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Abstract
Snakes in the family Elapidae largely produce venoms rich in three-finger toxins (3FTx) that bind to the α

1
 subunit of nicotinic 

acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle 
contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting 
system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry tech-
nique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specific mimotopes designed to resemble 
the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency 
on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composi-
tion. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we 
conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to 
other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target 
mimotope. Rather than a pattern of prey-specificity, we found that mimotopes modeled after snake nAChRs are less susceptible 
to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan→serine mutation within the orthosteric 
site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.
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Introduction

The genus Micrurus is part of the group of elapids known 
as the ‘true coral snakes’ along with Micruroides and 
Sinomicrurus. Micrurus is the most speciose genus of Handling editor: Darin Rokyta.
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elapids and can be found from Argentina to the southern 
United States of America (Campbell and Lamar 2004). 
Genetic and morphological evidence clearly distinguishes 
between two main clades within Micrurus: short-tailed 
and long-tailed (Campbell and Lamar 2004; Jowers et al. 
2019, 2023). In general, the short-tailed species are found 
in South America and possess a triadal color pattern (e.g., 
red-black-white-black-white-black-red) and tricolored tails, 
but include some bicolored species with bicolored tails as 
well. The long-tailed species are somewhat more variable; 
these mostly Central and North American species include 
bicolored, monadal (e.g., red-yellow-black-yellow-red), and 
triadal patterns with mostly bicolored tails (Campbell and 
Lamar 2004; Jowers et al. 2019, 2023). These clades are 
often referred to in the literature as ‘triadal’ and ‘monadal’ 
(Jowers et al. 2019, 2023; Gómez et al. 2021), but excep-
tions to these rules of color patterns abound. For the 
purposes of this paper, we will use the ‘short-tailed’ and 
‘long-tailed.’ The venom composition of the two groups 
also differs somewhat in that the venoms from short-tailed 
species are usually (though not exclusively) dominated by 
three-finger toxins (3FTx). In contrast, long-tailed spe-
cies produce venoms that range from being almost entirely 
composed of 3FTx to mostly phospholipase A 2 s (PLA2 s) 
(Lomonte et al. 2016; Sanz et al. 2019).

One of the most widespread toxic activities of 3FTx is 
antagonistic binding to the orthosteric site (the acetylcho-
line binding region) of nicotinic acetylcholine receptor 
(nAChR) α1 subunits (two of which along with a β , δ , and 
ϵ , form the heteropentameric muscular nAChR subtype 
(Tae and Adams 2023)), which are located at the neuro-
muscular junction (Galzi et al. 1991; Nirthanan and Gwee 
2004). This disrupts muscle contraction which can cause 
flaccid paralysis; this mode of action is often referred to 
as α-neurotoxicity (Barber et al. 2013). The plesiotypic 
form of 3FTx—which can be found in venoms from many 
caenophidian snakes at varying abundances—contain 10 
cysteine residues, which form 5 disulfide bonds to stabilize 
the structure of the toxin (Utkin et al. 2015). Ancestors 
of the family Elapidae evolved a derived form with only 
8 cysteines; these ‘short-chain 3FTx’ lost the second and 
third cysteines—which together form a disulfide bridge in 
Loop I of the plesiotypic toxins—and are much more potent 
as a result (Fry et al. 2003). A further derived form known 
as ‘long-chain 3FTx’—also found only in elapid venoms—
has evolved two new cysteines which form a disulfide 
bridge and stabilize Loop II (Utkin et al. 2015; Nirthanan 
and Gwee 2004). Although these long-chain toxins also 
contain 10 cysteines, the placement of cysteine residues 
is distinct from the plesiotypic form and protein sequence 
phylogenetic analyses confirm that they are derived from 
short-chain toxins (Fry et  al. 2003; Utkin et  al. 2015; 
Koludarov et  al. 2023). Long-chain and short-chain 

neurotoxins are known to compete with each other when 
binding to the nAChR α1 subunit, but they exhibit differ-
ent specificities and kinetics (short-chain toxins bind to 
and dissociate from the nAChR much quicker) indicat-
ing slightly different biochemical mechanisms of action 
and target sites (Ackermann and Taylor 1997; Silva et al. 
2018). Recent studies using cryogenic electron microscopy 
to investigate the binding of 3FTx to nAChRs confirm that 
plesiotypic, short-chain, and long-chain toxins all bind to 
the target receptors in noticeably different fashions (Rah-
man et al. 2020; Nys et al. 2022; Shenkarev et al. 2022).

