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Abstract
Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring 
varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adap-
tation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can 
lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown 
that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated 
the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-
producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) 
substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two 
lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences 
of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of 
the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages 
and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one 
site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many 
sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in 
human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights 
into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary 
history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. 
These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment 
and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.
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Introduction

Cetaceans (whales, porpoises, and dolphins) and pinnipeds 
(seals and sea lions) are aquatic mammals that evolved from 
different terrestrial ancestors about 50 and 30 million years 
ago (Ma), respectively (Fordyce 2018; Berta et al. 2018). 
However, cetaceans are exclusively aquatic while pinnipeds 
use both land and sea. Despite their differences in depend-
ence on the aquatic environment, these groups share sev-
eral morphological adaptations for underwater life. These 
include a streamlined body shape, modification of forelimbs 
into flippers, and a thick layer of fat for thermoregulation 
(Davis 2019). One striking characteristic of both cetaceans 
and pinnipeds is their diving behavior, which also demands 
many specific adaptations, especially in the physiology and 
metabolic homeostasis of hypoxia (Davis 2014; Blix 2018; 
Ponganis 2019).

Hypoxia is a condition where the concentrations of oxy-
gen  (O2) available for tissue usage are low, occurring in an 
acute form during the apnea diving periods (Ramirez et al. 
2007). Among the adaptations to deal with extreme hypoxia 
is the vasoconstriction of peripheral tissues that redistributes 
blood flow to oxygen-dependent tissues, and bradycardia, 
which is the reduction of heart rate to maintain blood pres-
sure (Zapol et al. 1979; McDonald and Ponganis 2013; Davis 
2014). One of the main challenges of vasoconstriction is the 
potential for ischemia, where limited blood flow can lead to 
reperfusion injury, which occurs when blood flow is restored 
to ischemic tissue, leading to the sudden production of reac-
tive oxygen species (ROS), such as superoxide  (O2

−) and 
hydrogen peroxides  (H2O2) (Murphy 2009; Kalogeris et al. 
2012; Hancock 2021). In normal physiological conditions, 
ROS plays an important role in cell signaling and metabo-
lism. However, excessive ROS production during reperfu-
sion, mostly from the xanthine dehydrogenase (XDH) path-
way, can cause oxidative stress, leading to cellular damage 
(Jones 2006; Halliwell and Gutteridge 2015). This increase 
in ROS production is observed in aquatic mammal tissues, 
nonetheless, they do not present higher oxidative damage 
than terrestrial ones (Elsner et al. 1998; Zenteno-Savín et al. 
2002; Wilhelm Filho et al. 2002).

The remarkable tolerance to oxidative stress seen in 
aquatic mammals is linked to their antioxidant enzyme sys-
tem. This system consists of a set of proteins with catalytic 
sites that stabilize and remove ROS from their tissues (Hal-
liwell and Gutteridge 2015). The main antioxidant enzymes 
include catalase (CAT), glutathione peroxidase (GPX), 
superoxide dismutase (SOD), and peroxiredoxins (PRDX). 
Several studies have investigated the activity of these 
enzymes by comparing the tissues of aquatic and terrestrial 
mammals, revealing the important role of these enzymes in 
the protection against oxidative stress (Zenteno-Savín et al. 

2011; Vázquez-Medina et al. 2012; Allen and Vázquez-
Medina 2019). Furthermore, the activity and expression of 
these enzymes vary between cetaceans and pinnipeds, sug-
gesting that lineages may have unique responses to oxida-
tive stress (Wilhelm Filho et al. 2002; Cantú-Medellín et al. 
2011; Geßner et al. 2022). These variations may be related 
to specific challenges, such as different depths and duration 
of dives, leading to specific adaptations in their antioxidant 
enzyme system.

The metabolism of aquatic mammals, including the 
antioxidant system, has been studied for many years from 
a metabolic perspective to better understand how it adjusts 
to a drastic change in the aquatic environment. With the 
advance of genomic sequencing and analysis, the availability 
of more mammalian genomes has grown and many genes 
related to hypoxia adaptations have been found to be posi-
tively selected in cetacean lineages (McGowen et al. 2014; 
Nery et al. 2013; Tian et al. 2016; Cabrera et al. 2021). Also, 
convergence studies between cetaceans and pinnipeds have 
proven to be a valuable approach, because, despite differ-
ences in habitat and diving behavior, both groups have been 
subjected to similar evolutionary pressures in their manage-
ment of oxygen (Zhou et al. 2015; Yuan et al. 2021). The 
antioxidant enzymes also have been targeted by genomic 
studies (Tian et al. 2018, 2019); however, many of them use 
a limited number of species and focus on cetaceans groups, 
lacking a more comprehensive and comparative approach 
between the Cetacea and Pinnipedia lineages, as well as a 
comparison between the evolution of the antioxidant system 
as a whole.

In this context, to better understand the adaptation of 
aquatic mammals to oxidative stress, our objective was to 
investigate the molecular evolution of genes involved in oxi-
dative stress derived from hypoxia in breath-hold dives. We 
estimated rates and identified sites under positive selection 
specific to each group of aquatic mammals in some of the 
antioxidant enzymes, responsible for removing ROS, and 
one of the producers of ROS, the XDH enzyme. Addition-
ally, we identify signs of positively selected convergent 
mutation in two deep-diving species, the Cuvier’s beaked 
whale and the Southern elephant seal. Finally, we inferred 
the possible impacts of these selected mutations on overall 
protein structure and function.

Material and Methods

Genomic Data, Sequences, and Alignment

To obtain the coding sequences (CDS) of the six antioxidant 
genes (CAT, GPX3, GSR, SOD1, PRDX1, and PRDX3) and 
the xanthine dehydrogenase (XDH) gene, we retrieved the 
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longest transcripts of these genes available from the NCBI 
database (https:// www. ncbi. nlm. nih. gov/) for 72 species of 
mammals (Supplementary Table S1). In 9 target species, 
annotated sequences were missing or incomplete, so we used 
the CDS retrieved from a closely related species as a query 
sequence in the NCBI BLAST tool (https:// blast. ncbi. nlm. 
nih. gov/ Blast. cgi) searching directly in the genome assem-
blies of target species (Supplementary Table S2.1). The cri-
teria of E-value < 0.05 and percent of identity > 90% were 
used to select the best results (Supplementary Table S2.2). 
Sometimes, because some of the genomes used as targets 
were fragmented, the sequence fragments returned by 
BLAST needed to be mapped to the query species gene, 
generating a concise sequence for our target species.

