changes in the number of adaptable variables 
or well-known cell division processes.

General Expression: Entropy Production 
for Evolutionary Processes

In summary, we have derived a simple and general rela-
tion for the entropy production of evolutionary processes 
(Eq. (15)). Further manipulation of non-equilibrium expres-
sions such as thermodynamic forces and fluxes in accord-
ance with the derivations shown in Appendix C results in 
Eqs. (C14), (C15), (C16), (C17), which can be combined 
with Eq. (16) and Eq. (2), such that the entropy production 
can be written as follows:

with

and

as two separate contributions for a system with N evolution-
ary individuals. As can be seen, the entropy production is 
mainly governed by differences in the evolutionary poten-
tials between the species for �HGT and the resulting fluxes 
in combination with temporal internal changes in the num-
ber of adaptable variables for �M as established from the 
number of ancestors or previous population sizes for refer-
ence species. For a more detailed evaluation of evolutionary 
entropy changes over the course of time, we focus on the 
entropy production rates as they will be introduced in the 
next subsection.

Entropy Production Rates

As is known for standard non-equilibrium thermodynamics, 
entropy production rates provide estimates for the temporal 
evolution of non-equilibrium systems in terms of structure 
and pattern formation as well as vanishing orders (De Groot 
and Mazur 1984). Comparable conclusions can also be 
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drawn for evolutionary systems. Thus, we aim to study the 
temporal evolution of biological systems in terms of changes 
in the number of adaptable variables and their corresponding 
consequences for the genetic information growth. As is fur-
ther discussed in the Appendix C, one can define the entropy 
production density under the assumption of the exponential 
growth law (Eq. (17)) and N = 2 individuals in the system 
Ω according to

with the free factors n and a after consideration of Eq. (17). 
These factors are closely related to loss functions as was in 
more detail discussed in Vanchurin et al. 2022a. Accord-
ingly, the previous relation highlights the entropy production 
rate for two individuals in a specific volume whose popula-
tion size follows the exponential growth law. Clearly stated, 
it does not mean that the actual population is restricted to 
two species but the reference individual only interacts with 
one individual from the same species in the considered sys-
tem. In agreement with standard non-equilibrium thermody-
namics, it has to be noted that the previous relation does not 
fulfill the requirements of minimum entropy production (De 
Groot and Mazur 1984) in terms of limt→∞ dP∕dt < 0 due to 
the properties of the exponential growth law limt→∞ NE = ∞ 
(Eq. (17)). As can be seen, the minimum entropy produc-
tion is only achieved for � = 0 , S = 0 or T = ∞ which cor-
respond to trivial non-evolutionary conditions. In general, 
the principle of minimum entropy production shows that the 
steady state of an irreversible process, e.g., the state in which 
the thermodynamic variables are independent of the time, 
is characterized by a minimum value of the rate of entropy 
production (Klein and Meijer 1954; Callen 1957). Accord-
ingly, one can assume that for any system with symmetric 
Onsager coefficients LAB = LBA (more details can be found in 
Appendix C) which is driven out of equilibrium by applying 
time-independent constraints on the thermodynamic forces 
approaches the steady state characterized by the minimum 
of the entropy production functional (Eq. (21)). Such a rela-
tion is of particular interest in order to study the properties 
of evolutionary systems. As molecular evolution can also be 
interpreted as a non-equilibrium process, one can speculate 
that the steady state of evolution is reached in accordance 
with the minimum entropy production principle. Accord-
ing to our previous calculations, however, it comes out that 
populations with exponential growth do not reach the mini-
mum entropy production state and accordingly also not a 
steady state. As the entropy production rate is determined 
by the number of adaptable variables, it can be concluded 
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that the corresponding number also has to grow to infinity 
for infinite population sizes.

A more realistic expression for the change of popula-
tion sizes is the logarithmic growth law (Begon et al. 2009) 
according to

with the limiting capacity Z, where any growth vanishes for 
limt→∞ NE = Z . Accordingly, we can calculate the entropy 
production rate for the first term in Eq. (C24) with N = 2 
which gives

in combination with Eq.  (25) with the definition 
ΔNE = NE

1
− NE

Ñ
 . For infinite times, it can be assumed that 

limt→∞ NE = Z according to Eq. (25), such that the previous 
expression in terms of limt→∞ ΔNE = 0 vanishes. In addi-
tion, one can interpret the previous relation in such a way 
that there exists a restricted number of adaptable variables 
and, thus, genetic variation, such that convergence is reached 
for the population to the same amount of genetic information 
after an infinite time period. As is shown in the Appendix C 
and D, the combination of the second term from Eq. (C22) 
with the logarithmic growth law for one individual N = 1 
with NE