Bio-layer interferometry (BLI) can be used as a method to 
assess the binding of α-neurotoxic snake venoms to mimo-
topes (small synthetic molecules which mimic an epitope) 
that are designed to resemble the nAChR orthosteric site 
from a wide range of taxa (Kamat and Rafique 2017; Zdenek 
et al. 2019; Harris et al. 2020a, b, c). Past studies have shown 
that similar mimotopes interact strongly with α-bungaro-
toxin (the best-studied long-chain neurotoxin), but this has 
not been explicitly demonstrated for short-chain neurotoxins 
(Bracci et al. 2001, 2002; Kasher et al. 2001; Katchalski-
Katzir et al. 2003). Other studies investigated mimotopes of 
the orthosteric site as potential treatments to inhibit the α
-neurotoxic activity of snake venoms by acting as decoys 
that keep the toxins from binding to the genuine receptors 
and found that the results were quite consistent for long-chain 
toxins, but unreliable for short-chain toxins (Albulescu et al. 
2019; Kudryavtsev et al. 2020; Lynagh et al. 2020). In this 
study, we use BLI to investigate the patterns of α-neurotoxic-
ity between species of Micrurus and across different targets.

The long-chain neurotoxins seem to have originally 
evolved shortly after the common ancestor of Micrurus and 
the more derived elapids diverged (Dashevsky and Fry 2018; 
Koludarov et al. 2023); 3FTx with the additional cysteines 
characteristic of long-chain neurotoxins have been published 
from all lineages of elapids besides Calliophis and the true 
coral snakes despite extensive transcriptomic investigations 
of these basal genera (Corrêa-Netto et al. 2011; Margres 
et al. 2013; Guerrero-Garzón et al. 2018; Tan et al. 2019; 
Bénard-Valle et al. 2020; Dashevsky et al. 2021; The UniProt 
Consortium 2023). Therefore, results obtained by studying 
Micrurus venoms more clearly demonstrate the effects of 
short-chain neurotoxins without the confounding presence 
of long-chain toxins. This makes these venoms an ideal test 
of whether and how short-chain neurotoxins bind to mimo-
topes of the nAChR orthosteric site. No other research has 
examined the binding of short-chain neurotoxins to α1 subu-
nit mimotopes specifically, and previous studies employing 
this method have only demonstrated significant binding from 
venoms that contain both short- and long-chain neurotoxins 
(Zdenek et al. 2019; Harris et al. 2020a, c).

Due to the high sensitivity of the BLI method, it can 
distinguish differences in how well a venom can bind to 
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the different mimotopes, which can help assess the prey-
specificity (greater toxicity against preferred prey species 
than other taxa) of that venom (Zdenek et al. 2019; Harris 
et al. 2020b, c). Prey specificity is a widespread phenomenon 
in snake venoms (da Silva and Aird 2001; Mackessy et al. 
2006; Pawlak et al. 2006, 2008; Barlow et al. 2009; Hey-
borne and Mackessy 2013; Modahl et al. 2018; Sousa et al. 
2018) and has been documented in Micrurus venoms using 
in vitro tests of whole venom (da Silva and Aird 2001). By 
using this BLI assay our results will clarify if this specificity 
is achieved through variation in the ability of these venoms 
to bind to the orthosteric site of the nAChR in their prey.

However, if coevolution can drive the evolution of prey-
selective venom, then it must also be considered that there is 
an opposing evolutionary pressure for the prey of Micrurus 
to become less susceptible to the toxins of their predators. 
Following the life-dinner principle, the selection pressure 
on prey populations may be even greater because the con-
sequence of a predation attempt for them is death rather 
than a missed meal (Dawkins and Krebs 1979). Resistance 
and reduced susceptibility to snake α-neurotoxins has been 
reported from a number of taxa which are either predators 
or prey of venomous snakes (Holding et al. 2016; Khan et al. 
2020). Mongooses, pigs, and hedgehogs—which are known 
to feed on venomous snakes—are less susceptible to elapid 
α-neurotoxins due to convergent amino acid substitutions in 
the orthosteric binding site of the muscular nAChR subunit 
and similar mutations can be found in elapids themselves 
(Barchan et al. 1992, 1995; Takacs et al. 2001, 2004; Drab-
eck et al. 2015). Primates have also been shown to possess 
nAChR mutations which reduce their susceptibility to α
-neurotoxins (Harris et al. 2021). Whether the immunity in 
elapids evolved as auto-resistance, in response to intragu-
ild predation, or both, is unclear. Some lizards and other 
snakes also show reduced susceptibility to the effects of both 
long-chain and short-chain neurotoxins (Burden et al. 2006). 
Further, a study addressing the effects of M. nigrocinctus 
venom on different taxa found that cows are less susceptible 
than horses (Bolaños et al. 1975). Another demonstrated a 
marked difference between two genera of dipsadine snakes 
that are known prey of M. nigrocinctus: Geophis spp. were 
susceptible while Ninia spp. were more resistant (Urdan-
eta et al. 2004). The latter study incubated M. nigrocinctus 
venom with N. maculata blood serum which had a protective 
effect when injected into mice; this suggests that the mecha-
nism of resistance is that the serum of N. maculata is able to 
directly inhibit the toxins rather than the presence of muta-
tions to their muscular nAChR subunit allowing them to 
resist the toxic effects (Urdaneta et al. 2004). A more recent 
experiment using the venom of M. tener found that the snake 
species Conopsis lineata could survive higher venom doses 
than mice, but that both groups were paralyzed at the same 
dosage (Bénard-Valle et al. 2014).