Nucleotide and amino acid sequences were aligned using 
the MUSCLE tool (Edgar 2004). Alignments were curated 
by removing or replacing incomplete sequences and tidying 
up mismatched regions. To obtain the codon alignments used 

in the evolutionary analyses, we used PRANK v.170427 
(Löytynoja 2014).

Phylogenetic Inference

We reconstructed the evolutionary history of the antioxidant 
genes by performing a phylogenetic analysis of both nucleo-
tide and amino acid alignments. Maximum likelihood (ML) 
phylogenetic reconstruction was performed using IQ-TREE 
v. 1.6.2 (Nguyen et al. 2015) with 1,000 bootstrap replicates 
to estimate branch confidence (Hoang et al. 2017), where 
nodes with support values ≥ 80 were considered robust. For 
Bayesian inference of nucleotide trees, we used PARTITION 
FINDER v. 2.1.1 (Lanfear et al. 2017) to estimate the par-
titioned evolutionary models using the Bayesian Informa-
tion Criterion (BIC) (Supplementary Table S3). The models 
inferred for each gene were used in MRBAYES v. 3.2.7a 
(Ronquist and Huelsenbeck 2003), where the posterior 
probabilities of the nodes were calculated applying Markov 

Fig. 2  Comparison of protein residues in which positive selection 
was identified in the BSM and complementary analysis. The residues 
were obtained from the protein alignment from each gene, in which 
it is possible to compare the amino acids from terrestrial mammals 
and substitutions happening in the aquatic mammals’ lineages. Specie 

trees are provided showing all the species used in our analysis and 
the lineages of interest used as foreground in each test are highlighted 
using different colors and shapes. Purple circle on the left: conver-
gence test with Cetacea + Pinnipedia marked; Blue triangle on the 
right: Cetacea test; Green rectangle on the right: Pinnipedia test

https://www.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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chain Monte Carlo (MCMC) running for 10,000,000 gen-
erations with four chains, and trees were sampled every 100 
generations.

Natural Selection Analyses

We used the codeml program in the PAML v. 4.4 package 
(Yang 2007) to estimate the evolutionary rates of genes 
under a maximum likelihood framework (MLE) (Goldman 
and Yang 1994). Codon substitution models were applied to 
estimate the rates of non-synonymous (dN) and synonymous 
(dS) substitutions to detect positive selection. The omega 
ratio—ω (dN/dS) is the measure used to infer the strength 
of the selection of codon changes, in which ω > 1 indicates 
positive selection, ω < 1 indicates purifying selection, and 
ω = 1 indicates neutral evolution. We used the codon align-
ments retrieved by PRANK and a species tree based on a 
mammalian phylogeny (Upham et al. 2019) available in 
VertLife (https:// vertl ife. org/).

We employed three different methods in codeml to detect 
positive selection in our data: branch models (BM), branch-
site models (BSM), and site models (SM) (Yang 1998; Yang 
and Nielsen 2002; Yang et al. 2000).

To detect selection in specific lineages, we used BM, 
which estimates the dN/dS for all branches in the tree as 
a null model or estimates separated ratios for foreground 
lineages and the background. We employed five branch 
models (Fig. 1): (a) one-ratio model (1ω), the null model; 
(b) two-ratio model (2ω), estimating one ω value for all the 
lineages of aquatic mammals (Cetacea + Pinnipedia), as fore-
ground, and one for all the terrestrial mammals, as back-
ground branches; (c) three-ratio model (3ω), distinguishing 
the clades within aquatic mammals in Cetacea and Pinnipe-
dia; (d) five-ratio model (5ω), separating the ancestral line-
age from its recent lineages inside each aquatic mammal 
group; and (e) seven-ratio model (7ω), separating the recent 
groups of Cetacea (Mysticeti and Odontoceti) and Pinnipe-
dia (Phocidae and Otariidae + Odobenidae). In each model, 
ω values were estimated for the branches previously marked 
in the phylogeny based on the species evolution.

To detect positive selection acting on a few sites along 
specific lineages, we used the BSM analysis. This method 
sorts the sites in ω classes and only allows ω2 > 1 in fore-
ground branches (Yang and Nielsen 2002). We applied 
the modified version (Zhang et al. 2005) using Model A 
as the alternative model, where there are four classes of ω 
and ω2 > 1 is only allowed in the foreground branches. We 
performed three tests: (a) convergence, with Cetacea and 
Pinnipedia as foreground branches; (b) Cetacea, where only 
the group of cetaceans were marked as foreground; and (c) 
Pinnipedia, with only pinnipeds as foreground (Fig. 2). As 
a comparative test, the same analysis was performed using 
close relative groups: Artiodactyla, Carnivores (excluding 

Pinnipedia), and both groups were marked together for 
convergence.

Finally, we performed SM to identify specific codon sites 
that may be under positive selection, regardless of the line-
age. In this model, each site in the alignment is distributed 
into different ω classes, and no foreground or background 
lineages are designated (Yang et al. 2000). We used the posi-
tive selection test, comparing the null model M7beta with 
the alternative model M8beta&ω (Supplementary Table S4).

We also performed selection analyses using the HyPhy 
package (Pond et al. 2005; Kosakovsky et al. 2020a). For 
branch-site tests, we used aBSREL and BUSTED, which 
estimate ω values in each branch of the tree. While aBSREL 
estimates the proportion of sites under positive selection in 
the tested lineages (Smith et al. 2015), BUSTED is a general 
approach for identifying gene-wide positive selection in the 
tested lineage (Murrell et al. 2015). We also used RELAX 
to calculate the strength of selection (i.e., whether it was 
intensified or relaxed) in our lineages of interest (Wertheim 
et al. 2015).

