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Abstract
Ancestral sequence reconstruction (ASR) is a phylogenetic method widely used to analyze the properties of ancient 
biomolecules and to elucidate mechanisms of molecular evolution. Despite its increasingly widespread application, the 
accuracy of ASR is currently unknown, as it is generally impossible to compare resurrected proteins to the true ancestors. 
Which evolutionary models are best for ASR? How accurate are the resulting inferences? Here we answer these questions 
using a cross-validation method to reconstruct each extant sequence in an alignment with ASR methodology, a method we 
term “extant sequence reconstruction” (ESR). We thus can evaluate the accuracy of ASR methodology by comparing ESR 
reconstructions to the corresponding known true sequences. We find that a common measure of the quality of a reconstructed 
sequence, the average probability, is indeed a good estimate of the fraction of correct amino acids when the evolutionary 
model is accurate or overparameterized. However, the average probability is a poor measure for comparing reconstructions 
from different models, because, surprisingly, a more accurate phylogenetic model often results in reconstructions with 
lower probability. While better (more predictive) models may produce reconstructions with lower sequence identity to the 
true sequences, better models nevertheless produce reconstructions that are more biophysically similar to true ancestors. 
In addition, we find that a large fraction of sequences sampled from the reconstruction distribution may have fewer errors 
than the single most probable (SMP) sequence reconstruction, despite the fact that the SMP has the lowest expected error 
of all possible sequences. Our results emphasize the importance of model selection for ASR and the usefulness of sampling 
sequence reconstructions for analyzing ancestral protein properties. ESR is a powerful method for validating the evolutionary 
models used for ASR and can be applied in practice to any phylogenetic analysis of real biological sequences. Most 
significantly, ESR uses ASR methodology to provide a general method by which the biophysical properties of resurrected 
proteins can be compared to the properties of the true protein.
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Introduction

Pauling and Zuckerkandl (1963) first proposed that one 
could take a family of modern proteins, reconstruct the 
sequences of their ancestors, and “resurrect” the ancestral 
proteins by synthesizing them and studying their properties 

experimentally. Such ancestral sequence reconstruction 
(ASR) methods have now become widely used to analyze 
the properties of ancient biomolecules and to elucidate the 
mechanisms of molecular evolution. By recapitulating the 
structural, mechanistic, and functional changes of proteins 
during their evolution, ASR has been able to address many 
fundamental and challenging evolutionary questions, areas 
where more traditional methods have failed (Akanuma et al. 
2013; Boucher et al. 2014; Clifton et al. 2018; Dean and 
Thornton 2007; Harms and Thornton 2010; Hochberg and 
Thornton 2017; Kaltenbach et al. 2018; Liberles et al. 2012; 
Nguyen et al. 2017; Pillai et al. 2020). Furthermore, ASR 
methodology has been highly successful in addressing bio-
physical problems of modern proteins (Nicoll et al. 2023), 
such as unraveling the mechanism of cancer drug specificity 
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in a modern kinase family (Wilson et al. 2015), teasing apart 
cryptic epistatic effects within a hormone receptor (Ortlund 
et al. 2007), clarifying puzzling sequence-structure–function 
relationships in enzymes (Wouters et al. 2003), and explain-
ing why certain features of modern proteins are not function-
ally optimized (Finnigan et al. 2012) [these and many other 
examples reviewed in Hochberg and Thornton (2017),Thom-
son et al. (2022), and (Dube et al. 2022)]. Despite the tangi-
ble successes of ASR, the accuracy of its reconstructions is 
still currently unknown, because it is generally impossible to 
compare resurrected proteins to the true ancient ancestors.

Ancestral resurrected proteins often possess remarkable 
physical properties that are absent in their modern 
counterparts, such as high thermostability, catalytic 
versatility, and resistance to damage (Risso et al. 2017, 2018; 
Spence et al. 2021; Trudeau et al. 2016; Zakas et al. 2017). 
However, these exceptional properties might be artifacts 
resulting from the known biases in the protein reconstruction 
process rather than genuine characteristics of the ancestral 
proteins. Such potential biases could affect any global 
property of a protein (Akanuma 2017; Krishnan et al. 2004; 
Matsumoto et al. 2015; Risso et al. 2018; Thornton 2004; 
Trudeau et al. 2016; Wheeler et al. 2016; Williams et al. 
2006; Yang 2006).

The most widely used ASR methods employ model-
based probabilistic inference, such as maximum likelihood 
(ML) and Bayesian methodology. Hence, accurate ancestral 
reconstructions rely on accurate phylogenetic models. The 
most common model in molecular evolution is a time-
reversible Markov model of residue substitution that assumes 
independent sites, rate variation among sites, a global 
equilibrium frequency distribution, and is homogeneous 
across sites and throughout the phylogeny (Felsenstein 
1981; Yang 1994). Many other more biologically realistic 
evolutionary models have been proposed that relax various 
combinations of these model assumptions. Despite this 
rich theoretical framework, we presently have very limited 
methods for assessing the adequacy of the evolutionary 
models used for ASR.

Model-based probabilistic ASR methods predict a 
distribution of states for a reconstructed ancestor rather than 
a single sequence. The combinatorial number of plausible 
ancestral states is often astronomically high, and it is 
generally impossible to study them exhaustively. In practice, 
this problem is simplified by resurrecting only the single 
most probable (SMP) ancestral sequence as a proxy for what 
may have occurred in the past (Chang et al. 2002; Gaucher 
et al. 2003; Thornton et al. 2003). One proposed justification 
for using the SMP sequence is that it is expected to have the 
fewest errors relative to the true sequence (Eick et al. 2017), 
but this hypothesis has yet to be verified using real biological 
sequences. Although it is intuitively reasonable to focus 
on the SMP sequence, the amino acid composition of the 

SMP is known to be systematically biased, which can lead 
to downstream biases in experimental structure–function 
studies that depend on the SMP sequence (Krishnan et al. 
2004; Williams et al. 2006).

The most direct method for validating ASR is to 
compare the reconstructed ancestral protein to the true 
ancestral protein. Such comparisons have been performed 
using proteins from directed evolution and simulated data 
with known alignments and phylogenies. Computational 
studies have focused on simulated data from approximate 
models of evolution that rely on various simplifying 
assumptions (Williams et al. 2006; Zhang and Nei 1997). 
Experimental studies have largely focused on reconstructing 
ancestral sequences from directed evolution experiments 
that are limited in their sequence divergence and relevance 
to natural evolution (Randall et  al. 2016). It is unclear 
whether the results generalize to real biological systems 
with unknown phylogenies and uncertain alignments of 
sequences that have evolved on a geological timescale 
(Garcia and Kacar 2019; Randall et al. 2016; Schwartz et al. 
2022; Williams et al. 2006).

Here we propose a method, which we call Extant 
Sequence Reconstruction (ESR) that can assess the accuracy 
of ASR methodology by comparing reconstructed sequences 
to the corresponding true proteins. With time-reversible 
evolutionary models there is no distinction between ancestor 
and descendant. ESR uses this well-known property to 
effectively invert the traditional ASR calculation, using 
standard ASR methodology to reconstruct a modern protein 
sequence. A reconstruction of an extant protein provides 
both an SMP sequence and a reconstructed sequence 
distribution, just as with reconstructions of ancestral 
nodes. Because extant reconstructions are calculated in the 
same way as ancestral reconstructions—using the same 
probabilistic methodology, phylogeny, alignment, and 
evolutionary model—extant reconstructions should largely 
share the same accuracies, limitations, biases, and statistical 
characteristics as ancestral reconstructions. With an extant 
reconstruction we know the true sequence and thus can 
validate our prediction by direct comparison with truth, 
thereby providing a direct test of ASR methodology.