Based on the evidence that some Micrurus venoms 
exhibit prey-selectivity (da Silva and Aird 2001) and some 
natural prey might have a reduced susceptibility to their 
venom (Urdaneta et al. 2004), we wanted to test the effects 
of both short-tailed (8 venoms) and long-tailed (7 venoms) 
Micrurus venoms using BLI. We analyzed these venoms 
using 12 different mimotopes designed to resemble the mus-
cular nAChR orthosteric site from a range of taxa, includ-
ing some that are natural prey of Micrurus and others that 
are not. We also wanted to assess if the serine (S) at posi-
tion 187 of the muscular nAChR (the orthosteric site runs 
from 187–200 in the overall sequence of the receptor subu-
nit) found in most snake lineages conferred any resistance/ 
reduced susceptibility since this is a significant biochemi-
cal change from the ancestral tryptophan (W) (Khan et al. 
2020). To further test this, we designed a mutant based on 
the blind snake mimotope, substituting the natural 187 S for 
the ancestral W. Taken together, these data provide insights 
into the evolution of venom function within Micrurus and 
their coevolution with prey taxa.

Results and Discussion

Consistent with previous studies on neurotoxic snake 
venoms, the BLI method was able to detect orthosteric 
binding by Micrurus venoms, and interesting patterns 
emerged both in terms of the differences within Micru-
rus and between the targets (Fig. 1). Our results clearly 
show that the strength of binding measured by our assay 
depended on the species of origin for both the venom and 
mimotope. While short-tailed Micrurus venoms elicited 
very weak or no binding at all compared to the control of 
Crotalus horridus (a species chosen for its lack of nAChR-
binding neurotoxins (Rokyta et al. 2013, 2015; Harris et al. 
2020b), the venoms of many long-tailed species showed 
considerable binding to the targets (Fig. 1). Since Micru-
rus venoms do not contain long-chain neurotoxins, this 
confirms that the assay can be used to analyze the activity 
of short-chain neurotoxins that bind to the orthosteric site 
of the nAChR. A previous study that investigated the inter-
action of short-chain neurotoxins and nAChR mimotopes 
had reported very little binding, but those mimotopes 
were designed to resemble the orthosteric binding region 
of the α7 subunit (Albulescu et al. 2019), which is not a 
physiologically relevant target since it is located within 
the central nervous system, rather than at the neuromus-
cular junction (Gotti and Clementi 2004). 3FTx circulat-
ing in the bloodstream or lymphatic system are too large 
to reach the central nervous system but can readily affect 
the neuromuscular junction, which is why α-neurotoxins 
have evolved to immobilize prey by inhibiting this more 
accessible physiological target. Short-chain neurotoxins 
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are known to bind almost exclusively to the α1 rather than 
the α7 subunit (Ackermann and Taylor 1997; Servent et al. 
1997). Because the mimotopes in this study were designed 
to resemble the α1 subunit, this easily explains why our 
assay could measure the effects of these toxins where 
previous research had not. While this might be taken as 
evidence that decoy peptides that resemble the α1 subunit 

could have even greater potential as a therapeutic tool to 
help mitigate the neurotoxic symptoms of bites from coral 
snakes than the α7-derived ones (Albulescu et al. 2019), 
other patterns in our results cut against this conclusion.