We used contrast-FEL to test sites with different evo-
lutionary rates between two subsets of a phylogeny evolv-
ing under different environmental conditions (Kosako-
vsky et al. 2020b). We also used site models like FEL 
(Fixed Effects Likelihood), SLAC (Single-Likelihood 
Ancestor Counting), and FUBAR (Fast, Unconstrained 
Bayesian AppRoximation), which identify PSS in a phy-
logeny using maximum likelihood, counting approaches, 
and Bayesian approaches, respectively (Kosakovsky et al 
2005; Murrell et al. 2013). These tests, together with SM 
in codeml, were used as complementary tests for sites 
identified in BSM models (Supplementary Table S5.1 
and S5.2).

Statistical Analysis

For the codeml models, to test whether dN was significantly 
higher than dS, we used a likelihood ratio test (LRT) com-
paring the likelihoods of the null (l0) and alternative (l1) 
models in the Eq. 2 X (l1 − l0) (Yang and Nielsen 1998; 
Yang 1998). The LRT results follow a χ2 distribution, and 
values with p < 0.05 were considered significant, supporting 
the alternative hypotheses.

Although BSM and SM estimate ω for site lineage and 
site only, respectively, they use the same statistical method 
to infer the posterior probability (pp) of each site in a ω > 1 
class, the Bayes empirical Bayes (BEB). Sites with signifi-
cant LRT and pp > 0.9 are considered positively selected 
(Nielsen and Yang 1998); however, we considered only the 
results of BSM to infer positively selected sites (PSS) in our 
lineages of interest, and SM was used as a complementary 
test, once it does not have a lineage specificity.

https://vertlife.org/
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Amino Acid Properties and Protein Structure

We used the program TreeSAAP v.3.2 (Woolley et  al. 
2003) to evaluate the physical–chemical changes induced 
by non-synonymous substitutions in protein residues 
within a phylogenetic context. The program categorizes 
these amino acid mutations into eight groups based on 
the magnitude of their physical–chemical effects, ranging 
from mild to radical substitutions. We used a goodness-of-
fit test, which yields a z-score, to determine whether these 
mutations were under positive selection. The results were 
treated in IMPACT-S v. 1.0.0 (Maldonado et al. 2014), 
generating a table with “Property by Site” where only sites 
with significant z-scores and substitutions in the categories 
6–8 were considered as being under positive destabilizing 
selection.

To assess the potential impact of positively selected 
sites on the protein structure and function, we employed a 
combination of bioinformatic tools and structural modeling 
techniques. First, we used AlphaFold Database (Varadi et al. 
2022; Jumper et al. 2021) and AlphaFold Colab (Alpha-
Fold v2.3.1.) in the UCSF ChimeraX v. 1.5 software (God-
dard et al. 2018; Pettersen et al. 2021) to model the protein 
structures of the target species and their close relatives (Bos 
taurus for Cetacea and Canis lupus familiaris or Felis catus 
for Pinnipedia). We then compared the regions of the pro-
tein with high confidence (pLDDT > 90) to identify potential 
changes induced by positively selected mutations (Supple-
mentary Figs S22–S28).

To further investigate the functional impact of the posi-
tively selected sites, we checked if they had known effects 
on human proteins. Using PolyPhen-2 (Adzhubei et al. 2010) 
based on the HumDiv dataset, we compared the wild-type 
properties of the amino acids with the mutant properties 
found in human variants that harbored the same mutations 
as the positively selected sites. PolyPhen-2 employs a Naive 
Bayes posterior probability score to estimate the damaging 
effect of amino acid replacements, classifying them into 
three categories of effect in the protein: benign, possibly 
damaging, and probably damaging. Finally, to gain addi-
tional insights into the function and evolution of the pro-
teins, we retrieved additional information from the UniProt 
(https:// www. unipr ot. org/). We visualized the protein models 
using the UCSF ChimeraX v.1.5 software.

Results

Dataset and Phylogenetic Reconstruction

We retrieved the longest and most complete transcript 
for each gene for 81 species from 15 mammalian orders 
using annotated CDS sequences and BLAST tool search 

(Supplementary Table S6). There was a variable number of 
represented species for each gene: 77 for CAT, 78 for GPX3 
and PRDX1, 72 for GSR, 79 for PRDX3, 75 for SOD1, and 
68 for XDH (Supplementary Table S1 and S2.2). The align-
ments showed conserved regions in the sequences corre-
sponding to functional domains of the proteins, with the 
PRDX1 gene being the most conserved one and GSR with 
a high variable region at the beginning of the sequences.

The topology of the phylogenetic gene trees recovers 
the main mammalian groups without evident accumulation 
of modifications in a specific branch (Supplementary Figs 
S1–S21). Most mammalian families had good support values 
for bootstrap (> 90) and posterior probabilities (> 0.9) in 
the nucleotide tree, especially the Cetacea and Pinnipedia 
groups. Because there were mostly minor disagreements 
between the gene tree and species tree, we used the species 
tree in the PAML selection analysis for a better delimita-
tion of the foreground branches and branch length. For the 
HyPhy analysis, we used the gene tree as recommended by 
the literature (Kosakovsky et al. 2005, 2020b; Murrell et al. 
2013, 2015; Smith et al. 2015; Wertheim et al. 2015).

Evolution of Antioxidant Enzymes is Accelerated 
in Aquatic Mammal Lineages

We performed branch analysis using different models to 
understand the selection patterns in the aquatic mammal 
branches. In all models, the background lineages presented 
similar values of ω for most genes ( X ω = 0.156, SD = 0.067).