Using ESR on multiple sequence datasets and proteins, 
we quantify the accuracy of reconstructions by comparison 
to their corresponding true sequences. Our results highlight 
the critical importance of model selection for determining 
the best evolutionary model for ASR. We find that a common 
measure of the quality of a reconstructed SMP sequence, 
the average probability of the sequence, is indeed a good 
estimate of the fraction of the sequence that is correct when 
the evolutionary model is accurate or overparameterized. 
However, we also find that the average probability of the 
SMP reconstruction is a poor measure for comparing 
different SMP reconstructions, because more accurate 
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phylogenetic models typically result in SMP reconstructions 
with lower probability and fewer correct residues. Though 
this result may initially appear paradoxical, we show that it 
is an expected feature of more realistic phylogenetic models 
that are not optimizing the fraction of correct ancestral 
amino acids. Rather, better evolutionary models will often 
opt to make more biophysically conservative mistakes 
rather than make fewer non-conservative mistakes. Our 
results suggest that a more reliable indicator of the quality 
of a reconstruction is the entropy of the reconstructed 
distribution, which provides an estimate of the log-
probability of the true sequence. ESR is a widely applicable 
method for validating ASR evolutionary models and 
predictions. ESR can be used to in practice to evaluate any 
phylogenetic analysis of real biological sequences. While 
we have focused here on sequence-based characterization 
of ESR predictions, this work provides the foundation for 
future work in which we will use ESR to experimentally 
assess the accuracy of ASR methods by comparing the 
biophysical properties of reconstructed and resurrected 
proteins to the true proteins.

Results

Simulations Show Model Misspecification can Result 
in Biased ASR Probabilities

An important statistic that is commonly used to gauge 
the quality of an ancestral reconstructed sequence is its 
average probability, defined as the average over sites of 
the probabilities of the amino acids in the sequence (Eq. 8 
in “Methods”). The average probability of a sequence is 
equal to the expected fraction of correct amino acids in the 
sequence. Hence, experimentalists typically choose the SMP 
sequence to resurrect in the lab, because the SMP sequence 
has the fewest expected number of errors of all possible 
reconstructed sequences (Eick et  al. 2017). Of course, 
this will only be valid if the reconstruction probabilities 
for the SMP sequence accurately reflect uncertainty in 
the amino acid state, which in turn depends on how well 
the evolutionary model describes the true biological 
process that generated the sequence data. It has been 
claimed, for instance, that overly simple models will give 
inaccurate reconstruction probabilities (Matsumoto et al. 
2015; Songyang et al. 1995). A misspecified model might 
over-optimistically produce reconstruction probabilities 
that are systematically too high (if it is too simple and 
fails to capture relevant biological features) or the model 
might pessimistically under-estimate the reconstruction 
probabilities (perhaps if it is overfit).

Hence, an important open question in ASR is whether the 
amino acid probabilities in an ancestral distribution accu-
rately reflect our uncertainties in the character states. We 
can quantify the accuracy of reconstruction probabilities by 
considering the sites in an SMP sequence as a series of inde-
pendent Bernoulli trials. Each SMP amino acid selected has 
a probability of success. Reconstructed sites that have, say, 
80% probability should actually be correct 80% of the time, 
on average. Consequently, if the average amino acid prob-
ability for an SMP sequence is 95% and our probabilities are 
accurate, then we should expect that roughly 95% of the pre-
dicted amino acids in the SMP sequence are indeed correct 
when compared to the true sequence, within counting error.

To evaluate the accuracy of reconstruction probabilities 
we need to compare ancestral reconstructions to the true 
ancestral sequences and calculate the fraction of correct 
amino acids, but we rarely know the true ancestral sequences 
for real biological datasets. One solution to this problem is 
to use simulated data in which we know the true ancestral 
sequences. Therefore, as an initial analysis, we simulated 
ancestral and extant sequences along the ML phylogenies 
for L/MDH, Abl/Src-kinase, and terpene synthases using 
the corresponding ML estimates from the LG + FO + G12 
model of evolution obtained from our real protein datasets 
(these three protein families conveniently are currently under 
investigation in our lab and are used in the analyses of real 
biological data below). Simulations and corresponding 
phylogenetic analyses were replicated ten times. Using these 
simulated datasets, we ascertained how the probabilities 
of a reconstructed ancestral SMP sequence are affected 
by evolutionary models of increasing complexity. We 
performed ASR for all simulated datasets by fixing the true 
tree topology while inferring ancestors, branch lengths, 
and model parameters under various models of evolution. 
In addition to using correctly specified models of evolution 
with various levels of parameterization, we also explore 
models that are intentionally misspecified.

For misspecified models (i.e., models with an incorrect 
functional form or constants set to incorrect values relative 
to the true model), the average probability of a reconstructed 
ancestral sequence overestimates the fraction correct and 
results in fewer correct residues (Fig. 1a, b, Supplementary 
Figures S1a, S2a, and S3a–c). However, for the correctly 
specified LG and parameter-rich GTR20 model the aver-
age SMP sequence probability is an accurate estimate of 
fraction correct. This result is robust to errors in branch 
length estimation, since fixing the branch lengths to their 
true values results in similar overly optimistic reconstruction 
probabilities, at least in trees of non-trivial number of taxa 
(Supplementary Figures S4 and S5).

To further explore the effects of misspecification on 
the accuracy of ancestral reconstruction probabilities, we 
also simulated ancestral and extant sequences using one 
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of the simplest possible evolutionary models, the Pois-
son + FQ model, along the L/MDH, Abl/Src-kinase, and 
terpene synthase ML tree topology. For data simulated 
with this simple model, we find that the bias in prob-
ability estimation is lower in magnitude than with the 
LG + FO + G12 simulations (Fig. 2a, b, Supplementary 
Figures S6a and S7a).

For every model, a linear regression of actual fraction 
correct on expected fraction correct (i.e., average 
probability) gives positive slopes. As a result, for a given 
phylogenetic analysis with a specific evolutionary model, 
sequences with higher average probability are expected to 
have a higher actual fraction correct.

More Accurate Models Decrease the Probability 
of the Ancestral SMP Sequence

Models that are most able to predict unobserved data 
will include parameters that correctly approximate some 
underlying process that generated the data. Hence, we 
hypothesized that more realistic models (i.e., those that take 
into account some underlying feature of data generation) 
should improve the accuracy of reconstructed distributions 
for ancestral sequences. For example, it is reasonable to 
expect that SMP sequences constructed using better models 
should have a higher overall probability, higher average 
amino acid probabilities, and by extension fewer amino 
acid errors with respect to the true sequences. In particular, 
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Fig. 1  ASR probabilities are accurate when the model is true or over-
parameterized for LG + FO + G12-simulated sequences. Ten sets of 
ancestral sequences were simulated using the LG + FO + G12 model 
of evolution using an experimental L/MDH phylogeny (inferred from 
real data using LG + FO + G12). Analyses of ancestral reconstructions 
for the tenth dataset are shown. a A plot of the actual fraction cor-
rect against expected fraction correct for each reconstructed ancestral 
sequence in a simulation for each model of evolution. The corre-

sponding line of best fit is shown for each model. b The average of all 
average SMP sequence probabilities for each model of evolution. c–e 
The total LnP of all SMP sequences, true sequences, and eLnP for 
each model of evolution. f True sequence LnP plotted against eLnP 
for each reconstructed ancestral sequence for each model of evolu-
tion. The slopes for (a) and (f) are given in Supplementary Table 2. 
The values for (c–e) are given in Supplementary Table 8
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for ancestral sequences generated using the LG + FO + G12 
model, we might expect that the naïve Poisson model should 
produce less probable ancestral SMP sequences, while 
the LG + FO + G12 model should produce more probable 
ancestral SMP sequences.