1
= 0 in combination with Eq. (B6) yields

which results in vanishing entropy production rates for 
t → ∞ after further evaluation. A simple generalization 
to N = 2 is straightforward. Thus, it can be shown that 
Eq. (C22) in combination with the logarithmic growth law 
(Eq. (25)) results in

which highlights vanishing entropy production rates in the 
limit of infinite times. In accordance, this means that the 
production of adaptable variables reaches a maximum value 
for populations with limited size, such that a stable end state 
in terms of minimum entropy production can be reached. As 
most processes tend to decreasing entropy production rates, 
one may speculate that also evolutionary processes reveal 
the same behavior. Therefore, it is important to consider a 
limited population size for reaching a stable steady state. 
Accordingly, our results have shown that logarithmic growth 
laws or growth laws with final convergence for population 
sizes lead to vanishing rates of entropy production, which 
corresponds to the principle of minimum entropy production 
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for non-equilibrium thermodynamics. (De Groot and Mazur 
1984). In consequence, it can be assumed that the entropy of 
the considered biological system reaches a steady state after 
a sufficient amount of time.

Discussion

General Remarks

The previous mathematical framework provides certain 
aspects for biological interpretations. Fundamental insight 
into evolutionary processes can be derived from consid-
erations of the entropy production for non-equilibrium 
thermodynamic systems. As is known for thermodynamic 
processes, the study of the entropy changes over the course 
of time provides insights into certain aspects concerning 
the dynamic behavior of the system. Of particular inter-
est is the identification of stable steady states. In accord-
ance, we aim to identify stable steady states of molecular 
evolution as well as the most relevant contributions to the 
entropy fluxes and forces between evolutionary species. 
As a key observation, one can identify two contributions 
to the entropy production. For our upcoming discussions, 
Eq.  (21) needs to be interpreted in terms of the actual 
entropy production at a given time t0.

The first term �HGT  in Eq. (21) can be interpreted in 
terms of differences in the evolutionary potential for indi-
viduals in the subsystem Ω and the corresponding differ-
ences in the number of adaptable variables. Hence, the 
term Ji ⋅ uiÑ can be interpreted as the directed net flux of 
adaptable variables between two evolutionary individuals 
to compensate for the differences..

In addition, the second term �M also relies on the num-
ber of adaptable variables in terms of logNE ∝ K . In con-
trast to the first term, this contribution can be interpreted 
as the individual number of adaptable variables, which 
does not rely on certain interactions with other evolution-
ary species or individuals existing at the same time. How-
ever, the actual number of adaptable variables depends on 
the population size or the number of ancestors or genera-
tions in the past. Such an assumption relies on the empiri-
cal assumption that populations with a large size are well 
adapted to environmental conditions such that the number 
of adaptable variables reflect their corresponding fitness 
as a consequence of molecular evolution in the past. As 
can be seen, the most important parameters for entropy 
production are the evolutionary potentials of interact-
ing evolutionary individuals. Our previous discussion in 
the last section also highlighted that especially limiting 
growth laws lead to vanishing entropy production rates. 
Based on such results, we can conclude that finite growth 
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is fundamental to reach a steady state of evolutionary pro-
cesses with minimal entropy production.

Furthermore, our results allow for a simple interpre-
tation of the second law of learning (Eq. (4)). Although 
plausible based on previous arguments, this relation has 
only been postulated so far. According to our considera-
tions, we can associate this relation with the principle of 
minimum entropy production. Hence, it is not the entropy 
of the learning system that is described, but rather the 
convergence to optimal evolutionary states as stable steady 
states. In more detail, these states represent a unique char-
acteristic of non-equilibrium phenomena, so that the origi-
nal postulate of the second law of learning can be consid-
ered in a larger framework as a fundamental principle of 
approaching stable and steady evolutionary states.

Biological Interpretation

In the following, we will interpret the individual contribu-
tions of the entropy production within a biological context. 
For our following argumentation, we ignore limited life 
times of species as well as complex multicellular organisms. 
Thus, we basically focus on single prokaryotic cells such as 
bacteria or archaea whose number of adaptable variables 
depends on the previous population size. Accordingly, we 
assume that the current number of adaptable variables for 
the considered species is to be interpreted as inheritance 
from the respective previous generations in terms of genetic 
modification.

Of particular biological interest is the entropy produc-
tion expression as presented in Eq. (21). We start our inter-
pretation with the second term �M in Eqs. (21) and  (23). 
As was mentioned, pairwise interactions can be ignored for 
this term, such that any influence on the entropy production 
relies on the the individual contributions. Without replica-
tion or spontaneous changes in the number of adaptable vari-
ables, the entropy production remains constant, meaning that 
the amount of genetic information in the system does not 
change.