In the CAT and XDH genes, the LRT test did not find 
significant changes in the substitution rates of foreground 
branches (Table 1), indicating no differences between rates 
of evolution of background and foreground lineages. In 
BM, we consider the genes evolutionary pattern as the most 
specific significative ω test, once the branch partitions are 
nested within each other in a hierarchical structure (i.e., 2ω 
is the general branch partition and within it, the 3ω, 5ω and 
7ω are each more specific ones). Differences between the 
terrestrial and aquatic mammals—2ω—were significant 
in the GSR gene (Fig. 1a), suggesting that aquatic mam-
mals (including cetaceans and pinnipeds) accumulated 
more mutations when compared to the terrestrial mammals 
included in our dataset. The 3ω fitted better for the SOD1 
gene, with Cetacea presenting a higher ω value than Pin-
nipedia (Fig. 1b), suggesting that aquatic mammal groups 
evolved at divergent rates for this gene. The 5ω better fit-
ted the gene PRDX3, which showed a higher accumula-
tion of non-synonymous mutations in crown lineages of 
aquatic mammals compared to the ancestral ones (Fig. 1c). 
The 7ω, which distinguishes ω values of crown lineages 
of cetaceans and pinnipeds, was a better fit for the genes 
GPX3 and PRDX1. GPX3 acceleration is likely caused by 

https://www.uniprot.org/
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the higher ω rates of the Odontoceti lineage (ω = 0.471), 
while Mysticeti had lower values (ω = 0.122). In PRDX1, 
all crown cetaceans accumulate mutations at higher rates 
than the other lineages (Odontoceti: ω = 0.509; Mysticeti: 
ω = 0.934) (Table 1 and Fig. 1d).

Positively Selected Sites in Aquatic Mammals

For the codeml BSM, the genes PRDX3 (LRT = 21.47, 
p = 0.0000) and SOD1 (LRT = 9.19, p = 0.0024) in 

Cetacea, as well as GSR (LRT = 9.22, p = 0.0024), 
PRDX1 (LRT = 4.78, p = 0.0289), and XDH (LRT = 13.74, 
p = 0.0002) in Pinnipedia as foreground showed a better fit 
under model A than the null model (Table 2). In these genes, 
the positively selected sites (PSS) were identified using the 
empirical Bayes’ method (BEB) at posterior probabilities 
higher than 0.9, resulting in 14 PSS in PRDX3 and three PSS 
in SOD1 for Cetacea, as well as one PSS in PRDX1 and six 
PSS in XDH for Pinnipedia. No PSS with significant BEB 
posterior probabilities were found for GSR. For the SM, 

Table 1  Log-likelihood and 
omega values estimated for 
various lineages models in 
the aquatic mammals’ groups 
retrieved by the branch model 
analyses using codeml 

The first value in the ω value column is always referred to the background branches. The next values are 
the foreground branches in each model: 2ω—Aquatic Mammals; 3ω—Cetacea and Pinnipedia; 5ω—stem 
Cetacea, Crown Cetacea, stem Pinnipedia, and Crown Pinnipedia; 7ω—stem Cetacea, Odontoceti, Mysti-
ceti, stem Pinnipedia, Otariidae + Odobenidae, and Phocidae. The P values in bold are the significant line-
age models tested

Genes Model l LRT p values ω values

CAT 1ω − 21,408.64 0.132
2ω − 21,408.64 0.00 0.9465 0.131 0.133
3ω − 21,407.98 1.31 0.2528 0.131 0.117 0.161
5ω − 21,407.57 2.14 0.5444 0.131 0.155 0.107 0.151 0.164
7ω − 21,407.13 3.01 0.6979 0.131 0.155 0.095 0.143 0.151 0.170 0.157

GPX3 1ω − 8958.99 0.161
2ω − 8957.99 2.01 0.1558 0.157 0.204
3ω − 8954.22 7.53 0.0061 0.157 0.291 0.105
5ω − 8953.04 9.89 0.0195 0.157 0.158 0.337 0.157 0.094
7ω − 8950.10 15.77 0.0075 0.157 0.160 0.471 0.122 0.156 0.124 0.080

GSR 1ω − 21,915.50 0.149
2ω − 21,910.97 9.06 0.0026 0.144 0.217
3ω − 21,910.72 0.50 0.4814 0.144 0.229 0.189
5ω − 21,910.64 0.65 0.8845 0.144 0.244 0.226 0.225 0.182
7ω − 21,910.55 0.84 0.9747 0.144 0.244 0.230 0.212 0.224 0.164 0.200

PRDX1 1ω − 5545.87 0.080
2ω − 5511.98 67.79 0.0000 0.058 0.343
3ω − 5507.35 9.25 0.0024 0.058 0.505 0.147
5ω − 5504.93 14.08 0.0028 0.058 0.000 0.547 0.175 0.145
7ω − 5502.43 19.10 0.0018 0.058 0.000 0.509 0.934 0.173 0.033 0.234

PRDX3 1ω − 10,576.33 0.172
2ω − 10,549.85 52.97 0.0000 0.151 0.482
3ω − 10,546.13 7.45 0.0064 0.151 0.584 0.198
5ω − 10,545.74 8.22 0.0417 0.151 0.412 0.593 0.094 0.221
7ω − 10,545.43 8.85 0.1152 0.151 0.409 0.624 0.569 0.094 0.150 0.278

SOD1 1ω − 7357.63 0.313
2ω − 7352.53 10.20 0.0014 0.296 0.578
3ω − 7349.84 5.37 0.0204 0.296 0.785 0.275
5ω − 7349.04 6.98 0.0725 0.296 0.623 0.823 0.000 0.311
7ω − 7348.20 8.65 0.1239 0.296 0.623 0.699 1.134 0.000 0.468 0.207

XDH 1ω − 49,196.81 0.140
2ω − 49,195.23 3.15 0.0759 0.138 0.162
3ω − 49,195.17 0.13 0.7188 0.138 0.165 0.155
5ω − 49,192.07 6.31 0.0974 0.138 0.122 0.177 0.284 0.135
7ω − 49,192.02 6.43 0.2670 0.138 0.122 0.174 0.186 0.285 0.140 0.130
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except for the PRDX1, all the other genes had a better fit for 
the alternative model M8 and PSS were identified, includ-
ing some from BSM (Supplementary Table S4). The total 
number of PSS supported by at least three methods (PAML: 
BSM and SM and HyPhy: Contrast-FEL, FEL, SLAC, 
FUBAR) were GPX3 (4), GSR (1), PRDX3 (4), SOD1 (7), 
and XDH (10). For more details on the PSS results, see Sup-
plementary Tables S5.1 and S5.2.

