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Abstract
Current evidence suggests that some form of cellular organization arose well before the time of the last universal common 
ancestor (LUCA). Standard phylogenetic analyses have shown that several protein families associated with membrane trans-
location, membrane transport, and membrane bioenergetics were very likely present in the proteome of the LUCA. Despite 
these cellular systems emerging prior to the LUCA, extant archaea, bacteria, and eukaryotes have significant differences 
in cellular infrastructure and the molecular functions that support it, leading some researchers to argue that true cellular-
ity did not evolve until after the LUCA. Here, we use recently reconstructed minimal proteomes of the LUCA as well as 
the last archaeal common ancestor (LACA) and the last bacterial common ancestor (LBCA) to characterize the evolution 
of cellular systems along the first branches of the tree of life. We find that a broad set of functions associated with cellular 
organization were already present by the time of the LUCA. The functional repertoires of the LACA and LBCA related to 
cellular organization nearly doubled along each branch following the divergence of the LUCA. These evolutionary trends 
created the foundation for similarities and differences in cellular organization between the taxonomic domains that are still 
observed today.
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Introduction

Cellular organization is a defining characteristic of all life 
on Earth. A detailed and accurate understanding of the 
emergence of cellularity is, therefore, crucial to our broader 
account of early evolutionary history. The subject, how-
ever, remains somewhat contentious due to countervailing 
lines of evidence, some of which indicates an early evolu-
tion of cellularity, perhaps even coincident with the origin 
of life, itself, and some of which indicates a late evolution 

of cellularity, perhaps even following the divergence of the 
LUCA into the separate ancestors of bacteria and archaea.

Protocell experiments have demonstrated that membranes 
can form spontaneously from prebiotically available com-
pounds such as decanoic acid (Namani and Walde 2005) as 
well as the lipid fractions of carbonaceous chondrite mete-
orites (Deamer and Pashley 1989), suggesting a possible 
role for membrane compartmentalization as early as the 
origin of life, itself. Artificial life simulations have shown 
that protocell encapsulation could have protected early rep-
licator genomes from parasites (Hogeweg and Takeuchi 
2003; Takeuchi and Hogeweg 2009; Shah, et al. 2019) and 
supported genomic stability in general (Takagi, et al. 2020). 
Other artificial life simulations have also shown that, in the 
kind of rich environment often associated with the origin of 
life, selection would have acted against protocell encapsula-
tion even if that encapsulation was imposed by the environ-
ment rather than produced by the life form, but that protocell 
encapsulation would have eventually co-evolved along with 
the first metabolic pathways (Szathmary 2007; Takagi, et al. 
2020).
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Phylogenetic reconstructions of universal paralog pro-
tein families have shown that cell membrane-associated 
proteins such as ABC transporters, ATP synthase enzymes, 
and the signal recognition particle system, all underwent 
gene duplications prior to the time of the last universal 
common ancestor (LUCA) (Gribaldo and Cammarano 
1998; Kollman and Doolittle 2000; Zhaxybayeva, et al. 
2005; Harris and Goldman 2021). This evidence would 
indicate that cellular organization was well in place by 
the time of the LUCA. However, the primary constituents 
of cell membranes, phospholipids, are radically different 
between archaea and bacteria (Pereto, et al. 2004; Sojo 
2019). Typical bacterial phospholipids contain fatty acid 
chains that are connected to the phosphate head group 
by an ester linkage, while typical archaeal phospholipids 
contain isoprenoid chains that are connected to the head 
group by an ether linkage. Though all bacterial and most 
archaeal phospholipids are composed of a head group 
and two hydrophobic tails that form a bilayer membrane, 
some archaeal phospholipids contain hydrophobic tails 
that bridge across the bilayer with a phosphate head group 
on either side. These differences in the main constituents 
of cell membranes, as well as the metabolic pathways 
that produce them, have been taken as evidence by some 
researchers that true cellular organization evolved after 
the time of the LUCA (Wachtershauser 1988; Koga, et al. 
1998; Martin and Russell 2003; Weiss, et al. 2016).

Given the different lines of evidence, some researchers 
have argued for a central role of protocell compartmentaliza-
tion as early as the origin of life itself (for example, (Saha 
and Chen 2015; West, et al. 2017; Damer and Deamer 2020; 
Nunes Palmeira, et al. 2022; Goldman 2023)) and that the 
last universal common ancestor was a fully cellular organ-
ism (Becerra, et al. 2007; Goldman, et al. 2023), while oth-
ers have argued that even by the relatively later stage of 
the LUCA, life forms were still not fully cellular (Wachter-
shauser 1988; Koga, et al. 1998; Martin and Russell 2003; 
Koonin and Martin 2005; Weiss, et al. 2016).