In agreement with Vanchurin et al. 2022a, we assume 
that the main driving factor for reaching a final stable 
evolutionary state is the adaption to the actual value of 
the environmental learning entropy S. Thus, for a given 
entropy S, we can assume a well-defined optimal number 
of adaptable variables KO that represents the optimal state 
of the species. If we now interpret the adaptable variables 
as genetic information (Vanchurin et al. 2022a), one can 
clearly see from Eq. (C22), that the evolutionary potential 
changes over time with growing K. In accordance with 
Eq. (B6) and in agreement with the discussion in Van-
churin et al. 2022a, a change of the evolutionary poten-
tial means a genetic adaption to the environment in terms 
of a higher Malthusian fitness. Due to the fact that such 

changes are solely due to the changes in the number of 
adaptable variables of an individual, we attribute the con-
tributions of �M without any self-replication processes to 
slow genetic mutation mechanisms, in line with biological 
considerations (Gillespie 1984; Kimura 1968; Bernstein 
et al. 1985; Li and Graur 1991). As was already men-
tioned, the actual number of adaptable variables depends 
on the population size of previous generations. Hence, 
such arguments point to the history and inheritance effects 
of previous predecessor prokaryotic cells with growing 
mutations which shared their genetic information in terms 
of K with the actual individual. If we only consider �M and 
ignore for the moment �HGT , one can clearly see that the 
entropy is as long as produced as K < KO . After reaching 
the optimal number of adaptable variables KO for a defined 
environmental entropy, any evolutionary driving forces 
such as gradients in the evolutionary potentials disappear.

The second contribution �HGT in Eq. (21) and Eq. (22) 
can be interpreted as an interaction mechanism between 
two or more evolutionary individuals in contact with a ref-
erence individual. As can be seen, this contribution also 
includes fluxes Ji ⋅ uiÑ related to the number of adaptable 
variables. In terms of a reasonable interpretation, we con-
sider such pairwise interactions in combination with fluxes 
in the number of adaptable variables as information flows 
which vanish for identical evolutionary potentials. In the 
limit of vanishing �HGT and for long evolutionary times, we 
can assume that the optimal number of adaptable variables 
for each individual is already reached. In combination with 
the mutation contributions from �M , the flux in the number 
of adaptable variables between the individuals leads to faster 
adaptation in combination with faster attainment of stable 
evolutionary states. Thus, horizontal gene transfer between 
bacteria, which enables rapid genetic adaptation, is a pos-
sible biological mechanism for interpreting the contributions 
to �HGT (Ochman et al. 2000; Keeling and Palmer 2008). 
The characteristics of this gene transfer show exactly the 
same properties as derived for �HGT . Accordingly, it should 
be noted that the balance of evolutionary potentials for 
�HGT is a process between randomly interacting individuals. 
In fact, horizontal gene transfer relies on the exchange of 
genetic material between two species in order to increase 
the overall evolutionary fitness. This indeed can be seen as 
a directed information flow. Hence, such a process circum-
vents the time-consuming molecular mutation processes due 
to ensemble effects of previous population achievements.

In general, the mutation rate in unicellular prokaryotes 
is orders of magnitude lower compared to different virus 
species (Drake et al. 1998). One could speculate that this 
accounts for nonexistent information flow such as horizon-
tal gene transfer between virus particles. The number of 
adaptable variables for viruses is rather small, so it can be 
assumed that �M is the only contribution which is efficient 
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enough to reach the stable steady state. Such findings could 
also explain the relatively high mutation rates for virus par-
ticles (Drake et al. 1998). In contrast, bacteriae have a larger 
number of K, so it makes sense to interpret information flows 
and the corresponding interactions as a more efficient route 
to a stable state of equilibrium.

Furthermore, it is also worth to mention that our find-
ings imply vanishing entropy production rates at evolution-
ary equilibrium (Ochman et al. 2000; Keeling and Palmer 
2008). Hence, molecular evolution within a given environ-
ment can be described as nearly analogous to standard ther-
modynamic adaption processes. Whenever an optimal adap-
tion is reached, the entropy production vanishes in terms of 
minimum entropy production principles which characterize 
a stable state. However, for fast changes in the environment 
as expressed by rapid changes in S, the number of adaptable 
variables needs to change. Hence, evolutionary processes 
can be regarded as comparable to thermodynamic non-equi-
librium processes.

As a result, our findings indicate that molecular evolution 
contributes to entropy production. We can identify internal 
adaptation processes (mutation) and directed information 
flow between different evolutionary individuals (horizon-
tal gene transfer). As long as entropy production exists, it 
can be concluded that the evolutionary optimal state and the 
corresponding number of KO have not yet been reached. In 
consequence, these implications show that the main driv-
ers of evolutionary processes are gradients in evolutionary 
potentials and internal mutational effects. Since nature tries 
to reduce entropy production in non-equilibrium processes, 
we consider molecular evolution as the directed change of 
biological systems to reach stationary states with vanish-
ing entropy production. Such findings are closely related to 
recent theories about dynamic kinetic stability (Pross and 
Pascal 2017; Pross 2011, 2005).