We tested these expectations by comparing the true 
ancestral sequences to the corresponding SMP ancestral 
reconstructions from various models of evolution. For 
our datasets simulated under the LG + FO + G12 model 
of evolution, we calculated the overall average probability 
of all SMP ancestral sequences reconstructed for each 
model of evolution (Fig. 1b, Supplementary Figs. S1b and 
S2b). Surprisingly, as the model includes more parameters 
that help explain the underlying generative model for the 
data, the overall average probability of an SMP ancestral 
reconstruction decreases, resulting in more expected amino 
acid errors in the ancestral SMP sequence.

The exact probability of the SMP sequence can be 
calculated by taking the product over sites of the probability 
of each amino acid in the SMP sequence (Eq. 6 in Methods). 
Because these probabilities are extremely small in general, 
it is conventional to take the natural logarithm of the SMP 

ancestral sequence probability (LnP). We calculated the total 
LnP for all SMP ancestral sequences in a phylogeny for each 
model of evolution (Fig. 1c, Supplementary Figures. S1c and 
S2c). Like the average probability, the total LnP for SMP 
ancestral sequences decreases as the model becomes more 
realistic.

More Accurate Models Increase the Probability 
of the True Ancestral Sequence

Why do more predictive models result in reconstructed 
SMP sequences with lower probabilities? At each site, the 
probabilities associated with each amino acid must sum to 
1. If the probability of the SMP residue decreases, then the 
probability of at least one other amino acid must increase. We 
then might expect a better model to improve the probability 
of the true residue when the SMP residue is incorrect. To see 
if this occurs, we calculated the total LnP of the true ancestral 
sequence for each model of evolution (Fig. 1d, Supplementary 
Figures. S1d and S2d). We see that the total LnP of the 
true sequences improve as the model is closer to truth or 
overparameterized. Hence, a more predictive model improves 
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Fig. 2  ASR probabilities for L/MDH Poisson + FQ-simulated 
sequences are accurate even when the model is misspecified. Panels 
are the same as Fig.  2, except ten sets of ancestral sequences were 
simulated using the Poisson + FQ model of evolution on an experi-

mental L/MDH phylogeny inferred using Poisson + FQ model. The 
slopes for (a) and (f) are given in Supplementary Table 3. The values 
for (c–e) are given in Supplementary Table 10
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the probability of predicting the true ancestral sequence at the 
expense of the SMP sequence.

The Expected LnP is an Accurate Estimate of True 
Ancestral Sequence LnP for Correctly Specified 
Models

The SMP sequence is known to have biased amino acid 
residue propensities and hence any global property of the SMP 
sequence may also display a corresponding bias (Krishnan 
et al. 2004; Matsumoto et al. 2015; Williams et al. 2006). 
The reconstructed ancestral distribution contains all the 
information that the evolutionary model can provide about the 
true, unobserved ancestral sequence. Rather than analyzing 
the SMP sequence, a more statistically sound method uses the 
reconstructed ancestral distribution to calculate the expected 
value for properties of the unobserved ancestral sequence 
(Matsumoto et al. 2015).

For example, the LnP of the true ancestral sequence is 
unknown for real biological data, but it can be consistently 
estimated by the expected LnP (eLnP) if the model is correctly 
specified. Importantly, the eLnP can be calculated from the 
reconstructed distribution without knowing the identity of the 
true sequence (Eq. 7). The eLnP is mathematically equivalent 
to the negative of the entropy of the reconstructed distribution, 
which serves as a measure of the overall uncertainty in the 
distribution in specifying the reconstructed sequence.

To determine if the eLnP is an accurate estimate of the 
true ancestral sequence LnP we thus calculated the total 
eLnP for different protein families and models of evolution 
(Fig. 1e, Supplementary Figures. S1e and S2e). Like the total 
LnP of ancestral SMP sequences, the total eLnP decreases 
as the model more closely reflects the true generating model. 
Interpreting the eLnP as the negative entropy, we see that 
misspecified models assign a lower uncertainty to their 
predictions of the ancestral states.

Since the eLnP is a statistical estimate of the LnP of the 
true sequence, from our LG + FO + G12 simulations we can 
compare the calculated eLnP to the true sequence LnP for 
the different models of evolution (Fig. 1f, Supplementary 
Figures S1f and S2f). When the model is correctly specified, 
the eLnP is an accurate estimate of the true sequence LnP; 
otherwise, the eLnP overestimates the LnP of the true 
sequence. This behavior is similar to that of the SMP average 
probability, which also overestimates the fraction of correct 
residues with poor models.

Extant Sequence Reconstruction (ESR): 
Cross‑Validation Produces a Reconstructed 
Probability Distribution for Observed Modern 
Sequences

Our simulations have shown that ancestral sequence 
reconstruction probabilities are accurate when the model 
is correctly specified. The sequences generated from 
these simulations assume a time-reversible Markov 
model of residue substitution, site independence, global 
equilibrium frequencies, and homogeneity across sites 
and time. However, these assumptions may not hold for 
the underlying processes that generate real biological 
sequences and hence, it may not be valid to generalize from 
simulated data to real biological sequences. Furthermore, 
it would be of practical benefit to be able to apply our 
analyses to real experimental sequence data, rather than 
being limited to artificial simulations. To address these 
concerns, in the following we extend ASR methodology to 
the reconstruction of real modern protein sequences using 
a site-wise cross-validation (CV) method.

Similar to how ASR produces a reconstructed prob-
ability distribution for internal ancestral nodes of a tree, 
site-wise CV produces a reconstructed probability distri-
bution for extant sequences found at the terminal nodes of 
a tree. When using time-reversible models, like all models 
considered in this paper, ancestral nodes are modeled iden-
tically as leaf nodes (e.g., any leaf node may be treated as 
the ancestral root of the tree). Site-wise CV produces the 
conditional probability distribution of a modern site using 
the ML parameters from a model that has not seen the 
true modern amino acid at that site, thereby removing any 
circularity in the reconstruction. For example, to recon-
struct the site for extant sequence A, we omit the residue at 
that site from the alignment and use the resulting training 
alignment to find the ML estimates of the tree and model 
parameters (Fig. 3, right top). With those ML parameters, 
we then calculate the probabilities of all 20 possible amino 
acids at that extant site using the same method used in 
conventional ASR (see Eqs. (4) and (5) in the “Methods”):

This process is then repeated for every site in an extant 
sequence to generate a reconstructed distribution for the 
entire modern sequence A. The probability at every site 
in the sequence is calculated without knowledge of the 
true extant amino acid at that site. Thus, site-wise CV 

(1)p(A = k|BC) =
p(B,C,A = k)

p(B,C)
,

(2)p(B,C) =

20∑

k

p(B,C, A = k).
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provides a probability distribution for an unobserved 
modern sequence conditional on the observed sequences 
in the alignment, just like conventional ASR.

One computational difference between ASR and site-
wise CV is that ASR reconstructs every site using the same 
model parameters, whereas site-wise CV reconstructs each 
site using different model parameters. Because new ML 
model parameters are determined for each site, site-wise 
CV quickly becomes computationally intensive for com-
mon large biological datasets. For example, new ML model 
parameters must be inferred 19,377 times for site-wise CV 
of the kinase dataset, our smallest dataset, and the terpene 
synthase dataset is over an order of magnitude larger. Fur-
thermore, to compare the reconstructions of different evo-
lutionary models, this laborious process would need to be 
repeated for each model and for each protein family. To 
speed up the computation time, in all subsequent analyses 
we use a fast and accurate approximation to site-wise CV by 
employing a sequence-wise CV method that withholds one 
entire sequence at a time from the training set (see “Meth-
ods,” Supplementary Figure S8, and Fig. 3, bottom right). 