One of the striking trends in our data was the variabil-
ity within and between species of Micrurus. The venom 
with the largest effect on average (and for every individual 
mimotope) was a sample of M. corallinus, while the other 
individual of this species that we tested had only the 6th 
highest average effect. This discrepancy between the two 
samples could result from regional variation within this spe-
cies or could be an indicator of potential cryptic speciation 
in this lineage. While there is no direct evidence for this lat-
ter hypothesis, species complexes are so widespread in this 
incredibly speciose genus (Roze 1996; Campbell and Lamar 
2004; Terribile et al. 2018; Nascimento et al. 2019) and new 
species which bear strong external similarity to their con-
geners are described with enough frequency (Di-Bernardo 
et al. 2007; Pires et al. 2014; da Silva et al. 2015; Bernarde 
et al. 2018) that the possibility bears mentioning. There is 
also a phylogenetic trend: the long-tailed Micrurus elicited 
a much greater response than their short-tailed relatives. 
Several short-tailed Micrurus venoms did not show appre-
ciably stronger binding than our negative control (Crotalus 
horridus) venom. This is especially interesting in light of 
previous findings that the venoms produced by some long-
tailed species (such as M. diastema, M. browni, M. tener, 
and M. fulvius) are dominated by  PLA2s—which are not 
known to bind to nAChRs—rather than 3FTx (Lomonte 
et al. 2016). Due to the variability of each venom’s binding 
across the different mimotopes, we could not simply com-
pare the means for each venom. Instead, we created a factor 
denoting whether the predominant toxin family in a given 
venoms was 3FTxs or  PLA2s and used two-way unbalanced 
ANOVA with type III sum of squares to simultaneously test 
the effects of this factor, the mimotope, and their interac-
tion. This analysis did not find a significant effect for the 
dominant toxin family ( p = 0.12 ) or the interaction between 
toxin family and sensor ( p = 0.99 ), but the sensor alone did 
have a significant effect ( p = 0.004 ). We then repeated this 
analysis using a factor capturing the short- and long-tailed 
clades rather than the dominant toxin family. We found that 
the average difference between short-tailed and long-tailed 
species was greater than twofold for each mimotope, that 
this was a statistically significant trend ( p < 0.001 ), that the 
variation across mimotopes was also significant ( p = 0.02 ), 
but the interaction between the two was not ( p = 0.71).

Outliers to this general pattern include the idiosyncratic 
species M. laticollaris at the base of the short-tailed clade, 
which was comparable to most long-tailed venoms, and 
the two North American species (M. tener and M. fulvius) 
which had much less effect than other long-tailed species. 
The similarity of M. laticollaris to long-tailed species is 
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Fig. 1  The binding of Micrurus toxins to muscular nAChR mimo-
topes varies greatly depending on the individual venom as well as the 
target: A Example results of Micrurus corallinus A venom binding 
to Dipsadine mimotope. Shaded regions indicate the area under the 
curve for each replicate that is then averaged. B Cells show the area 
under the curve (Mean ± Standard Deviation, N = 3 ) for the asso-
ciation step of the binding of each venom to each mimotope. Phy-
logeny on the left displays relationships between the venoms tested 
(short-tailed and long-tailed clades indicated by arrows, 3FTx-heavy 
venoms in purple and  PLA2-heavy venoms in teal), while the one on 
top displays the relationship between organisms on which mimotopes 
were modeled (clade of mimotopes based on snake sequences indi-
cated with arrow). Crotalus horridus venom was used as a negative 
control as it contains many related protein families, but none which 
target the nAChR (Rokyta et al. 2013, 2015). Phylogenetic topology 
for Micrurus species was primarily adapted from the results of two 
recent phylogenies (Jowers et al. 2023; Reyes-Velasco et al. 2020) and 
checked for consistency with previous findings (Slowinski 1995; Gut-
berlet  Jr and Harvey 2004; Pyron et  al. 2013; Figueroa et  al. 2016; 
Lee et al. 2016; Lomonte et al. 2016; Zheng and Wiens 2016; Zaher 
et al. 2019; Jowers et al. 2019; Gómez et al. 2021)
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especially surprising because the sequence of its primary α
-neurotoxin—MlatA1, UniProt K9MCH1 (Carbajal-Saucedo 
et al. 2013; Guerrero-Garzón et al. 2018)—is most simi-
lar to those of other short-tailed species: the top 10 most 
similar sequences in UniProt from other species all belong 
to short-tailed rather than long-tailed Micrurus (The Uni-
Prot Consortium 2023). This activity shift could potentially 
be an evolutionary innovation related to the large clades of 
short-chain 3FTx that are unique to long-tailed Micrurus and 
display strong signals of positive selection (Dashevsky and 
Fry 2018). However, the relatively similar results between 
M. laticollaris and most of the long-tailed species suggest 
an alternate hypothesis: that high binding may instead be 
an ancestral trait and that the main branch of the short-
tailed phylogeny evolved away from toxins that bind to the 
orthosteric site. This scenario also accords with the overall 
evolutionary history of the 3FTx since the ancestral state 
of the family—represented by the plesiotypic toxins—is to 
bind to the orthosteric site, and this activity has been widely 
demonstrated for more derived toxins as well (Barber et al. 
2013; Utkin et al. 2015; Rahman et al. 2020; Nys et al. 2022; 
Shenkarev et al. 2022).