Embedding in the Context of Evolutionary Theories

The description of evolutionary processes using thermody-
namic and information-theoretical concepts has a long tradi-
tion (Agosta and Brooks 2020; Brooks 1994; Brooks et al. 
1988, 1989). In particular, the importance of transforma-
tive processes for the maintenance of metabolism and the 
exchange of materials and energy has often been taken into 
consideration in previous phenotype-oriented approaches 
(Agosta and Brooks 2020). In addition, information-the-
oretical concepts were also developed, which focused on 
the temporal behavior of entropy in the context of inher-
itance and the consequences for evolutionary micro- and 
macrostates of populations (Brooks et al. 1988, 1989). For 
these concepts, a close relationship between entropy in evo-
lution and statistical mechanics was also developed (Brooks 
et al. 1989; Agosta and Brooks 2020). In more detail, it was 

shown that for a system that evolves with time, thus, becom-
ing more complex, the corresponding phase space that is 
needed to describe all micro- and macrostates will grow over 
time (Smith 1988). For an evolving population and for a 
given level in a physical or biological information hierarchy, 
the difference between the entropy maximum and the actual 
entropy measures the organization of the system at that given 
point in time (Brooks et al. 1989; Agosta and Brooks 2020). 
The observed informational entropy which corresponds to 
the expressed information content is calculated based on the 
observed distribution of components. In contrast, the maxi-
mum possible informational entropy represents the potential 
information capacity in the system in its totally relaxed state 
without environment constraints, where it is assumed that all 
components of the system being distributed equiprobably 
throughout the system. The mathematical framework relies 
on partitioned Lebesgue spaces with automorphism which 
reveals that entropy in this information hierarchical models 
show increasing and concave properties when associated 
with increasing organization (Smith 1988). It was discussed 
that both entropies converge for long times which is equiva-
lent to a minimum entropy production as was introduced in 
this work (Brooks et al. 1989; Agosta and Brooks 2020). 
Accordingly, we can associate the corresponding entropy 
production in our previous considerations as the entropy 
production of the actual entropy of the system for evolution-
ary macrostates, meaning the information content of larger 
populations instead of individual species.

Within the context of standard evolutionary theories, 
three major pillars can be identified, which are referred to 
as Darwinism, Neo-Darwinism and hardened or modern 
synthesis (Agosta and Brooks 2020). Darwinism clearly cor-
responds to the original theory as outlined in the seminal 
book ’On the origin of species’ by Charles Darwin (Darwin 
1964). Neo-Darwinism already was introduced very early 
in the twentieth century by Kellogg (Kellogg 1908) among 
others (Fisher 1930; Mayr 1942; Dobzhansky 1937; Hux-
ley 1942). Modern synthesis was first proposed by Gould 
(Gould and Eldredge 1983; Gould 1983), who introduced 
the term ’hardening of the modern synthesis’ for what he 
perceived a progressive commitment of species to pan-
adaptationism and, thus, global adaption of organisms to 
environment conditions as proposed by Dobzhansky (1937). 
From a high level perspective, the three approaches can be 
seen as dependent developments in a historical context and 
can be described shortly as follows. For more details and for 
a detailed discussion of the historic developments, we refer 
the reader to the textbook by Agosta and Brooks (Agosta 
and Brooks 2020).

The central idea of the Darwinian theory is that natural 
selection drives evolution. Organisms with advantageous 
traits survive and reproduce, passing those traits to their 
offspring. Accordingly, evolution occurs gradually through 
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small, cumulative changes. As the molecular basis of inher-
itance was not known at that time, there is no link to the 
influence of genes and molecular mechanisms. In contrast, 
Neo-Darwinism combines Darwinian natural selection 
with modern genetics where genetic variation as the source 
of heritable traits is recognized. Despite its success, Neo-
Darwinism faces criticism due to limitations in explaining 
complex traits and rapid evolutionary changes. The hardened 
synthesis also known as modern synthesis finally merged 
genetics, natural selection, and population biology and it 
emphasizes species adaption to specific environments. In 
more detail, modern synthesis also addresses gene flow 
between populations and it explains how traits adapt to eco-
logical conditions such that natural selection is sharpened 
as a creative force. In summary, while Darwinism laid the 
foundation, Neo-Darwinism refined it with genetics, and the 
modern synthesis integrated diverse new aspects of evolu-
tion in terms of molecular biology and population dynamics 
(Agosta and Brooks 2020).

Moreover, it was recognized that Neo-Darwinism is pri-
marily a theory of stasis, while Darwinism is a theory of 
evolution (Agosta and Brooks 2020). As mentioned as few 
examples (Agosta and Brooks 2020), Darwinism in terms of 
evolution is the interplay of the nature of the organism and 
the nature of the conditions but the nature of the organism 
is being far more important for evolutionary changes over 
time. For Neo-Darwinism it can be stated that evolution is 
adaptation by random variation to changing environments 
but static and equilibrium considerations are key compo-
nents. A prime example for equilibrium considerations is 
the Hardy-Weinberg law (Hardy 1908; Weinberg 1908; Stern 
1943), which states that allele and genotype frequencies in a 
population will remain constant from generation to genera-
tion in the absence of other evolutionary influences. Accord-
ingly, modern discoveries such as gene shift, gene drift or 
mutation are ignored and general equilibrium between two 
states is assumed.