Hereafter, we refer to such a reconstruction of a modern 
sequence found at a terminal phylogenetic node as ESR.

In the following we use ESR to evaluate reconstruction 
methodology when applied to the real biological sequence 
data in our three protein datasets. Qualitatively identical 
results were found when applying ESR to simulated data 
(Supplementary Figures  S9–S11), but to economize in 
the main text we present and discuss the application and 
validation of ESR to experimental biological data, which is 
the primary advantage of ESR.

Real Biological Dataset Selection

We selected datasets from three protein families currently 
under investigation in our lab: (1) lactate and malate dehy-
drogenases (L/MDHs), (2) Abl/Src-related tyrosine kinases, 
and (3) terpene synthases (Table 1). These datasets were 
chosen because of their varying levels of taxonomic distribu-
tion and sequence divergence, and because they have unre-
lated topological folds presumably under different selection 
pressures. The L/MDH and Abl/Src datasets each consist 
of enzymes with relatively similar functions and specifi-
cities, whereas terpene synthases catalyze a diverse array 

Fig. 3  Cross-validation (CV) and Extant Sequence Reconstruction 
(ESR). On the left is a cartoon phylogenetic tree for a hypothetical 
alignment of three complete extant sequences (A, B, and C). The 
single hidden internal node has an unobserved ancestral sequence 
(D). On the right are two types of CV explored in this paper. Each 
CV method has a phylogenetic tree inferred from the training data-

set. The predictions of each CV method are benchmarked against the 
test set. Each tree node represents a sequence: filled circles represent 
complete observed sequences, empty circles represent unobserved 
sequences, and partially filled circles represent a site removed from 
that sequence
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of chemical reactions and have high sequence diversity. 
Consequently, the terpene synthase alignment has a greater 
fraction of gaps in comparison to the L/MDH and Abl/Src 
alignments.

Model Selection: LnL, AIC, and BIC Largely Select 
Similar Models

ASR is fundamentally a problem of data prediction: based 
on the observed sequence data in an alignment, we wish to 
predict the true ancestral sequence for a given internal node 
in a phylogeny using a specific proposed model of sequence 
evolution. It would thus be useful to know which evolution-
ary model for our sequence data has the greatest predictive 

power. The predictive power of a model can be gauged 
by model selection criteria (Luo et al. 2010; Posada and 
Crandall 2001; Susko and Roger 2019), such as the Akaike 
Information Criterion (AIC) (Eq. 12) and the Bayesian (or 
Schwarz) Information Criterion (BIC) (Eq. 13) (Kalyaana-
moorthy et al. 2017; Posada and Buckley 2004), which are 
commonly used in phylogenetics. AIC is a maximum likeli-
hood (ML) method (Susko and Roger 2019) that aims to 
find the most predictive model, while the BIC aims to select 
the model that is most likely to be true given the observed 
sequence data (Neath and Cavanaugh 2012).

We calculated the AIC and BIC for our three pro-
tein datasets to evaluate the predictive performance of 
various competing models of evolution with increasing 

Table 1  Summary of MAFFT-LINSI aligned datasets used in our CV analyses

MAFFT-LINSI alignments

Proteins Taxonomic distribution No. of residues No. of gaps No. of taxa Columns Avg. seq. 
length

Avg. 
seq. 
identity

L/MDH Apicomplexa, a-proteobacteria 39,080 8040 124 380 315 0.47
Src/Abl-kinase Choanoflagellates, Metazoa 19,377 4107 76 309 255 0.51
Terpene synthase prokaryotes, fungi 131,801 250,829 415 922 317 0.17

Table 2  Summary of the model 
LnL and model selection criteria 
for various evolutionary models

The bolded text indicates the best model for the dataset according to the corresponding model selection 
criteria in the header

Model Log-likelihood AIC BIC

Raw From best Raw From best Raw From best

L/MDH
 Poisson + FQ − 30,495 − 5227 − 30,740 − 5018 − 31,222 − 4951
 LG + FQ − 27,087 − 1819 − 27,332 − 1610 − 27,815 − 1544
 LG + FO − 26,628 − 1360 − 26,892 − 1170 − 27,412 − 1141
 LG + FO + G12 − 25,484 − 216 − 25,749 − 27 − 26,271 0
 LG + FO + G12 + I − 25,484 − 216 − 25,750 − 28 − 26,274 − 3
 GTR20 + FO + G12 − 25,268 0 − 25,722 0 − 26,616 − 345

Abl/Src-kinase
 Poisson + FQ − 23,944 − 4176 − 24,093 − 3967 − 24,385 − 3897
 LG + FQ − 21,674 − 1906 − 21,823 − 1967 − 22,115 − 1627
 LG + FO − 21,277 − 1509 − 21,445 − 1319 − 21,774 − 1286
 LG + FO + G12 − 19,988 − 220 − 20,157 − 31 − 20,488 0
 LG + FO + G12 + I − 19,987 − 219 − 20,157 − 31 − 20,489 − 1
 GTR20 + FO + G12 − 19,768 0 − 20,126 0 − 20,827 − 399

Terpene synthase
 Poisson + FQ − 198,326 − 22,010 − 199,153 − 21,801 − 201,149 − 21,297
 LG + FQ − 185,083 − 8767 − 185,910 − 8558 − 187,906 − 8054
 LG + FO − 181,614 − 5298 − 182,460 − 5108 − 184,502 − 4649
 LG + FO + G12 − 176,978 − 662 − 177,825 − 473 − 179,869 − 17
 LG + FO + G12 + I − 176,971 − 655 − 177,819 − 467 − 179,865 − 13
 GTR20 + FO + G12 − 176,316 0 − 177,352 0 − 179,852 0
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complexity (Table 2). As expected, more complex mod-
els resulted in higher raw maximum log-likelihood (LnL) 
scores, with the Poisson model having the lowest LnL 
and GTR20 with the highest. The AIC and BIC give 
scores that roughly track each other and the LnL. For 
both the L/MDH and kinase dataset, the AIC chooses the 
GTR + FO + G12 as the best evolutionary model, while 
the BIC chooses the LG + FO + G12 model (Table 2). 
However, in the terpene synthase dataset, both the AIC 
and BIC select GTR20 + FO + G12, the most complex 
model. The differences between the AIC and BIC rank-
ings are largely a philosophical matter; because we are 
most interested in sequence prediction, we hereafter refer 
to an evolutionary model preferred by the AIC criterion 
as a “better” or the “best” model.