We checked whether the PSS identified in BSM analyses 
were exclusive to the aquatic mammal lineages. The GPX3 
gene shows the same mutations in cetacean groups and many 
other terrestrial species. In the GSR gene, contrast-FEL, FEL, 
FUBAR, and SLAC support a positive selection event on site 
450 (Supplementary Table S5.1 and S5.2), with an amino 
acid change from arginine (Arg) to serine (Ser) in three pin-
niped species (Odobenus rosmarus, Neomonachus schauin-
slandi, and Phoca vitulina). However, such change is also 
shared with Eubalaena japonica, Bos taurus, and Bubalus 
bubalis. For the PRDX3 gene, only the PSS 209 had muta-
tions that were exclusive to cetaceans. For SOD1, five out of 
seven PSS had exclusive changes in cetaceans (54, 103, 110, 
114, and 115). Finally, for XDH, only 4 out of 10 sites had 
specific changes in pinnipeds (78, 434, 591, and 595). See the 
amino acid substitutions for these sites in Fig. 2.

For the Hyphy branch-site methods, no evidence of posi-
tive selection was identified in the pinnipeds group. On the 
other hand, for cetaceans, the RELAX test identified evi-
dence of relaxation in the genes CAT, GPX3, and PRDX1 
and selection intensification in the PRDX3 gene. For the 
GSR gene, the aBSREL test indicated a signal of positive 
selection in the clade Delphinidae (Tursiops truncatus, Orci-
nus orca, Lagenorhynchus obliquidens, and Globicephala 
melas), suggesting that this group may have experienced a 
different selective regime during cetaceans’ evolution. This 
test also showed a signal of positive selection in SOD1 for 
the Lipotes vexillifer lineage, but when the alignment was 
checked, sites with exclusive mutations for this species were 
not identified as PSS by any other methods.

The BSM using the close relatives groups of Arthio-
dactyla, Carnivores (except Pinnipedia) and convergence 
(Artiodactyla + Carnivora) had better fitting of the alterna-
tive model A for SOD1 in Artiodactyla with 25 and 37 as 
PSS and XDH in Carnivora with 575, 842, 892, and 1491 
as PSS (Supplementary Table S7). The PSS identified here 
for the genes SOD1 and XDH were not the same as the ones 
found for any lineage of aquatic mammals, suggesting that 
selection is not acting in the same sites in close groups.

Convergent Evolution

To test for convergent selection between cetaceans and 
pinnipeds, we used the same codeml branch-site approach 

but selected both aquatic mammal groups as foreground 
branches. We found evidence for positive selection on the 
PRDX3 gene (LRT = 6.00; p = 0.0143), where the site 232 
(PP = 0.986) changing from glycine (Gly) to serine (Ser) 
only in Ziphius cavirostris (Odontoceti, Cetacea) and Mir-
ounga leonina (Phocidae, Pinnipedia) (Fig. 2).

Change in Amino Acid Properties and 3D Modeling

We investigated the impact of the aquatic mammal PSS 
mutations on protein structure. Using TreeSAAP, we iden-
tified radical changes in physicochemical properties (sub-
stitutions in the categories 6–8) for cetacean PSS found in 
genes GPX3 (167), SOD1 (2, 54, 103, 110, and 114) and 
for pinniped PSS in GSR (450) and XDH (78, 337, 591, 
595, and 834) (Supplementary Table S8 and Table 3).

We then searched for known human variations match-
ing the aquatic mammal PSS. We identified variations in 
the genes GPX3 (2), GSR (1), PRDX3 (1), SOD1 (2), and 
XDH (1) (Supplementary Table S8 and Table 3) that were 
not associated with diseases. For the rest of the sites, there 
were no known modifications or the variations were to a 
different amino acid in humans. However, in the SOD1 and 
XDH genes, certain sites had the same variations that are 
associated with diseases in humans. For instance, sites 54, 
103, 110, 114, and 115 in SOD1 are close to sites affected 
by Amyotrophic lateral sclerosis 1 (ALS1) (Table 3). In the 
XDH gene, the substitution for a valine amino acid at site 
834 was identified in some mammal species (Ornithorhyn-
chus anatinus, Oryctolagus cuniculus, Dipodomys ordii, 
Peromyscus maniculatus, Cavia porcellus, Octodon degus, 
and Choloepus didactylus) and is associated in humans 
with Xanthinuria type II (ClinVar) or Hereditary xanthinu-
ria type 1 (Supplementary Table S8). Most mutations were 
considered “Benign” by PolyPhen-2, indicating no negative 
effect on human proteins. However, we found sites that were 
“Possibly Damaging” and “Probably Damaging” in PRDX3, 
SOD1, and XDH (Table 3). Of note, site 232 in PRDX3 
has been found in somatic mutations in cancers (CPTAC-3 
project at NCI-TCGA).

In the protein structure modeling, we focused on the sites 
with changes exclusive to aquatic mammals in the genes 
PRDX3 (1), SOD1 (5), and XDH (4), in addition to the case 
of convergence in PRDX3. Most of the PSS did not result 
in differences in the protein structure compared to closely 
related species without the mutation (Fig. 3a). However, we 
observed that the PSS in SOD1 (sites 54, 103, 110, 114, and 
115) are located spatially near the active and binding sites of 
the protein (Fig. 3c). The PSS in the XDH gene was located 
on the protein’s surface (Fig. 3d), which could affect its solu-
bility. We found a slight translocation of the loop where site 
232 is located in the species Ziphius cavirostris compared to 
Bos taurus (Fig. 3a). Notably, the PSS in PRDX3 and XDH 
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were located in the domain regions of the protein, such as 
site 209 in the Thioredoxin Domain (IPR013766), site 232 
in C-terminal domain (IPR019479), site 78 in 2Fe-2S ferre-
doxin-type iron–sulfur binding domain (IPR001041), and 
site 434 in FAD-binding domain, PCMH-type (IPR016166) 
(Fig. 3a, b, and d).