Further modern concepts also address questions of best 
adaption of species to environmental conditions. With regard 
to these considerations, novel approaches such as the sloppy 
fitness landscapes (Agosta and Klemens 2008; Agosta et al. 
2010; Agosta and Brooks 2020; Brooks and Agosta 2012) 
mainly focus on questions concerning ecological fitting of 
species to certain environments and constraints. The ability 
to adapt ecologically provides heritable systems with crucial 
degrees of freedom to cope with a changing environment 
by exploring new options in underutilized, less preferred or 
previously inaccessible parts of the fitness space. The ability 
to move from densely populated, deteriorating or disappear-
ing parts of the fitness space to new regions of the fitness 
space is the key to unlimited persistence even if this leads to 
reduced fitness of species. Accordingly, organisms will do 
what they can, where they can, when they can, within the 

constraints of evolutionary history as represented by inherit-
ance and ecological opportunity (Agosta and Brooks 2020). 
As was assumed in Darwinism, evolutionary dynamics are 
the result of simple inheritance with organisms in terms of 
non-zero fitness wandering through a sloppy fitness space. 
For Neo-Darwinism, the fitness space is highly optimized 
with fuzzy boundaries, and organisms do not change fit-
ness space without eliminating a less fit occupant (Agosta 
and Brooks 2020). However, although there are many more 
subtle differences between Darwinism, Neo-Darwinism and 
modern synthesis, certain aspects of our approach can be 
aligned with these standard concepts.

In general, an important concept of Neo-Darwinism is 
learning and adaption of highly adapted species in a nar-
rowly optimized fitness space. Evolutionary changes due to 
external conditions mainly evolve as new adaptions. When 
conditions change, the only way to escape this narrow fit-
ness state is to evolve new adaptations of the right kind at 
the right time. In contrast, Darwinism focuses on potentially 
inherited information accumulating faster than realized 
information and interacting with the environment that com-
prises a sloppy rather than a tightly optimized fitness space. 
Darwinism is about survival of the adapted, not survival of 
the fittest - it is about coping with change by changing, and 
for Darwinism the answer lies in the history of the biologi-
cal context (Agosta and Klemens 2008; Brooks and Agosta 
2012; Agosta and Brooks 2020).

According to the simplified considerations in our theory, 
we can attribute our approach as Darwinian rather than Neo-
Darwinism. Although adaptive variables are mentioned, they 
are treated in general terms, and the properties of genes are 
not explicitly mentioned or considered, nor are they explic-
itly included in the theory. Accordingly, modern concepts of 
gene drifts, shifts and advanced mutations are not included 
in the corresponding equations, which are, thus, formulated 
quite generally and broadly. In addition, concepts from pop-
ulation genetics and population dynamics are only margin-
ally considered. In detail, the corresponding approach con-
centrates on the temporal development of adaptive variables 
and the corresponding central driving mechanisms. Based 
on microstates, a macrostate entropy is defined, whereby its 
temporal changes are characterized by mutations or gene 
transfer in the context of minimum entropy production and 
non-equilibrium thermodynamics. Accordingly, broad adap-
tations to changes in external conditions are more likely to 
be assumed in our approach, in close agreement with the 
concept of sloppy fitness landscapes and corresponding 
broad adaptations in terms of adaptable variables. Despite 
this possible connection to previous evolutionary considera-
tions, however, our theory is clearly based on information-
theoretical concepts as discussed in earlier works (Brooks 
et al. 1988, 1989). According to our concept, molecular 
evolution occurs through multiple processes, and optimal 
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adaptation is mainly determined by external constraints and 
environmental conditions. In contrast to earlier approaches 
(Brooks et al. 1988, 1989), which characterize entropy as 
a measure of the complexity and degree of organization of 
the population, entropy takes on a different relevance in our 
theory.

Accordingly, we do not examine the effects and charac-
teristics of evolution, nor do we discuss various molecular 
biological approaches or selection mechanisms. Rather, we 
show that evolution must inevitably take place within the 
framework of an information-theoretical concept. The fun-
damental driving force of evolution, whose current state can 
be described by actual entropy production, is the long-term 
achievement of a minimum entropy production state which 
is biologically characterized by an adaptation of the popula-
tion to the given environmental conditions as expressed by 
the close linkage between pheno- and genotype. Accord-
ingly, evolutionary processes are treated from an informa-
tion-theoretical perspective, whereby answers to questions 
about biological effects and actions cannot be derived from 
this, in contrast to previous evolutionary theories such as 
Darwinism, Neo-Darwinism or modern synthesis.