ESR SMP Sequence Probability Accurately Estimates 
the Frequency of Correct Residues

To test the accuracy of our predicted reconstruction prob-
abilities on actual biological data, we used ESR to recon-
struct the extant SMP sequence at each terminal node of 
three phylogenetic trees and calculated the average prob-
ability of the SMP sequence. Because we know the true 
extant sequence at each terminal node, we compared the 
SMP reconstruction to the true sequence to ascertain the 
fraction of correctly predicted amino acids. As shown 
in Fig. 4a–c, the average probability of an extant recon-
structed SMP sequence is an excellent estimate of the 
actual fraction of correct SMP residues. For each protein 
families and for every model of evolution, from least to 
most predictive, a plot of the average probability of the 
SMP reconstruction versus fraction correct yields a line 
with slope very close to unity. The average probabilities 
of the reconstructed extant sequences exhibit minimal 

Fig. 4  The average probability of extant reconstructions (ESR) 
accurately estimates the fraction of correct residues for real bio-
logical data. a–c Fraction correct vs. average probability of all SMP 
sequences for each model of evolution (L/MDH, kinase, and terpene 
synthase families). Each point represents a single SMP sequence 
from the reconstructed distribution. The slopes for linear fits of a–c 
are given in Supplementary Table  1. d Average fraction correct of 
all taxa vs. number of taxa in an L/MDH phylogeny, with taxa pro-

gressively removed and inferred using different models of evolution. 
e The corresponding slopes for linear regression of fraction correct 
vs expected fraction correct for each L/MDH phylogeny with differ-
ent numbers of taxa removed. f Fraction correct vs. average probabil-
ity of a set of sampled sequences for three different L/MDH proteins 
inferred using the LG + FO + G12 model of evolution. Each point rep-
resents a single sampled sequence from the reconstructed distribution
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systematic bias, regardless of the model, implying that 
extant reconstruction probabilities are robust to model 
misspecification. Similar results were found for ESR per-
formed on simulated data (Supplementary Figures S9a, 
S10a, and S11a).

ESR Residue Probabilities Retain Accuracy for Sparse 
Taxon Sampling, Long Branch Lengths, and High 
Uncertainties

Taxon sampling density is an important factor that 
influences the accuracy of phylogenetic analyses, including 
ASR (Heath et al. 2008; Salisbury and Kim 2001). Trees 
with sparse taxon sampling generally have longer branch 
lengths and more sequence diversity, which in turn 
decreases the certainty in ancestral state reconstructions 
due to less sequence information. Consequently, the high 
accuracy of ESR probabilities could degrade with more 
diverse datasets.

To assess the effect of taxon sampling on the accuracy 
of ESR probabilities, we repeated ESR on our L/MDH 
dataset after progressively pruning terminal nodes with 
short branch lengths, resulting in trees with increasingly 
longer branch lengths. The average fraction correct for SMP 
reconstructions decreases as sequences are pruned from the 
tree, indicating the reconstructions get more uncertain as 
expected (Fig. 4d). However, the linear relationship between 
fraction correct and average posterior probability holds 
despite the longer branch lengths in these pruned datasets 
(Fig. 4e). Similarly, the terpene synthase dataset includes 
many SMP sequences below 50% average probability, 
which accurately predict the fraction correct as low as 17% 
(Fig. 4c).

SMP residue probabilities, as extreme values, may be 
somehow unusually accurate, and lower, non-SMP residue 
probabilities may be less accurate. To address this concern, 
we chose three enzymes from our L/MDH dataset and 
sampled sequences from their respective reconstructed 
distributions. We chose LDH_CRPA2, LDH_THOR, and 
MDH_DETH because they spanned a wide range of average 
probabilities for their respective SMP sequences. The 
average probabilities of the SMP sequences are 95%, 80%, 
and 65%, respectively. We used biased sampling from the 
ancestral distributions to generate increasingly lower average 
probability sequences. Like with the SMP sequences, a 
plot of the fraction correct in a sampled sequence against 
its average probability gives a line of slope close to one 
(Fig. 4f). ESR probabilities from low average probability 
sequences (0.05) to very high average probability sequences 
(0.95) accurately estimate the frequency correct. Overall, the 
probabilities of extant reconstructions are just as accurately 
calculated regardless of the level of uncertainty.

For ESR, Better Models also can Decrease SMP 
Probabilities and Fraction Correct

Like the results from ASR with simulated data, for ESR 
the total LnP of SMP sequences is anticorrelated with the 
true sequence total LnP and model complexity for all three 
protein families, in line with our observations from simu-
lated data (Fig. 5a and b, Supplementary Figures S9c, d, 
S10c, d, and S11c, d). Similarly, the model LnL is anticor-
related with SMP sequence LnP (Table 2, Supplementary 
Table 6).

Similarly, the average SMP sequence probability 
general ly decreases as model  complexity and 
predictiveness increases (Fig.  5c). A lower average 
probability should translate to fewer correct amino acids in 
the SMP reconstruction. However, the differences among 
the models in the number of correct residues is relatively 
modest in comparison to the total number of correct 
residues (Fig. 5d). For perspective, the L/MDH dataset 
contains over 35,000 residues in total, but only 18 more 
residues are correctly predicted by the Poisson + FQ model 
compared to the LG + FO + G12 model (amounting to one 
additional correct residue per seven sequences on average).

We note that the effect of adding additional explanatory 
model parameters is not completely consistent across the 
protein families. For instance, adding among-site rate 
variation (+ G12) to the evolutionary model increases 
the number of correct amino acids for only the kinase 
family. Nevertheless, the SMP reconstructions derived 
from worse evolutionary models, as judged by predictive 
model selection, tend to have higher average probabilities 
and more correct amino acids than reconstructions from 
better models.

For ESR, Better Models also Improve True Residue 
Probabilities at a Cost to SMP Residues

Both the ASR and ESR results suggest that there is a tradeoff 
between true and SMP residue probabilities. To test this, we 
plotted a histogram of the true residue probabilities at sites 
in which the SMP residue is incorrect for the L/MDH protein 
family (Fig. 6a). True residues at incorrect sites are skewed 
toward low probabilities regardless of evolutionary model 
for our L/MDH dataset, yet the probabilities of the true resi-
dues clearly increase for more predictive models. From the 
histogram of SMP residue probabilities at incorrect sites, we 
see that both the mean and skew decrease as the complexity 
of the evolutionary model increases for all three protein fam-
ilies (Fig. 6b and Supplementary Figures S12–S13). Hence, 
in general, more predictive models increase the probability 
of the true residue at the expense of the SMP residue.
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Fig. 5  Extant SMP probabilities and number of correct residues 
generally decrease with better models. a Total LnP of extant SMP 
sequences in a phylogeny for each model of evolution. b Total LnP of 
true extant sequences for each protein family and model of evolution. 

The values for (a) and (b) are given in Supplementary Table 7. c The 
average of the average posterior probability for all reconstructed SMP 
sequences and d the total number of correct amino acids in the recon-
structed SMP sequences for each model
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Better Substitution Matrices Produce SMP 
Sequences that are more Chemically Similar 
to the True Sequences

Why should the total number of correct residues decrease 
despite improvement in the model LnL or AIC? While the 
absolute number of correct amino acid residues is a common 
and simple measure of the distance between two sequences, 
not all amino acid mistakes in a sequence are biologically 
equivalent. Some mistakes are more detrimental to protein 
function than others, due to differences in the chemical 
properties of amino acids or the strength of functional 
constraint at a given site. A reconstructed sequence with 
many benign mistakes nevertheless may be chemically and 
biophysically closer (and hence functionally more similar) 

to the true sequence than a sequence with only a few highly 
perturbing mistakes.

An evolutionary model incorporating a substitution 
matrix with unequal amino acid exchange rates (like LG) 
can account for biophysical dissimilarities in amino acid 
substitutions and therefore such a model should make 
fewer mistakes of high chemical detriment yet allow more 
mistakes that are chemically similar. To test this, for the 
Poisson + FQ and LG + FQ evolutionary models, we 
calculated the chemical dissimilarity between reconstructed 
and true sequences using the Grantham distance (Gd). The 
Gd is a common pairwise metric for amino acid biophysical 
dissimilarity that is a function of volume, hydrophobicity, 
and number of heteroatoms. (Grantham 1974). The Gd per 
mistake in the SMP sequence indeed decreases substantially 
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for all models that incorporate the LG substitution matrix 
in place of the Poisson equal rates assumption (Fig. 6c). 
Thus, better evolutionary models with realistic amino acid 
substitution processes may produce reconstructed SMP 
sequences that have lower average probability and make 
more naïve mistakes, but overall these mistakes are more 
chemically conservative.