This does not imply that species which produced small 
effects in this assay are necessarily less dangerous. Indeed, 
several of these species have been responsible for fatal 
bites in the past (Norris et al. 2009; Otero-Patiño 2014; 
Bucaretchi et al. 2016). This does not even necessarily mean 
that venoms which produce small effects do not inhibit the 
nAChR: post-synaptic neurotoxicity has been demonstrated 
in the venoms from a range of short-tailed (M. dissoleucus 
(Renjifo et al. 2012), M. laticollaris (Carbajal-Saucedo et al. 
2013, 2014), M. lemniscatus (Cecchini et al. 2005; Floriano 
et al. 2019), M. mipartitus (Renjifo et al. 2012), M. obscurus 
(Yang et al. 2017), M. pyrrhocryptus (Yang et al. 2017), 
and M. surinamensis (Harris et al. 2020a)) and long-tailed 
(M. dumerilii (Serafim et al. 2002), M. fulvius (Snyder et al. 
1973; Yang et al. 2017; Foo et al. 2019), and M. tener (Yang 
et al. 2017)) species. Earlier work has suggested that short-
chain toxins might act as allosteric inhibitors of the nAChR: 
toxins which bind to a site other than the orthosteric site 
but still disrupt the receptor’s normal function (Nirthanan 
2020; Harris et al. 2020a). This site may be located at other 
regions of the α1 subunit or other subunits of the muscular 
nAChR (which also include β , δ , and ϵ subunits). This pre-
vious research was focused on aquatic elapids including M. 
surinamensis, which is a short-tailed species, and our results 
suggest that allosteric 3FTx may be a feature in most of the 
rest of the clade as well. It has been put forward that allos-
teric 3FTx may be able to incapacitate prey faster than the 
more common orthosteric toxins, but would likely not bind 
as strongly (Barber et al. 2013; Harris 2022).

The possibility of wide spread allosteric toxins in Micru-
rus venoms casts doubts on the potential efficacy of decoy 

peptides as a potential therapeutic to combat bites from the 
genus. Some more recent studies into this area have used 
decoy peptides that do resemble the orthosteric site of the 
muscular nAChR and showed very potent binding with 
long-chain toxins (Kudryavtsev et al. 2020; Lynagh et al. 
2020), but if there are short chain toxins that are able to 
cause severe neurotoxicity without significant affinity for 
the orthosteric site, then such peptides are unlikely to be of 
much use in combatting their effects. Even beyond the possi-
bility of allosteric 3FTx, Micrurus venoms have been shown 
to contain potent neurotoxins from other toxin families that 
act through different mechanisms, including targeting the 
presynaptic side of the neuromuscular junction (Dal Belo 
et al. 2005; Oliveira et al. 2008; Bohlen et al. 2011; Terra 
et al. 2015; Floriano et al. 2019; Santos et al. 2020). This is 
particularly relevant for species that are known to produce 
primarily  PLA2s—which are often presynaptically neuro-
toxic—in their venom rather than 3FTx, such as some popu-
lations of M. laticollaris, M. lemniscatus, M. ibiboboca, M. 
diastema, M. browni, M. tener, and M. fulvius (Lomonte 
et al. 2016; Sanz et al. 2019). Since the BLI method can only 
assay binding to the orthosteric site, toxins that act on other 
sites, be they elsewhere on the receptor or on the other side 
of the neuromuscular synapse, will not display any binding 
in our results.