Summary and Conclusion

We have presented a non-equilibrium thermodynamics 
approach for the study of molecular evolutionary processes. 
Based on earlier expressions from the multilevel theory of 
learning (Vanchurin et al. 2022a, b) we have introduced 
standard approaches from non-equilibrium thermodynam-
ics for the calculation of the entropy production. As we have 
discussed, the process of evolution cannot be associated 
with stable equilibrium and, thus, optimum genetic adap-
tion states, such that our approach addresses the temporal 
changes in the number of adaptable variables which affects 
the entropy production of the species. In general, we have 
defined entropy production and the entropy production rate 
for evolutionary processes using standard expressions from 
non-equilibrium thermodynamics in terms of generalized 
forces and fluxes. As a crucial approximation, we consider 
the number of adaptable variables as the genetic informa-
tion that needs to be optimized for reasonable environmental 
adaption. Our results show that only two processes contrib-
ute to entropy production. We have linked the correspond-
ing expressions to internal mutation processes and targeted 
information exchange in the sense of horizontal gene transfer 
between simple cells. Further results showed that only lim-
ited population sizes, as expressed by logarithmic growth 
laws, are allowed to reach a stable state of minimal entropy 
production and, thus, sufficient adaption. Furthermore, our 
results allow for a simple interpretation of the second law of 
learning (Eq. (4)). We were able to show that this postulate 

can be reconciled in the larger context of the principle of 
minimum entropy production for stable evolutionary sys-
tems. Accordingly, this relation describes the slow attain-
ment of evolutionary adaptation to given environmental 
conditions.

In summary, we have provided a thermodynamic analysis 
of evolutionary processes. Our results reveal the great simi-
larity between non-equilibrium thermodynamic processes 
and molecular evolution. However, it should be noted that 
we have focused solely on species with limited lifespans. 
Processes such as the birth and death of individuals and 
their effects on molecular evolutionary processes are there-
fore not the subject of our discussions. Accordingly, we 
have interpreted the current genetic information as a pure 
product of inheritance from the previous generation. The 
consideration of such events, as well as the consideration 
of sexual reproduction mechanisms cannot be addressed by 
our simple approach. However, since these mechanisms are 
also more complex, it can be assumed that mutational and 
horizontal gene transfer mechanisms dominated early life on 
Earth as most simple solutions for molecular evolution. Our 
results show that the goal of simple evolutionary processes 
is to achieve a reasonable number of adaptable variables or 
genetic information in terms of a stable evolutionary equilib-
rium. In addition, sufficient genetic adaptation can be viewed 
as a stable evolutionary state that exhibits the highest level 
of adaptation to given environmental conditions. We hope 
that our simple approach stimulates further research in this 
field, as molecular evolution is one of the most fascinating 
problems in the biological world.

Appendix A: Continuum Equations

In general, continuum equations provide insights into spon-
taneous changes and conservation or balance relations, 
respectively, for the variables of interest. In agreement with 
conservation laws (De Groot and Mazur 1984) for the inter-
nal energy, we define the continuum equation for the addi-
tive average fitness in terms of

with the fitness flux Q , the number of individuals density 
� = N∕Ω and the differential operator ∇L = (�∕�Lj) . Here 
and in the following, vectors are marked by bold symbols 
and letters. Notably, all further contributions such as exter-
nal forces are ignored in Eq. (A1). In more detail, Eq. (A1) 
states that the additive fitness can change due to fluxes in 
and out of the system. As can be seen, there is no source 
term in the considered subsystem Ω that causes a change 
in the additive fitness. Accordingly, it can be assumed that 

(A1)𝜌
dû

dt
+ ∇LQ = 0
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the fitness properties can only be carried in and out of the 
system, which in this context already has a connection with 
gene transfer from the subsystem to its environment and vice 
versa. In addition, the continuum equation for the number of 
adaptable variables reads

with the flux of adaptable variables J and the source term 
k̆ . The source term accounts for all internal changes in the 
number of adaptable variables. Accordingly, one can also 
assume that genetic information is brought in and out of 
the system but can also spontaneously occur in the subsys-
tem. Such an assumption is in good agreement with genetic 
mutation effects which may randomly change the number 
of adaptable variables and, thus, the genetic information..

Appendix B: Limiting Cases

As already mentioned in the main text, we will evaluate 
Eq. (15) for several limiting expressions. As a first approach, 
we focus on the restricted presence of one single individual 
in the subsystem with volume Ω.

B.1: One Single Individual

Accordingly, Eq. (19) reduces to

for N = 1 as limiting expression due to the assumption 
∇L𝜇Ñ = 0 . Here, it is assumed that the single individual is 
isolated in subsystem Ω such that any gradient in the evolu-
tionary potential vanishes. This also means that the evolu-
tionary potential of the individual stays constant. However, 
the actual entropy production is a consequence of the previ-
ous population growth rate and the actual learning entropy 
S which expresses the amount of information in terms of 
the actual number of adaptable variables. As was shown in 
Vanchurin et al. 2022a, the evolutionary potential can be 
written as

with the empirical relation (Vanchurin et al. 2022a)

including the free factors n and a. These factors are closely 
related to loss functions which can be used to monitor the 