Rate Variation Reduces the Number of Mistakes 
at Conserved Sites

Evolutionary models with rate variation across sites can 
account for differences in functional constraint. A site 
that is functionally important generally has a lower rate 
of substitution and divergence compared to a site that 
has low functional constraint. When reconstructing a 
sequence, a mistake at a slow-evolving site is more likely 
to be deleterious than a mistake at a fast-evolving site. We 
thus expect that including among-site rate variation in an 
evolutionary model may increase the number of mistakes at 
sites with high rates while reducing the number of mistakes 
at sites with low rates.

To test this hypothesis, we quantified the divergence at 
sites with mistakes in the SMP sequence using the amino 
acid entropy, a measure of site conservation. In general, 
highly variable, fast-evolving sites have a high entropy, 
while conserved, slow-evolving sites have a lower entropy. 
We compared the LG + FO and LG + FO + G12 models 
by plotting the distribution of the entropies at sites with 
mistakes (Fig. 6d). For each protein family, the median 
and skewness of the entropy distribution increases when 
incorporating rate variation among sites, indicating that 
models which include rate variation make fewer mistakes 
at functionally constrained, conserved sites while making 
more mistakes at less functionally important sites. Hence, 
for SMP sequences, models with rate variation may make 
more mistakes in general, but the mistakes likely have less 
of a functional impact overall.

Increasing Model Predictiveness Improves 
the Expected Log‑Probability and the Expected 
Chemical Similarity to the True Sequence

In addition to the SMP-based statistics, we also asked how 
expected values behave as a function of the evolutionary 
model. Unlike the SMP LnP, the eLnP generally improves 
with model predictiveness and tracks with AIC (Fig. 7a). 
This result is consistent with our results for the eLnP of 
reconstructed extant sequences with simulated data (Sup-
plementary Figures S9e, S10e, and S11e). Additionally, the 
expected number of correct sites improves for all three pro-
tein families when among-site rate variation is included in 
the models (Fig. 7b). As with the Gd for the SMP sequences, 

we see that changing the substitution matrix from Poisson 
to LG greatly improves the expected Gd (Fig. 7c). The 
expected Gd also tends to monotonically decrease with 
increasing model predictiveness. Hence, both ASR and ESR 
results suggest that for evaluating ancestral reconstructions 
expected value statistics are more useful than statistics based 
on the SMP.

The Expected LnP is an Accurate Estimate of the True 
Sequence LnP for Extant Reconstructions

We expect that if our evolutionary models are capturing 
important features of real evolutionary processes, then 
the extant eLnP should accurately approximate the LnP 
of the true extant sequence. We find that the extant eLnP 
for a given sequence is an excellent estimate for the true 
extant sequence LnP for both real biological data and 
simulated data regardless of evolutionary model (Fig. 7d, 
Supplementary Figures  S9f, S10f, and S11f). Like the 
fraction correct vs. average probability, linear least-squares 
fits of the true sequence LnP vs. eLnP gives a slope of 
approximately 1.0 for all models of evolution and each 
protein family (Supplementary Table 1). Hence, we can 
accurately estimate the LnP of the true extant sequence at 
a hidden node from the reconstructed distribution using the 
eLnP, without knowing the true sequence.

Discussion

More Accurate Models give more Accurate Ancestral 
Probabilities

Several recent studies have suggested that phylogenetic 
model selection does not matter as the resulting inferences 
are all equally distant from truth (Abadi et al. 2019; Spielman 
2020; Tao et al. 2020; Williams et al. 2006). Our analyses 
of simulated data, however, corroborate previous studies 
indicating that accurate ancestral sequence reconstructions 
require accurate models (Del Amparo and Arenas 2022; 
Finnigan et al. 2012; Hanson-Smith et al. 2010; Zhang and 
Nei 1997). When the model is misspecified, ancestral SMP 
probabilities are inaccurate and biased, yet the probabilities 
become increasingly less biased and more accurate as the 
model approaches the true generating model (Figs. 1, 2, and 
Supplementary Figures S1, S2, S4, S6 and S7).

Why does GTR20 + FO + G12 provide accurate 
probabilities for all  simulations despite being 
overparameterized? The GTR20 + FO + G12 model is 
correctly specified for the data, since both the Poisson + FQ 
and LG + FO + G12 models are nested within the 
GTR20 + FO + G12 model. The fitted parameters of the 
GTR20 + FO + G12 model will approximate those of the 
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Fig. 7  The expected Gd for ESR is generally improved by increas-
ing model complexity. a Total eLnP of the extant sequence for each 
model of evolution and each protein family. The values for (a) are 
given in Supplementary Table  6. b The expected number of cor-
rect amino acids of the reconstructed distribution and c the expected 

Grantham distance per expected number of mistakes for different evo-
lutionary models. d The true sequence LnP plotted vs. eLnP for each 
protein family and model of evolution. Each dot represents a recon-
structed SMP sequence. Linear regression slopes for (a) are given in 
Supplementary Table 1
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Poisson + FQ and LG + FO + G12 with higher certainty as 
the dataset size increases. In contrast, the overparameterized 
LG + FO + G12 model is misspecified for datasets simulated 
under the Poisson + FQ model and cannot converge to the 
true model regardless of the amount of data. While using 
an overparameterized model tends to be less problematic 
than using an underparameterized model, especially with 
large datasets, not all overparameterized models are equally 
useful, and model selection is necessary to pinpoint the best 
model for ASR.

Extant Reconstruction Probabilities are Accurate 
Even for Misspecified Models

Before applying ESR to real proteins, we compared 
the behavior of ESR and ASR using simulated data. We 
performed ESR 3075 times by fitting 5 different models on 
three different datasets simulated using the LG + FO + G12 
model of evolution. For both ESR and ASR, the probability 
of SMP residues generally decreases as the fitted model 
becomes more similar to the true LG + FO + G12 model 
(compare Fig. 1 b–c, S1b-c, and S2b-c with S9b-c, S10b-c, 
and S11b-c, respectively). Likewise, for both extant and 
ancestral reconstructions, the SMP sequence LnP and the 
true sequence LnP are anticorrelated for underparameterized 
models (compare Fig. 1 c–d, S1c-d, and S2c-d with S9c-d, 
S10c-d, and S11c-d, respectively). This behavior is expected 
since ESR is simply ASR methodology applied to terminal 
nodes rather than the more conventional internal nodes.

The absolute accuracy of reconstruction probabilities is, 
however, one notable difference between ESR and ASR. 
The average probability of an SMP sequence from ASR 
of simulated data is only an accurate estimate of fraction 
correct with a correctly specified model (Figs. 1a and 4a–c). 
A misspecified model results in ancestral reconstructions 
that overestimate their expected fraction correct. Unlike 
ASR, with ESR the calculated average probability of 
the SMP sequence is a reliable estimate of true fraction 
correct regardless of evolutionary model (Supplementary 
Figures S9–S11). Similarly, with ESR the calculated eLnP 
is a reliable estimate of the true sequence LnP regardless of 
model. Nevertheless, the ESR probabilities are also slightly 
biased, just less biased than ASR probabilities. This is 
shown by the regression of actual fraction correct versus 
average sequence probability for misspecified models, which 
deviate from a slope of 1.0 and y-intercept of 0 significantly 
more than correctly for specified models (Supplementary 
Table 1 and 6).