Here, we seek to reconcile the evidence for and against 
cellular organization by the time of the LUCA by identify-
ing protein families associated with cellular organization in 
minimal proteome reconstructions of the LUCA as well as 
its successors, the last archaeal common ancestor (LACA) 
and the last bacterial common ancestor (LBCA). In doing 
so, we portray, in broad terms, the kinds of cellular functions 
that likely were and were not encoded in the LUCA and 
how these functions appear to have expanded along the first 
branches of the tree of life. By complementing an analysis of 
LUCA cellular functions with an analysis of the subsequent 
evolution of those functions following the LUCA, we aim to 
provide context for major differences in cellular organization 
between the bacteria and archaea that can still be observed 
today.

Methods

Previously published minimal proteomes representing the 
LUCA (Crapitto, et al. 2022), the LACA (Williams, et al. 
2017), and the LBCA (Coleman, et al. 2021) were mod-
eled as EggNOG clusters of proteins (Huerta-Cepas, et al. 
2019), a proxy for families of homologous proteins. These 
reconstructions are referred to as minimal proteomes 
because some protein families present in the actual pro-
teome of each ancestor may have undergone subsequent 
loss or non-orthologous gene displacement and therefore 
would be absent from the ancestral proteome reconstruc-
tion (Koonin, et al. 1996). The LUCA minimal proteome 
(Crapitto, et al. 2022) was inferred through a meta-anal-
ysis of eight previously published LUCA proteome stud-
ies (Harris, et al. 2003; Mirkin, et al. 2003; Delaye, et al. 
2005; Yang, et al. 2005; Ranea, et al. 2006; Wang, et al. 
2007; Srinivasan and Morowitz 2009; Weiss, et al. 2016) 
and represents the consensus predictions between all eight 
studies. The LACA and LBCA minimal proteomes were 
inferred from tree reconciliation studies (Williams, et al. 
2017; Coleman, et al. 2021) using the Amalgamated Like-
lihood Estimation (ALE) algorithm (Szollosi, et al. 2013), 
which compares gene and species trees to estimate gene 
duplications and losses as well as horizontal gene transfer.

Data from the LUCA, LACA, and LBCA minimal 
proteome studies were acquired from the supplementary 
information associated with each of the three studies. The 
minimal LUCA proteome consisted of 366 EggNOG clus-
ters, the minimal LACA proteome consisted of 174 Egg-
NOG clusters, and the minimal LBCA proteome consisted 
of 397 EggNOG clusters. Gene Ontology (GO) terms 
(Ashburner, et al. 2000; Gene Ontology, et al. 2023) asso-
ciated with each EggNOG cluster were identified using 
the UniProt ID Mapping database (Bairoch and Apweiler 
1997; Huang, et al. 2011; UniProt 2023).

For each ancestral proteome, EggNOG clusters associ-
ated with cellular function were identified by searching 
for the following GO terms related to cellularity: “mem-
brane” (GO:0016020), “phospholipid biosynthetic pro-
cess” (GO:0008654), “phospholipid transfer to membrane” 
(GO:0006649), “protein targeting” (GO:0006605), “endo-
cytosis” (GO:0006897), “exocytosis” (GO:0006887), 
“transmembrane transporter activity” (GO:0022857), “cell 
division” (GO:0051301), “cytoskeleton” (GO:0005856), 
“structural constituent of cytoskeleton” (GO:0005200), 
“FtsZ-dependent cytokinesis” (GO:0043093), “single 
organism reproductive process” (GO:0044702), “mem-
brane fission” (GO:0090148), and “mitotic cell cycle 
process” (GO:1903047). After identifying EggNOG clus-
ters associated with broadly defined cellular functions, 
we gathered all other GO terms associated with these 
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EggNOG clusters (Supplementary Data 1) and removed 
non-cellular functions by hand. For each individual GO 
term, we also included all other GO terms that were more 
general (i.e., the parent terms of each term, the parent 
terms of those parent terms, etc.).

The Gene Ontology database contains annotations that 
are nested within more general annotations, or what the 
Gene Ontology database refers to as “parent” terms. For 
example, the GO term "SRP-dependent co-translational 
protein targeting to membrane" (GO:0006614) is nested 
within the more general parent GO term, “co-translational 
protein targeting to membrane” (GO:0006613), which itself 
is nested within the more general parent GO term "protein 
targeting to membrane" (GO:0006605). Different proteins 
within the LUCA, LBCA, and LACA, minimal proteomes 
were annotated at different levels of specificity and, overall, 
bacterial proteins tended to be annotated with more specific 
GO terms, while archaeal proteins tended to be annotated 
with more general GO terms.