(A2)𝜌
dk̂

dt
+ ∇LJ = k̆

(B3)𝜎 = 𝜔𝜌
𝜇Ñ

T

S

b

(B4)� =
dU

dK

(B5)U = aSne
b

S
K

progress of evolution (Vanchurin et al. 2022a). However, 
we do not need to discuss these parameters in more detail, 
as they are not affecting the discussions in the remainder of 
this article. More details on this discussion can be found in 
Vanchurin et al. 2022a. Differentiation of U with the number 
of adaptable variables K yields

after consideration of Eq.  (2), which can be inserted in 
Eq. (B3) according to

As can be seen, all parameters have positive values, such 
that � ≤ 0 . This clearly shows, that the entropy production is 
negative and remains constant over the course of time. How-
ever, there are two ways to change the entropy production 
in the system. One possibility is cell division, as is known 
for bacteria, which can lead to the formation of further indi-
viduals in the system under consideration, thus, making the 
sum rule of Eq. (19) valid again. The other possibility is 
spontaneous mutation and, thus, the change in the number of 
adaptable variables within an individual. Both possibilities 
may contribute to the entropy production of the system, but 
for the first case it becomes clear that also the first term in 
Eq. (19) becomes relevant whenever the number of adapt-
able variables between the individuals differ.

B.2: Two Individuals with Small Growth Rates ! → 0

As another limiting case in terms of vanishing growth rates 
� → 0 , one can see that Eq. (19) reduces to

for N = 2 with species 1 and Ñ . This can be related to two 
individuals of one species in the considered system volume. 
Moreover, corresponding conclusions as were drawn for the 
limiting case in Section B.1 apply. With the definition of the 
evolutionary potential (Eq. (B6)), it follows

with K1 = KÑ + ΔK1Ñ . Insertion into Eq. (B8) yields

w h i c h  c a n  b e  t r a n s f o r m e d  v i a 
∇L = (𝜕∕𝜕ΔKiÑ)(𝜕ΔKiÑ∕𝜕L) = (𝜕∕𝜕ΔKiÑ) ⋅ uiÑ to

(B6)� =
dU

dK
= ab Sn−1e

b

S
K = ab Sn−1NE

(B7)� = −
��a Sn

T
e

b

S
K
.

(B8)lim
𝜔→0

𝜎 = −
J1

T
∇L

(

𝜇1 − 𝜇Ñ

)

(B9)𝜇1 − 𝜇Ñ = ab Sn−1
(

e
b

S
KN

(

e
b

S
ΔK1Ñ − 1

))

(B10)lim
𝜔→∞

𝜎 = −ab Sn−1
J1

T
∇L

(

e
b

S
KN

(

e
b

S
ΔK1Ñ − 1

))
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where the dot product u1Ñ ⋅ J1 is either positive or nega-
tive with regard to the value of ΔK1Ñ . Moreover, all other 
parameters have positive values, such that lim�→∞ � ≤ 0 . 
Accordingly, we have introduced a directed flux of adaptable 
variables or genetic information between the two individuals 
as expressed by the aforementioned dot product. Accord-
ingly, this expression corresponds to transferred informa-
tion between individuals which can be loosely associated 
with horizontal gene transfer. However, it also becomes clear 
that increasing fluxes for the reference individual Ñ result in 
decreasing entropy values and, thus, an increase of meaning-
ful information.

Appendix C: Thermodynamic Forces 
and Fluxes and Entropy Production Rates

In general, one can define the entropy production density 
P = ∫ � dΩ (De Groot and Mazur 1984), such that

which shows that the entropy production rate becomes min-
imal over the course of time or even vanishes for steady 
states or after approaching equilibrium (De Groot and 
Mazur 1984). This is a consequence of certain considera-
tions regarding thermodynamic stability and the correspond-
ing values for the entropy production (De Groot and Mazur 
1984). Furthermore, one can write the entropy production 
in accordance with

with the thermodynamic forces X, the thermodynamic fluxes 
J and the Onsager coefficients LAB for C non-equilibrium 
contributions (De Groot and Mazur 1984). In more detail, 
this description shows that entropy production is driven by 
fluxes and forces as already discussed in the previous sub-
sections. The forces are usually gradients in the intrinsic 
variables such as chemical potentials, inverse temperatures 
or pressure among others. The non-vanishing contribu-
tions of the gradients induces fluxes in order to balance the 
gradients. In consequence, this approach shows that non-
equilibrium processes and fluxes usually relax and vanish 
when the gradients in the intrinsic variables and, thus, the 
thermodynamic forces decay. This relation between forces 
and fluxes can also be seen by JA =

∑N

B=1
= LABXB which 

highlights that a thermodynamic force XB induces a flux 
JA . In accordance with   (14) for C = 1 , it, thus, follows 