Notably, for all ancestral sequence reconstructions, 
fraction correct appears to be a monotonically increasing 
function of the average probability of the SMP sequence, 
indicating that even inaccurate reconstructed probabilities 
are useful as a gauge of relative accuracy. Furthermore, 

the reconstructed probabilities become more accurate 
and unbiased as they increase and approach a probability 
of 1.0 (Figs. 1, 2, and Supplementary Figures S1, S2, S4, 
S6, and S7). For reconstructions with average probability, 
say, ≥ 0.95, the inaccuracies in the probabilities are minimal 
for even misspecified models. As more evolutionarily 
relevant model parameters are included, the expected 
fraction correct approaches the actual fraction correct, 
which underlines the importance of model selection criteria 
to reduce bias in ancestral probabilities.

Sequence Correlations Compound Bias in Ancestral 
Reconstructions, but not in Extant Reconstructions

Why are ESR probabilities more accurate than ASR 
probabilities for misspecified models? The probabilities for 
extant sequences determined by ESR are calculated using 
the same theoretical methodology as ancestral probabilities 
in ASR. However, the terminal nodes used in ESR differ 
from the internal nodes that are the focus of conventional 
ASR. Internal nodes are connected to and receive 
information from three other nodes, whereas a terminal node 
is connected directly to only a single internal node. All else 
equal, the probabilities at a terminal node are calculated 
using less information than an ancestral node. Given these 
differences we expected that the behavior of reconstructed 
extant sequences might differ from reconstructed ancestral 
sequences.

We see that overall the extant reconstructions are 
much lower in average sequence probability than the 
ancestral reconstructions. For example, the average SMP 
ancestral sequence probability is approximately 0.9 for 
the Poisson + FQ reconstructions in the simulated terpene 
synthase dataset, whereas for the extant reconstructions, 
the average SMP sequence probability is 0.68. This is 
consistent with the fact that ancestral sequences receive 
more information from three branches, whereas tips receive 
less information from a single branch.

Phylogenetic structure quantifies correlations between 
residues in different sequences at a site in an alignment. 
Different sequences are not independent data, and the 
correlations are modeled by the phylogenetic tree. Internal 
nodes receive information on sequence correlations from 
three different domains of a tree, while terminal nodes only 
receive information through one branch. Since a terminal 
node has only one source of information, there is no 
potential for conflicting information coming from multiple 
sources. Incorrectly modeled correlations, for instance, 
from a misspecified model, should therefore affect and bias 
reconstructions at internal nodes more than terminal nodes, 
and this is apparently reflected in the more biased ASR 
probabilities compared to ESR probabilities.
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Better Models Result in SMP Sequences More 
Chemically Similar to Truth

How can the true model result in a less probable SMP 
sequence that is expected to result in fewer correct 
residues? A general answer is that ML methodology does 
not maximize the number of correct residues; rather, 
ML maximizes the probability of the observed sequence 
data by finding the best value of each model parameter. 
Similarly, model selection methods like AIC maximize 
the expected probability of the observed sequence data by 
finding the best model. In light of this, we should expect 
that using ML with a more predictive model may result in 
lower probability SMP sequences with fewer total correct 
amino acids. Including parameters that increase the AIC 
improves the predictiveness of the model by capturing an 
influential aspect of the evolutionary process. Biologically 
meaningful model parameters produce predictions that are 
more biologically and evolutionarily realistic, but more 
biologically realistic sequences may not necessarily have 
fewer amino acid errors.

For instance, the evolutionary impacts of amino acid 
substitutions are not all equal because of differing degrees of 
chemical similarity among amino acids (Norn et al. 2021). 
Therefore, replacing a Poisson substitution matrix with 
the LG substitution matrix should have an impact on SMP 
biophysics by skewing toward mistakes that are chemically 
similar to the true amino acids. These considerations suggest 
that the absolute number of correct residues is the wrong 
metric to assess how substitution matrices impact SMP 
reconstructions. Using the Grantham distance Gd as a metric 
to judge the difference between SMP reconstructions and 
the truth, we saw that the LG substitution matrix improves 
the types of mistakes made in the SMP sequence (Fig. 6c).

Similar to a substitution matrix, among-site rate variation 
in a phylogenetic model phenomenologically accounts for 
differences in purifying and adaptive selection among sites 
in a protein. Sites with higher functional constraint generally 
evolve with slower rates and result in alignment columns 
with lower amino acid entropy. Hence, a mistake at a low-
entropy site is not on average functionally equivalent to a 
mistake at a high-entropy site; rather, a mistake at a low 
entropy, functionally constrained site is more likely to be 
functionally detrimental. We see this effect in the mean and 
skew of the entropy histogram of unique reconstruction 
mistakes when we compare models with and without rate 
variation (Fig. 6d). The differences between models may 
appear to be small in terms of Gd per mistake and the change 
in mean entropy, yet the benefits of making better mistakes 
can be critically important. Even a single chemically 
detrimental amino acid change, or a single conservative 
change in an active site, can have catastrophic effects on 
protein function.

These examples highlight what is likely a general 
consideration in evaluating the effects of model selection 
methodologies: when evaluating the “closeness” of model 
inferences to truth, it is critical to choose the proper metric. 
For our phylogenetic models, the absolute number of 
differences between a reconstructed sequence and the true 
sequence is an overly simplistic metric for quantifying 
biophysical accuracy. Similarly, when evaluating the 
closeness of an inferred phylogeny to the true phylogeny, 
the raw Robinson–Foulds distance is likely the wrong 
metric for quantifying evolutionary accuracy (Abadi et al. 
2019; Spielman 2020; Tao et  al. 2020; Williams et  al. 
2006). Rather, more evolutionarily meaningful metrics 
like a generalized Robinson–Foulds distance may be more 
appropriate (Smith 2021).

Better Models Improve Expected Properties 
of the Reconstructed Distribution

The SMP sequence is typically resurrected and used to 
provide conclusions about protein evolution, primarily 
because of its experimental tractability (Akanuma et al. 
2013; Boucher et al. 2014; Chang et al. 2002; Gaucher et al. 
2003; Nguyen et al. 2017; Thornton et al. 2003; Wilson 
et al. 2015). However, the SMP sequence is known to be an 
unusual and biased sequence, and as a single point estimate 
of the true ancestral sequence its use discards information in 
the ancestral distribution on the uncertainty in reconstructed 
amino acid states (Krishnan et al. 2004; Matsumoto et al. 
2015; Williams et al. 2006; Yang 2006). A more theoretically 
justified method is to study the expected properties of the 
proteins described by the reconstructed distribution. In 
some cases, the expectations can be calculated analytically 
(as is the case with all examples in this work), but when 
that is infeasible the expectations can be approximated 
experimentally by sampling sequences from the ancestral 
distribution and studying the average properties of the 
samples (Gaucher et al. 2008). For these reasons we wished 
to explore the effects of model parameters on the expected 
properties of the entire reconstructed distribution.

Changing the substitution matrix from Poisson to LG 
consistently lowers the expected Gd per expected mistake 
for all three protein families without adding additional 
parameters to the model (Fig. 7c). The LG substitution 
matrix improves the probability of true residues at incorrect 
sites of the SMP sequence (Fig. 6a), while decreasing the 
probability of the SMP residue at incorrect sites (seen from 
the slight change in histogram skew of the probabilities of 
incorrect amino acids) (Fig. 6b). Even though changing the 
substitution matrix improves the chance of selecting the true 
residue, it has a lesser effect on reducing the chance of the 
wrong SMP residue. This could explain why the expected 
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Gd per mistake improves significantly, but the expected 
number of correct residues does not improve.