Discussion

In this study, we examined the molecular evolutionary his-
tory of antioxidant enzymes, which play a critical role in 
eliminating reactive oxygen species (ROS) that can cause 
oxidative stress, especially during long dives. We focused 
on two groups of aquatic mammals, Cetacea and Pinnipedia, 
that share important physiological adaptations to apnea div-
ing. We aimed to identify signs of positive selection in the 
genes encoding these enzymes and their potential impact 
on protein function. Our results revealed contrasting evolu-
tionary rates among antioxidant genes and between the two 
groups of aquatic mammals, with accelerated rates of evo-
lution compared to terrestrial mammals. We also identified 
positively selected sites with amino acid changes occurring 
exclusively in aquatic mammal lineages, including an exam-
ple of convergent evolution.

The results from our branch models suggest an accumu-
lation of non-synonymous mutations in lineages of aquatic 
mammals compared with their terrestrial counterparts. The 
ω values for our background species were similar to the aver-
age estimates for terrestrial species’ genomes (Yuan et al. 
2021). The increase in the omega values is not uniform in 
the aquatic lineages, occurring at a higher rate in cetaceans, 
consistent with the previous study that showed higher mean 
ω values in cetacean genomes. The discrepancies observed 
between cetaceans and pinnipeds, for example, in the case 
of PRDX3 and SOD1, and inside crown groups of cetaceans 
after the splitting of dolphins and whales, such as in GPX3 
and PRDX1, may be related to their life history, once each 
group present specificities in physiology and metabolic 
responses (Janecka et al. 2012).

The XDH gene codes for the enzyme xanthine dehydro-
genase, which under hypoxic conditions, is converted into 
xanthine oxidase (XO), producing  H2O2 in the reaction of 
hypoxanthine to uric acid, causing oxidative stress dur-
ing submersion (Kelley et al. 2010). XO induction during 
voluntarily associated apneas in elephant seal pups sug-
gests a role in the development of the antioxidant system 
(Vázquez-Medina et al. 2011a). Previously, unique sites 
were found in the XDH gene in pinnipeds, cetaceans, and 
other oxidant stress-tolerant species with no positive selec-
tion signals associated with them (Tian et al. 2022). In our 
work, we found evidence of positive selection, but the sites 
were not the same as in the previous work. In addition, this 

same study performed an in vitro assay and showed that 
even apparently neutral mutations in cetaceans can impact 
enzyme activity, raising questions about how adaptive muta-
tions impact XDH.

The SOD1 gene belongs to the superoxide dismutase fam-
ily, the first line of defense against superoxides  (O2

−) and 
one of the most important antioxidants. It codes the CuZn-
SOD isoform found in the mitochondria (Zelko et al. 2002), 
which is essential in removing superoxide produced during 
cellular respiration and by XDH under reoxygenation (Mur-
phy 2009; Kelley et al. 2010). This enzyme is very active 
in several tissues of aquatic mammals compared with ter-
restrial ones (Elsner et al. 1998; Wilhelm Filho et al. 2002; 
Vázquez-Medina et al. 2006). Our results showed an accu-
mulation of mutations in cetaceans compared to pinnipeds 
and terrestrial mammals. In the cetaceans’ lineage, we also 
identified positively selected sites with radical modifications 
near important parts of the protein, similar to previous stud-
ies (Tian et al. 2021a). Furthermore, the same study pre-
sented evidence of differential evolution of SOD in long/
deep and short/shallow divers for cetaceans’ species. Finally, 
although pinnipeds also present differences in diving hab-
its among species, they might not rely on mutations in the 
protein sequence, but in regulatory regions that affect gene 
expression levels (Righetti et al. 2014; Martens et al. 2022).

The CAT gene, responsible for catalase production, did 
not show any signal of differential evolution between aquatic 
and terrestrial mammals, except for relaxation in cetacean 
branches. The catalase activity in aquatic mammal tissues is 
not significantly higher than in terrestrial mammals (Cantú-
Medellín et al. 2011; Wilhelm Filho et al. 2002; Vázquez-
Medina et al. 2006). Although catalase is present in many 
tissues, its content in the liver and kidney is known to be 
higher, where it will respond to the severe increase of  H2O2 
(Chance et al. 1979; Michiels et al. 1994) and may be inac-
tivated in constant concentrations of  H2O2 (Kirkman and 
Gaetani 2007). Accordingly, with previous works that found 
little divergence between the CAT sequences in different 
metazoan species (Hewitt and Degnan 2023), our results 
show that this enzyme is very conserved even in macroevo-
lutionary changes.

The glutathione system is crucial in eliminating ROS 
during oxidative stress (Michiels et al. 1994). The enzyme 
responsible for reducing oxidized glutathione (GSSG) to 
GSH is the glutathione reductase (GR), which is codified 
by the gene GSR and known to be more active in aquatic 
mammals than in semi-aquatic and terrestrial mammals 
(Vázquez-Medina et al. 2007; Righetti et al. 2014; García-
Castañeda et al. 2017). In previous studies, the GSR gene 
has been identified as being positively selected in dolphin 
lineage (Yim et al. 2014) but not in pinnipeds (Martens 
et al. 2022). In our findings, we showed an acceleration of 
aquatic mammal lineages compared to terrestrial ones, but 



310 Journal of Molecular Evolution (2024) 92:300–316

the methods were not capable of identifying specific positive 
selected sites. GSR has likely experienced molecular adapta-
tion in specific lineages in aquatic mammals, as is the case 
of the Delphinidae family.