(B11)lim
𝜔→∞

𝜎 = −ab2 Sn−2e
b

S
K1
J1

T
⋅ u1Ñ

(C12)
dP

dt
= �

d�

dt
dΩ ≤ 0

(C13)� =

C
∑

A=1

JAXA =

C
∑

A=1

C
∑

B=1

LABXAXB

� = L11X1X1 , where X1 can already be identified from 
Eq. (15) as X1 = ∇L

(

𝜇i − 𝜇Ñ

)

 . In addition, one can see from 
the relation J = L11X1 (De Groot and Mazur 1984), that

in agreement with Eq. (20). Accordingly, the previous rela-
tion can be interpreted as an evolutionary flux which is 
caused by gradients in the evolutionary potential between 
the reference and the remaining individuals. Further iden-
tification of the term on the right hand side reveals that the 
number of adaptable variables Ki plays a decisive role. With 
regard to the relations

and the definition

the expression for the flux of adaptable variables (Eq. (C14)) 
can also be written as

which demonstrates that the differences in the evolutionary 
potentials and the differences in the number of adaptable 
variables between two species are the main driving factors. 
In agreement with our previous considerations, this rela-
tion clearly shows that evolutionary fluxes are driven by 
derivatives of gradients in the differences of the evolutionary 
potentials and the corresponding differences in the number 
of adaptable variables. In accordance, one can assume that 
the flux compensates for the gradients in the evolutionary 
potentials which means a change in the number of adaptable 
variables.

In general, the entropy production rate is governed by the 
entropy production coming from the thermodynamic forces 
and fluxes and can be written as

where the subscript m in dm∕dt denotes either the differentia-
tion of the flux (J) or the thermodynamic force contributions 
(X) in agreement with Eq. (C13). The detailed evaluation in 
combination with Eq. (C13) yields

(C14)Ji = L11∇L

(

𝜇i − 𝜇Ñ

)

= L11
b

S
e

b

S
KiuiÑ

(C15)∇L =
𝜕

𝜕ΔKiÑ

⋅ uiÑ ,

(C16)uiÑ =
𝜕ΔKiÑ

𝜕L

(C17)Δ𝜇iÑ = 𝜇i − 𝜇Ñ ,

(C18)Ji = L11
𝜕Δ𝜇iÑ

𝜕ΔKiÑ

⋅ uiÑ

(C19)dP

dt
=

dXP

dt
+

dJP

dt

(C20)
dXP

dt
= ∫Ω

L11X1

dX1

dt
dΩ = ∫Ω

L11
dX1

dt
X1dΩ =

dJP

dt
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which results in

after consideration of Eq. (C20) and Eq. (C12) and in agree-
ment with thermodynamic assumptions (De Groot and 
Mazur 1984). The previous relation allows us to study the 
presence of stabilities or pattern formation as well as the 
temporal behavior of evolutionary systems. Moreover, it 
shows that the entropy production rate becomes more nega-
tive or even vanishes over the course of time.

Finally, one can define the entropy production density 
(De Groot and Mazur 1984) after application of Eq. (15) in 
combination with Eq. (16) and Eq. (C12), which results in

giving under the assumption of the exponential growth law 
(Eq. (17)) the following relation

and thus

with NE
i
= exp(b∕SK) = �i∕(abS

n−1) for N = 2 individuals.

Appendix D: Influence of Logarithmic 
Growth Laws on the Entropy Production 
Rates

Insertion of the logarithmic growth law (Eq. (25)) into 
Eq. (16) yields

which can be inserted into Eq. (14) according to

under the assumption of N = 1 . The further evaluation of the 
second term of the entropy production rate under considera-
tion of Eq. (B6) yields

(C21)dP

dt
= 2

dXP

dt
≤ 0.

(C22)dP

dt
= −2∫Ω

dΩ

[
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T
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logNE
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T
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𝜔
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(C24)

dP
dt

= −2∫ dΩ
[

ab Sn−1
J1
T
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( �
�t
(NE

1 − NE
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+
��a Sn

T
�
�t

(

NE
1 + NE

Ñ
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]

(D25)k̆ =
𝜌S

b

𝜔(Z − 1)

e𝜔t + Z − 1

(D26)� = −
�i

T

�S

b

�(Z − 1)

e�t + Z − 1

which gives after insertion of the integrated logarithmic 
growth law from Eq. (25) in terms of

the following expression

(D27)
dP

dt
∝ −2�Ω

dΩ

[

a�Sn

T

�

�t

(

NE�(Z − 1)

e�t + Z − 1

)]

≤ 0.

(D28)NE = NE
0

Ze�t

NE
0
(e�t − 1) + Z

(D29)

dP

dt
∝ −2�Ω

dΩ

[

a�Sn

T

(

�NE
0
Ze�t(Z + 1)

(NE
0
(e�t − 1) + Z)(e�t + Z − 1)

)

�(t)

]

≤ 0

with

such that dP∕dt ∝ e−�t and hence

when combined with the first term of Eq. (19). Thus, 
limited growth laws lead to vanishing entropy produc-
tion rates.
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