Another interesting facet of our results is the fact that 
mimotopes derived from taxa other than snakes tend to be 
more sensitive to Micrurus venoms (non-snake mimotopes 
were almost twice as susceptible as snake mimotopes on 
average, Fig. 2). To analyze these data, we used a similar 
approach as when we compared short-tailed and long-tailed 
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venoms, but used a new factor based on whether the mimo-
tope was derived from the nAChR sequence of a non-snake 
or a snake species and then analyzed this factor, the spe-
cies of origin for the venom, and their interaction. This 
once again confirmed that there is significant variation 
between the potency of the venom from different species 
( p < 0.001 ), but also that non-snake mimotopes are more 
easily bound by Micrurus venoms than those derived from 
snakes ( p < 0.001 ), and these variables interact significantly 
as well ( p < 0.001 ). Given the high proportion of snakes in 
the diets of most Micrurus species (Jackson and Franz 1981; 
Roze 1996; Marques and Sazima 1997; Marques 2002; Ávila 
et al. 2010; da Silva Banci 2017), our hypothesis of prey-
specificity driving venom evolution would generally predict 
increased potency against mimotopes derived from snake 
sequences. As discussed earlier, our assay is a window into 
a specific fraction of the total activity of a snake’s venom. It 
is possible that the holistic potency of these venoms would 
be greater against snake rather than non-snake targets, but 
within the limitation of our results we find evidence for prey 
resistance.

To further investigate the resistance of snake mimotopes, 
we created a pseudo-ancestral mimotope by modifying the 
sequence of the most basal snake mimotope (blind snake) 
to revert the derived snake serine (S) at position 187 back 
to the tryptophan (W) that most other taxa possess at that 
position. Two-way ANOVA shows that Micrurus venoms 
more easily bind to the pseudo-ancestral blind snake mimo-
tope than the normal blind snake mimotope ( p < 0.001 ). 
Variation between venoms from different species of Micru-
rus remained significant ( p < 2 × 10−16 ) and the interac-
tion between the two variables was marginally significant 
( p = 0.04 ). While these results clearly indicate that the 
W187S mutation reduces susceptibility to the binding of 
Micrurus toxins, Welch’s two-sample t-test shows that 
the ratio of the average response to a given venom of non-
snake mimotopes to that of snake mimotopes ( 2.01 ± 0.65 ) 
is significantly greater than that the ratio between the 
pseudo-ancestral blind snake mimotope and the normal 
one ( 1.43 ± 0.40 , p = 0.007 , Fig. 2). The source of this 
increased resistance is somewhat enigmatic since no other 
derived mutations are found in all and only snake sequences. 
Interestingly, the resistance conferred by this mutation seems 
to operate through biochemical mechanisms that do not 
interfere with the greater potency of the toxins from long-
tailed species. The long-tailed species have similar response 
ratios between non-snake and snake mimotopes as the short-
tailed species.

While 3FTx are an ancient family of snake toxins and 
have even been reported from very basal snake lineages 
including Pythonidae and Cylindrophiidae (Fry et al. 2013; 
Hargreaves et al. 2014), there is no published evidence they 
evolved before the divergence of the thread snakes and 

blind snakes from the more derived Alethinophidian snakes 
(Dashevsky et al. 2018; Koludarov et al. 2023). If indeed α
-neurotoxic 3FTx had not evolved before the most recent 
common ancestor of all extant snakes, selection to resist 
the binding of these toxins cannot explain the widespread 
occurrence of the W187S mutation. This tryptophan residue 
is largely conserved in most other chordate taxa and negative 
selection has been shown to act on this site in most lineages 
(Khan et al. 2020). A similar scenario has been observed in 
lineages that can resist toad toxins, but related taxa in toad-
free environments tend to lose the adaptation (Ujvari et al. 
2015), suggesting the adaptation comes at a physiological 
cost and is lost when it is no longer offset by the benefit of 
resistance. It is unclear whether the W187S mutation arose 
as a deleterious trait and persisted through chance, if it was 
a neutral mutation because something about the biology of 
snakes negated the penalty that other taxa would face, or if 
the common ancestor of snakes was exposed to some selec-
tive pressure that made the mutation adaptive at the time. 
Since then, however, snakes whose venoms contain 3FTx—
many of which are ophiophagus—have become widespread. 
Whatever its origins, the W187S mutation certainly seems to 
have been exapted to help protect snakes armed with these 
neurotoxins from the risk of self-envenomation and, perhaps 
more importantly, to protect snakes broadly from predation 
by their neurotoxic relatives.