Glutathione peroxidases are also highly active in aquatic 
mammal tissues (Wilhelm Filho et  al. 2002; Vázquez-
Medina et al. 2006, 2011b; Righetti et al. 2014). This gene 
family includes glutathione peroxidase 3, codified by the 
GPX3 gene, abundant in the cytoplasm of cells. The PSS 
found in our work and by Tian et al. (2021b) are not exclu-
sive to aquatic mammals. The results of RELAX, which 
identified a relaxation on cetacean lineages, may explain the 

higher omega value in Odontoceti. Glutathione peroxidase 
3 is one of 6 other forms with different cellular locations 
and mechanisms of reaction and although being similar 
to glutathione peroxidase 1 (GPX1), GPX3 is secreted in 
plasma, while GPX1 acts inside the cell (Brigelius-Flohé 
and Maiorino 2013). Previous studies found positively 
selected sites and an increase in gene copies for GPX1 in 
cetaceans (Tian et al. 2021b).

The PRDX1 gene is highly conserved among terrestrial 
mammals, but we found evidence of relaxation on cetacean 
lineages, likely responsible for the high omega value in Mys-
ticeti (ω = 0.934). No positive selection sites met the criteria 

Table 3  PSS physicochemical amino acid properties variations determined by TreeSAAP and impact of mutants in human proteins by Poly-
Phen-2 results (“PolyPhen-2 Score” and “Score Classification”)

The relative sites and amino acid substitutions used in PolyPhen-2 inference are shown in “Human protein position” and “Human → Aquatic 
mammal,” respectively. “Uniprot information” was retrieved from the Uniprot database (https:// www. unipr ot. org/) for the specific amino acid 
substitution in the respective site of the human protein sequence

Gene Uniprot ID PSS TreeSAAP proper-
ties

Human 
protein 
position

Human →  
Aquatic mammal

Poly-
Phen-2 
Score

Score Classification Uniprot informa-
tion

PRDX3 P30048
PRDX3_

HUMAN

209 – 157 N → H 0.012 Benign Variation not pre-
sent in humans

N → Q 0.028 Benign Variation not pre-
sent in humans

232 – 180 G → S 1.000 Probably Damaging Somatic variant
SOD1 P0044

SODC_
HUMAN

54 Chromatographic 
index, Polar 
requirement; 
Polarity

43 L → Y 0 Benign ASL close site
L → C 0.991 Probably Damaging
L → E 0.005 Benign
L → D 0.007 Benign

103 Isoelectric_point 92 K → Q 0.015 Benign ASL close site
K → R 0.064 Benign

110 Hydropathy; 
Chromatographic 
index; Helical 
contact area; 
Isoelectric point; 
Polarity

99 S → C 0.002 Benign ASL close site
S → R 0.568 Possibly Damaging
S → Y 0.014 Benign

114 Refractive index 103 S → C 0.014 Benign ASL close site
S → P 0.003 Benign

115 – 104 V → I 0 Benign ASL close site
XDH P47989

XDH_HUMAN
78 Isoelectric point 35 G → R 0.031 Benign Variation not pre-

sent in humans
G → Q 0.953 Possibly Damaging Variation not pre-

sent in humans
434 – 319 L → C 1.000 Probably Damaging Xanthinuria type 

II close site
591 Isoelectric point; 

Helical contact 
area; Partial spe-
cific volume

476 K → S 0.523 Possibly Damaging Variation not pre-
sent in humans

K → R 0 Benign Variation not pre-
sent in humans

595 Isoelectric point 480 E → Q 0.381 Benign Variation not pre-
sent in humans

E → K 0.108 Benign Variation not pre-
sent in humans

https://www.uniprot.org/


311Journal of Molecular Evolution (2024) 92:300–316 

of complementary tests. Together with our findings, the 
presence of a higher number of copies of the PRDX1 gene 
in cetaceans, specially Mysticeti, suggests that the presence 
of extra copies for this gene allows a decrease in purifying 
selection, enabling an accumulation in neutral mutations 
without impacting gene function (Yim et al. 2014; Zhou 
et al. 2018).

On the other hand, the PRDX3 gene shows evidence of 
positive selection, with an acceleration of the evolutionary 
rate among crown cetaceans and pinnipeds when compared 
to the ancestral lineages and the presence of a PSS. The 
results in BSM identified many PSS among Eschrichtius 
robustus, Eubalaena japonica, Megaptera novaeangliae, and 
Ziphius cavirostris, including site 209, the only PSS with 
exclusive changes for cetaceans. These species were also 
artificially grouped in the phylogenetic reconstruction for 
this gene, indicating that they share mutations beyond the 
PSS (Supplementary Figs S13–S15). Also, an intensification 
in selective pressure was identified in Cetacea. Interestingly, 
the PRDX3 gene also has a copy number expansion in ceta-
ceans, although not as many as PRDX1 (Yim et al. 2014). 
Peroxiredoxins are considered a conserved protein among 
metazoans (Hewitt and Degnan 2023), and our data, com-
bined with other studies, provides evidence for their adaptive 
evolution in cetacean oxidative stress tolerance.

To evaluate which sites were shared exclusively between 
the groups of aquatic mammals and potentially adaptive, 
we enriched our dataset with multiple mammalian species. 
Although the selective pressures we identified in the aquatic 
mammals differed from those observed in their terrestrial 
counterparts, we found evidence of convergent mutations 
between these groups. While sites with identical amino 
acids are common in mammalian species and likely derived 
from neutral processes, adaptive modifications in species 
with similar phenotypic traits are rare (Foote et al. 2015; 
Chikina et al. 2016). Nevertheless, it is still possible that 
a shared mutation may be neutral in terrestrial species but 
confer an advantage in the aquatic environment and therefore 
be adaptive.