In order to directly compare these datasets, we standard-
ized the level of specificity across all three ancestral min-
imal proteomes so that the presence or absence of mem-
brane-associated GO terms could be compared between the 
LUCA, LACA, and LBCA. To do so, we identified fifteen 
GO terms that appeared to be at a similar level of generality 

and then identified the direct child terms of these general 
GO terms. These general GO terms were “reproduction” 
(GO:0000003), “cytokinesis” (GO:0000910), “transporter 
activity” (GO:0005215), “cytoskeleton” (GO:0005856), 
“intracellular protein transport” (GO:0006886), “cytoskel-
eton organization” (GO:0007010), “cellular process” 
(GO:0009987), “asexual reproduction” (GO:0019954), 
“cell cycle process” (GO:0022402), “reproductive process” 
(GO:0022414), “reproduction of a single-celled organism” 
(GO:0032505), “secretion by cell” (GO:0032940), “trans-
membrane transport” (GO:0055085), “membrane organiza-
tion” (GO:0061024), and “import into cell” (GO:0098657). 
These general GO terms and their direct child terms are used 
in the analysis described below. Several of these general GO 
terms produced redundant child terms and were combined, 
resulting in the ten general GO terms shown in Fig. 1.

Results

Within the minimal proteomes of the LUCA, LACA, and 
LBCA, we found 39, 27, and 45, EggNOG clusters associ-
ated with membrane functions, respectively (Supplemental 
File 1). Most of these EggNOG clusters were identified using 
the “membrane” GO term: 33/39 LUCA EggNOG clusters, 

Fig. 1  Cellular functions associ-
ated with the minimal pro-
teomes of the LUCA, LACA, 
and LBCA. A The number of 
GO terms associated with cellu-
lar organization in each ancestor 
and the number of functions 
that are inferred to have been 
inherited, gained, and lost along 
each branch. Only GO terms 
that are direct child terms of the 
fifteen general GO terms relat-
ing to cellular organization were 
analyzed. B The total number 
of direct child GO terms within 
each category of general GO 
terms for each ancestor. Some 
of the original fifteen general 
GO terms produced redundant 
direct child GO terms and were 
combined. This figure was, in 
part, created with BioRender
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18/27 LACA EggNOG clusters, and 33/45 LBCA EggNOG 
clusters, representing 11%, 16%, and 11%, of the protein 
families in each ancestor’s proteome, respectively. Very 
few EggNOG clusters were associated with the “phospho-
lipid biosynthetic process” GO term: 4/39 LUCA EggNOG 
clusters, 1/27 LACA EggNOG clusters, and 1/45 LUCA 
EggNOG clusters. The primarily eukaryotic GO terms, 
endocytosis, exocytosis, membrane fission, and mitotic cell 
cycle process, did not yield any EggNOG clusters in the 
reconstructed proteomes of the LUCA, LACA, and LBCA.

We hierarchically standardized the collected GO terms 
in order to compare them across ancestral proteomes (see 
Methods). This hierarchical analysis resulted in fifteen par-
ent terms and fifty-seven direct child terms (Supplemental 
File S2). Comparing the non-redundant sets of direct child 
terms between the LUCA and the LACA or LBCA shows 
that 90% of GO terms associated with the LUCA were also 
present in the LBCA dataset while 62% of GO terms associ-
ated with the LUCA were present in the LACA dataset. The 
Jaccard similarity index between the LUCA and the LBCA 
GO terms was 43%, while the Jaccard similarity index 
between the LUCA and the LACA GO terms was 27%. The 
Jaccard similarity index between two datasets is calculated 
as the intersection, i.e., the number of shared items, divided 
by the union, i.e., the total number of items in both datasets. 
As a measure of similarity, it therefore takes into account 
both the number of shared items between two datasets and 
the sizes of both datasets. By both methods of comparison, 
i.e., the percentage of shared GO terms in the LUCA dataset 
and the Jaccard similarity index, the LBCA appears closer 
to the LUCA in terms of cellular functions, while the LACA 
appears more distinct from the LUCA.

The cellular functions associated with each ancestor and 
the differences between them are shown in Fig. 1. Most cel-
lular functions associated with the LUCA proteome involve 
transport across the membrane, including the transport of 
amino acids, carbohydrates, and ions. The LUCA proteome 
also encodes the ability to target proteins to the membrane, 
a function that would be required for embedding transporter 
proteins into the membrane in the first place. Other func-
tions associated with the reconstructed LUCA proteome 
are related to cell division, cell motility, cellular response 
to stimuli, cell wall organization or biogenesis, and cell 
aggregation.