Another factor that is not captured by our results is the 
possibility of prey taxa producing venom inhibitors rather 
than altering the targets, as has been well characterized for 
other families of snake toxins (Holding et al. 2016). Indeed, 
preliminary evidence suggests this might be the case for 
some snakes (Bolaños et al. 1975; Rodrigues et al. 2020, 
2021). Coupled with the W187S mutation at the muscular 
nAChR orthosteric site, such venom inhibitors could have 
a synergistic effect and grant high levels of resistance to α
-neurotoxicity. Along with other factors, including relaxed 
selective constraint and pressure from predators, multi-fac-
eted resistance has been suggested as one potential reason 
why so many neurotoxic snake venoms seem to be toxic to 
the point of overkill (Broad et al. 1979; Mebs 2001; Kundu 
et al. 2015; Aird et al. 2017; Gangur et al. 2018; Healy et al. 
2019). If their prey (other snakes) are resistant then venom-
ous snakes might need to evolve toward larger doses and/or 
more toxic venoms due to Red Queen dynamics (Van Valen 
1973). Since the model organisms (usually mice) are not 
participants in this specific arms race, the tests carried 
out on them may wrongfully suggest the venoms in ques-
tion are much more toxic than they are in practice in their 
proper ecological context. With this in mind, the reduced 
susceptibility to α-neurotoxins we observed among snakes 
relative to non-snake taxa may be just part of an ongoing 
arms race between predator and prey. Two studies have been 
carried out comparing the effects of Micrurus venoms on 
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dipsadine snake species and lab mice and both suggest that 
these snakes are much less susceptible to the lethal effects 
of the venoms, with the least resistant snake species exhib-
iting  LD50s threefold greater than the mice (Urdaneta et al. 
2004; Bénard-Valle et al. 2014). However, there is substan-
tial variation even within this subfamily of snakes and the 
more recent study found that there was no difference in the 
dosage required to paralyze the mice and snakes, which is 
a more ecologically relevant measure when considering the 
predatory purpose of the venom (Bénard-Valle et al. 2014).

Conclusion

This study examines a very particular mode of action among 
Micrurus venoms—binding to the orthosteric site of the 
nAChR—and reveals two particularly interesting patterns. 
The first is that there is substantial variation between and 
within Micrurus species and that the phylogenetic pattern 
suggests that the ancestral state of the genus was likely to 
produce toxins which bind strongly to the orthosteric site. 
Several lineages—including most of the short-tailed clade 
as well as the two North American species in the long-tailed 
clade—have shifted away from this specific target. The sec-
ond major trend was that targets which mimicked snake 
sequences were less susceptible to Micrurus venoms than 
those which mimicked other taxa. This is due, in part, to a 
W → S mutation in the orthosteric region, which is shared by 
snakes, but rare elsewhere. However, there is much more to 
even a simple venom than its potency at one specific site of 
one physiological target and these results may not be repre-
sentative of the broader picture of the arms race between α
-neurotoxic elapids and their snake prey.

Methods

Venom Samples

All venoms were stored as lyophilized powder as part the 
long-term cryogenic collections in the Venom Evolution 
Lab. Venoms for Micrurus fulvius (FL, USA), M. obscu-
rus (Brazil), and M. tener (TX, USA) were supplied by 
Miami Serpentarium. Nathaniel Frank of MToxins Venom 
Lab provided M. corallinus A venom. Venom from M. pyr-
rhocryptus was from an individual in the captive collection 
of Iwan Hendrikx that originally came from Suriname. José 
A. Portes-Junior, Anita M. Tanaka-Azevedo, Kathleen F. 
Grego, and Sávio S. Sant’Anna of Instituto Butantan pro-
vided the majority of the Brazilian venoms: M. altirostris 
(pooled from 3 individuals), M. corallinus B (pooled from 
3 individuals), M. frontalis, M. hemprichii, M. ibiboboca 
(pooled from 2 individuals), and M. lemniscatus. Venoms 

of Mexican Micrurus from Alejandro Alagón—M. browni, 
M. diastema, M. distans, and M. laticollaris—were manu-
ally extracted from Micrurus specimens kept at the “Herpe-
tario Cantil” from Instituto de Biotecnología–Universidad 
Nacional Autónoma de México. After extraction, venoms 
were diluted in MilliQ water, centrifuged 3 min at 10,000 
RCF to remove insoluble material, lyophilized and stored at 
4 °C until shipment.

As no live animals were used for this study, and all ven-
oms were from previously collected stocks, no animal eth-
ics approvals were required for this work. These lyophilized 
venoms were resuspended in water, centrifuged (4 °C, 5 
min at 14,000 RCF), and diluted into a solution of 1 mg

ml
 of 

venom in a 1:1 mixture of water and glycerol. Protein con-
centrations were measured using a NanoDrop 2000 UV–Vis 
Spectrophotometer (Thermofisher, Sydney, NSW, Australia).