Our results suggest that some of the antioxidant genes 
evolved more rapidly in Cetacea than in Pinnipedia (Fig. 1), 
indicating that these genes did not converge in selective 
pressure intensity. As phenotype convergence may occur 
at various levels, including amino acid substitutions (Hao 
et al. 2019) we also examined sites at the same position in 
independent lineages to identify convergent parallel substi-
tution (Zhou et al. 2015). Using this method, we detected 
site 232 in the PRDX3 gene as a potential target of positive 
selection, presenting the same amino acid substitution in 
both Cuvier’s beaked whale (Ziphius cavirostris, Ziphiidae, 
Cetacea) and Southern elephant seal (Mirounga leonina, 
Phocidae, Pinnipedia). Besides presenting other known deep 
divers species in our dataset, such as sperm whale (Physester 

catodon, Physeteridae, Cetacea) and Pygmy sperm whale 
(Kogia breviceps, Kogiidae, Cetacea), the beaked whale and 
elephant seal have extraordinary aerobic diving limits with-
out a significative increase in surface periods after longer 
dives (Hindell et al. 1992; Quick et al. 2020), spending less 
than 20% of their time in shallow waters (Hooker et al. 2015; 
Castellini and Mellish 2023).

Although the identification of site 232 was supported only 
by Contrast-FEL, which compares the rates of substitution 
between species and sites, we considered it relevant due to 
the evidence of intensified selection for the Cetacea clade 
and the high conservation of this site for other species in 
the alignment (Fig. 2). Furthermore, we can infer an impact 
on the protein structures, once it was classified as “Possibly 
Damaging” in human variations. The PRDX3 is part of the 
subgroup of peroxiredoxin containing 2-Cys as active sites, 
allowing them to build toroid structures, in this case, a dode-
cameric ring (Cao et al. 2005) This structure allows these 
enzymes to react with H2O2 in normal concentrations and 
change its conformation when levels of peroxide increase, 
initiating a regulatory signaling pathway (Wood et al. 2003). 
In a bovine PRDX3, site 232 is faced in the inner part of 
the ring, located in the junction area between dimmers, sur-
rounded by many hydrophobic residues that participate in 
the biding (Cao et al. 2005) (Supplementary Fig S29 a, b). 
The presence of this dodecameric structure was shown to 
be more active in humans compared to its dimmers, with 
the internal part of the ring playing a key role in controlling 
the enzyme activity (Cao et al. 2007; Yewdall et al. 2018). 
We also identified in the dodecameric bovine model (Cao 
et al. 2005), a hydrogen bond between Glycine (ancestral 
state of site 232) and Lysine (site 218 in our alignment); 
however, we could not compare with our models because 
AlphaFold did not consider the Lysine as a part of an alpha 
helix structure, changing its relative position and affecting 
the inference of hydrogen bonding by ChimeraX. For these 
reasons, we consider the mutation in site 232 as a strong can-
didate for impacting the PRDX3 quaternary structure and its 
consequent activity in known deep/long divers species and 
future studies could focus on modeling the binding region 
in these non-model species.

Fig. 3  Protein structure modeled using the sequences of aquatic 
mammals in the AlphaFold Colab (AlphaFold v2.3.1.). Light blue: 
Domains of the protein; Red: Binding sites; Dark green: Active sites; 
Purple: Positively selected sites (PSS); Yellow: PSS in the closely 
related species; AS—Active site identification. a PRDX3 gene from 
the two species of Cetacea and Pinnipedia with convergent PSS, 232, 
in evidence, comparing with the site in Canis lupus familiaris for the 
Mirounga leonina and Bos taurus for Ziphius cavirostris; b PRDX3 
from Tursiops truncatus with PSS 209 marked; c SOD1 for two spe-
cies of cetaceans, a Mysticeti and an Odontoceti showing the posi-
tion of different PSS for each group and the PSS 103, shared between 
them; d region of Felis catus’s XDH protein where the pinnipeds 
sequences were modeled with the PSS located in Odobenidae and 
Phocidae

◂



312 Journal of Molecular Evolution (2024) 92:300–316



313Journal of Molecular Evolution (2024) 92:300–316 

Amino acid substitutions can modify proteins’ physical 
and chemical properties, ultimately impacting their structure 
and function (Betts and Russell 2003). In our study, while 
some sites had benign changes that did not significantly 
impact protein structure, others presented more radical 
changes that could affect protein function. For example, site 
54 in SOD1 is located near the protein’s binding site, and 
mutations in this region can influence substrate selectivity 
and catalytic activity (Morley and Kazlauskas 2005). The 
presence of radical changes in conserved regions, such as 
protein domains, suggests a directional Darwinian selection, 
where residues are pushed toward non-synonymous changes 
(McClellan 2013). Despite providing valuable insights into 
the potential effects of these mutations on protein, further 
experimental approaches are required to confirm our find-
ings and investigate regulatory regions and gene expression. 
Notably, aquatic mammals exhibit variations in amino acid 
properties that do not appear to have any negative effects, 
whereas similar changes in humans have been linked to vari-
ous diseases (Ratovitski et al. 1999; Levartovsky et al. 2000; 
Rebelo et al. 2021). Therefore, aquatic mammals may have 
evolved mechanisms to tolerate and regulate these changes, 
providing valuable insights for future research into human 
health.

Conclusion

We found that the colonization of new aquatic environ-
ments by marine mammals and the necessity to cope with 
oxidative stress derived from hypoxia in dives has affected 
the evolution of genes related to the antioxidant system. 
We identified divergent acceleration in evolutionary rates 
between the groups of Cetacea and Pinnipedia, meaning 
that besides similar selective pressures, the genes evolved 
differently between the two lineages. In addition, genes like 
GPX3 and PRDX1 presented differences within the recent 
evolutionary history and diversification of cetaceans and 
pinnipeds lineages. Furthermore, we were able to infer the 
non-random distribution of positively selected sites, once 
many were close to important regions of proteins and with 
mutations usually associated with radical impacts in amino 
acid properties and negative effects in humans. Besides the 
majority of findings pointing to different strategies for man-
aging ischemia and reperfusion in the aquatic mammals’ 
lineages, nevertheless, we were able to identify a conver-
gent evolution between two extreme divers in a site located 
in a binding region of PRDX3 when forming dodecameric 
structures. Overall, we were able to establish an extensive 
comparison analysis between antioxidant enzyme evolu-
tion in our two lineages of interest, pinpointing interesting 
sites that could be investigated with additional experimental 

data, something that due to limitations of our study, we were 
unable to address.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00239- 024- 10170-3.
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