Comparisons between cellular functions associated with 
the reconstructed LUCA proteome and that of its succes-
sors, the LACA and LBCA, are largely characterized by the 
introduction of new cellular functions with a small num-
ber of functions lost along each branch (Fig. 1). These new 
functions acquired by the LACA and LBCA following the 
divergence of the LUCA suggest a parallel evolution of new 
cytoskeletal elements and cell reproduction processes as 
well as differentiation with respect to specific membrane 

transport functions. The LBCA ancestral proteome also 
includes functions associated with horizontal gene trans-
fer (GO:0009292) as well as the killing of other cells (GO:0
001906) through toxin activity (GO:0090729).

Discussion

Inferring the proteomes of organisms that lived approxi-
mately 3.5-4Gya is inherently difficult (Crapitto, et al. 2022). 
EggNOG clusters may be incorrectly included or excluded 
from one of the ancestral proteomes due to limitations of the 
methodologies. For example, a protein family may have been 
present in the LUCA but lost to such an extent in subsequent 
lineages that it cannot be reconstructed as such. For simplic-
ity, we describe differences in the presence and absence of 
protein functions between the three ancestral proteomes as 
gains and losses, but these results can also be explained by 
methodological shortcomings. For this reason, we caution 
against interpreting the results of an individual protein fam-
ily being present in one of the ancestral proteomes as defini-
tive. Instead, we portray the evolution of cellular functions 
in the LUCA, LACA, and LBCA in broad terms that both 
address the competing hypotheses about when cellularity 
first evolved and also provide a roadmap for future research.

Taken together, these results suggest that the LUCA rep-
resents a population of cellular organisms. By the time of 
the LUCA, many different cellular functions had evolved, 
and these appear to have expanded during the subsequent 
evolution of the LACA and the LBCA. The small number 
of phospholipid biosynthesis enzyme families found in 
all three datasets agrees with the observation that bacte-
rial (and eukaryotic) phospholipids differ chemically from 
archaea. Recent evidence suggests that phospholipid chem-
istry is diverse even within the archaeal (Caforio and Dries-
sen 2017) and bacterial (Sohlenkamp and Geiger 2016) 
domains, which explains the lack of conserved phospholipid 
biosynthesis enzymes even within the LACA and LBCA 
proteomes. However, despite the lack of a clear signal of 
conserved phospholipid biosynthesis in any of these ances-
tors, other cellular systems were clearly in place at the time 
of the LUCA (Lombard, et al. 2012) and expanded upon 
during the evolution of the LACA and LBCA.

The cellular functions associated with the minimal LUCA 
proteome depict a cellular organism capable of embedding 
proteins within the membrane and controlling, to some 
extent, the translocation of ions and biomolecules across 
that membrane. Importantly, the LUCA also seems to have 
been capable of controlling its cell division rather than rely-
ing on spontaneous growth and division as is observed in 
protocells (Berclaz, et al. 2001; Hanczyc, et al. 2003). The 
LUCA also appears to have had at least some form of a 
cell wall even though cell wall composition is not universal 
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across the bacteria, archaea, and eukaryotes. The LBCA and 
LACA appear to have evolved additional functions related to 
transmembrane transport and cell reproduction and exhibit 
a parallel evolution of cytoskeletal elements. However, it 
is also possible that any or all of these features were pre-
sent in the LUCA as well, but were not reconstructed as 
such by our methods. The LBCA also evolved several other 
traits including cell killing through toxins and the ability to 
actively facilitate horizontal gene transfer, suggesting that 
it lived within a complex microbial ecology (Goldman and 
Kacar 2023).

Perhaps most intriguingly, LUCA appears to have more 
cellular functions in common with the LBCA than the 
LACA, suggesting that cellular organization in the LUCA 
was more like that of bacteria than archaea. If this trend is 
also true for phospholipid biosynthesis, it would imply that 
the LUCA membrane was composed of bacteria-like phos-
pholipids, i.e., fatty acid tails and an ester-linked phosphate 
head group, and that the archaeal phospholipids with iso-
prenoid tails and an ether-linked phosphate head group were 
derived in the LACA lineage following the divergence of the 
LUCA. Future studies pairing phylogenetic analysis with 
ancestral reconstruction will provide greater detail about 
specific protein families present in the LUCA, LACA, and 
LBCA, as well as the molecular functions that those proteins 
were performing in ancient life.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00239- 024- 10188-7.
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