Mimotope Production and Preparation

The sequences for the muscular nAChR were downloaded 
from the following UniProt entries: Tetronarce californica 
(fish, P02710), Xenopus tropicalis (amphibian, F6RLA9), 
Sarcophilus harrisii (marsupial, G3W0J0), Rattus norvegi-
cus (rodent, P25108), Gallus gallus (bird, E1BT92), Gekko 
japonicus (gecko, GenBank: XM015426640), and Anolis 
carolinensis (anole, H9GA55), Barisia imbricata (alligator 
lizard, A0A859JD35), Anilios bituberculatus (blind snake, 
UniProt: A0A7L5PIU6), Boa constrictor (boa, A0A7L-
5PLV8), Oxyrhopus rhombifer (Dipsadine, A0A7L5PLX4), 
and Pantherophis spiloides (Colubrine, A0A7L5PL14). 
These sequences were then aligned using AliView 1.18 
(Larsson 2014) and were trimmed down to the 14 amino 
acids of the orthosteric binding site. The alignment of these 
sites can be found in the Supplementary Data S1.

Subsequently, following previous protocols (Chiappinelli 
et al. 1996; Bracci et al. 2001; Kasher et al. 2001; Bracci 
et al. 2002) mimotopes of these sequences were developed 
by GenicBio Ltd (Shanghai, China). As per previous studies 
(Bracci et al. 2001), the cysteine doublet in the orthosteric 
binding site sequence was replaced in peptide synthesis 
steps with serine doublet to avoid uncontrolled postsynthetic 
thiol oxidation. Research has shown this has no effect on the 
analyte-ligand complex formation (Tzartos and Remoundos 
1990; McLane et al. 1991, 1994). The mimotope was further 
synthesized to a biotin linker bound to two aminohexanoic 
acid (Ahx) spacers to form a 30 Å linker between biotin and 
the peptide. This provides conformational freedom for the 
analyte-ligand complex. The purpose of adding the biotin-
Ahx complex is to allow the biotin molecule to bind non-
covalently to the avidin pocket of the streptavidin-coated 
disposable biosensors used in the bio-layer interferometry 
assay. Dried stocks of synthesized mimotopes were solubi-
lized in 100% dimethyl sulfoxide (DMSO) and then diluted 
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1:10 in deionized water to make a final working stock con-
centration of 50 μg

ml
 and stored at −80 ◦ C until use.

Bio‑Layer Interferometry

Full details of the assay, including a full methodology and 
data analysis, can be found in the validation study (Zdenek 
et al. 2019) and further publications using this protocol 
(Harris et al. 2020a, b, c, 2021; Chowdhury et al. 2022). In 
summary, the BLI assay was performed on the Octet Red 
96 system (ForteBio, Fremont, CA, USA). Venom (analyte) 
samples were diluted at 1:20 (a final experimental concen-
tration of 50 μg

ml
 per well). Mimotope aliquots were diluted 

at 1:50 (a final concentration of 1 μg
ml

 per well). The assay 
running buffer was 1X DPBS with 0.1% BSA and 0.05% 
Tween-20. Before experimentation, streptavidin biosensors 
were hydrated in the running buffer for 30–60 min. Elimina-
tion of bound venom toxins (regeneration) was performed 
using a standard acidic solution glycine buffer (10 mM gly-
cine (pH 1.5−1.7) in ddH2O). Raw data are provided in Sup-
plementary Data S2 and line charts similar to Fig. 1A can 
be found in Supplementary Figs. S1–S12. All data obtained 
from BLI on Octet Red 96 system (ForteBio) were processed 
following the protocol in the validation study for this assay 
(Zdenek et al. 2019). In brief, the raw data were exported to 
a.csv file. Area under the curve for the association step of 
each samples was estimated using trapezoidal approximation 
in Microsoft Excel 15.28. Because venoms are heterologous 
mixtures of multiple different toxins of unknown molarity 
in the assay we were unable to estimate the on and off rates 
of the binding reactions necessary to calculate dissociation 
constants. The presence of multiple toxins, some of which 
were able to weakly associate with the mimotopes also 
complicated the dissociation phase of the reaction which is 
why we focused on the association phase. Further statistical 
analyses were carried out in the RStudio 2023.06.1+524 
implementation of R 4.3.1 (RStudio Team 2015; R Core 
Team 2015). These data can be found in the Supplementary 
Material.
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