Adding among-site rate variation to the model results in 
the largest and most consistent improvement to the expected 
number of correct residues (Fig.  7b). Among-site rate 
variation is the biggest factor in reducing the probability 
of incorrectly guessed SMP residues (Fig. 6b), while there 
is not as much improvement in the probability of the true 
residue (Fig. 6a).

When resurrecting an ancestral protein, we are ultimately 
most interested in accurately reproducing the biophysical 
and functional properties of the true ancestor, rather than 
simply getting the sequence correct. The Gd and the total 
number of correct residues are proxies for the experimental 
properties of resurrected enzymes. Having more correct 
residues and a lower Gd are both likely to be result in a 
reconstructed protein with biophysical properties that are 
closer to the true ancestor. However, the ultimate judge 
is experimental comparison of reconstructed and true 
biophysical properties, which we leave to future work.

SMP Reconstructions have the Highest Expected 
Identity to the True Sequence

One justification for using the SMP reconstruction is that it 
is expected to have the fewest mistakes, relative to the true 
ancestor, of all possible sequences. We have found that the 
frequency of successfully predicting a correct amino acid 
is positively correlated to that amino acid’s reconstruction 
probability. Hence using a lower probability sequence should 
generally result in fewer correct amino acids predicted 
than the SMP sequence. We indeed find that fewer correct 
residues are expected in randomly sampled sequences 
(Fig.  7b) relative to the SMP sequence, for all protein 
families across all models of evolution (Fig. 5d). In addition, 
sampled sequences are expected to be less chemically 
similar to the true sequence (Fig. 7c) than the SMP sequence 
is to the true sequence (Fig. 6c). Taken together, the SMP 
reconstructions result in fewer errors and more chemically 
similar sequences on average than sequences sampled from 
the posterior probability distribution.

Biased Sampling of Reconstructions may Miss Many 
True Residues

The SMP sequence is just one possible sequence out of the 
reconstructed distribution. The reconstructed distribution 
contains information for constructing all other possible 
sequences of the same length, with some being more 
plausible than others. There are three widely used methods 
for generating plausible alternatives to the SMP sequence: 
(1) unbiased random sampling of a residue at each site, (2) 
biased random sampling of a residue at each site, and (3) 

deterministic generation of lower probability sequences, 
such as the “AltAll” method (e.g., select the second most 
probable residue at a site when its probability is greater 
than 0.2) (Akanuma et al. 2013; Gaucher et al. 2008; Lim 
et al. 2016; Wheeler et al. 2016). The latter two methods 
essentially assume that reconstruction distributions do not 
contain correct yet low probability (e.g., < 0.2) residues.

To determine if AltAll and biased sampling miss 
low probability yet correct residues, we investigated the 
distribution of true residue probabilities at incorrect SMP 
sites. We find that, when the SMP chooses the wrong 
residue, the probability of the true residue at that site is 
highly skewed toward 0.05 (Supplementary Figure S10). 
Therefore, restricting residue sampling to a probability > 0.2 
will miss many true residues, because biased sampling 
generates incorrect residues at a frequency higher than 
unbiased sampling.

Sampled Reconstructions can be more Accurate 
than the SMP Reconstruction

Of all possible sequences, the SMP sequence has the fewest 
expected number of differences from the true sequence. 
Unbiased sampling from the reconstructed distribution 
generates sequences that have more expected mistakes 
than the SMP sequence. Previously, Eick et al. visually 
represented sampled sequences by plotting them as the 
difference in LnP vs the number of amino acid differences, 
both relative to the SMP reconstruction (Eick et al. 2017). 
The main purpose of these plots was to illustrate that 
sampled sequences may be non-functional because of their 
lower probability and greater number of expected errors 
relative to the SMP. [Note that our terminology follows 
that of (Matsumoto et al. 2015)]. Eick et al. call the “ML 
reconstruction” what we call the SMP reconstruction, and 
they call “Bayesian sampling” what we refer to as sampling 
from the ML reconstruction distribution.

Using ESR, we reconstructed the SMP sequence and 
10,000 sampled sequences for three extant proteins (LDH_
CRPA2, LDH_THOR, and MDH_DETH) that represent a 
wide range of average posterior probabilities for their respec-
tive SMP sequences (0.95, 0.80, and 0.65, respectively). 
Like Eick et al., we plotted the LnP of each reconstructed 
sequence against the number of differences relative to the 
SMP sequence (Fig. 8a–c). As previously seen, the sampled 
sequences all have lower LnP than the SMP sequence (which 
is true by definition of the SMP). Furthermore, the sampled 
sequences form a cloud with varying numbers of sequence 
differences from the SMP, and it is clear that the SMP is an 
extreme outlier from the reconstructed distribution.

Because our data are from an ESR analysis, we know the 
identity of the true sequence and so we are also able to plot 
values for the true sequences (green dots) and the expected 
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values (purple dots) from the reconstruction distribution. 
It is immediately apparent that the true sequence has 
LnP typical of the sampled distribution, unlike the SMP 
reconstruction. The expected LnP of the reconstructed 
distribution (purple dots, y-axis) is very close to the LnP 
of the true sequence (green dots, y-axis), indicating that we 
can accurately approximate the true sequence LnP without 
knowing the identity of the true sequence. Note that for 
sampled sequences the expected number of differences 
from the SMP sequence is equal to the expected number 
of mistakes in the SMP sequence (purple dots, x-axis in 
Figs.  8a–c), which can be calculated from the average 
probability per residue of the SMP sequence (Eq.  8 in 
Methods). Because we know the true sequence, we can also 
plot the actual number of mistakes in the SMP sequence for 

comparison (green dots, x-axis in Figs. 8a–c). As can be 
seen in the plots, the expected number of mistakes in the 
SMP is strikingly close to the actual number of mistakes in 
the SMP, as anticipated.

These plots (Fig. 8a–c) could give the impression that 
the sampled sequences have many more mistakes than 
the SMP. However, the number of amino acid differences 
from the SMP is not the same as the number of mistakes, 
which are differences from the true sequence. In principle 
a sampled sequence can be very close in identity to the true 
sequence yet differ greatly from the SMP. Thus, it would 
be more informative to use the true sequence as the bench-
mark for comparison, by plotting differences from the true 
sequence rather than from the SMP sequence. Though this 

Fig. 8  The SMP sequence may have significantly more mistakes than 
sampled sequences. Sampled sequences (blue dots) and other spe-
cific sequences (colored circles) for an ESR analysis of three differ-
ent extant L/MDH proteins. The blue dots represent 10,000 sequences 
sampled from the reconstructed distribution, the green circle is the 
true sequence, the orange circle is the SMP sequence, and the purple 

circle is the expected property of the reconstructed distribution. a–c 
The LnP of a sequence vs the number of differences from the SMP 
for three different proteins. d–f The LnP of a sequence vs the number 
of mistakes in a sequence (relative to the true sequence) for the three 
different proteins. The SMP sequence average probability is shown 
next to the SMP sequence (orange dot)
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is impossible with a standard ASR analysis, it is possible 
with ESR.

In Figs.  8d–f, we plot the same ESR data but as 
differences from the true sequence. As before, the sampled 
sequences all form a cloud of similar LnP and mistakes, 
and the expected values sit in the middle of this cloud. The 
expected number of mistakes in a sampled sequence (purple 
dot) is the expected average probability of the distribution 
of reconstructions (calculated from Eq. 9 in Methods). In 
these plots, the SMP sequence is much closer to the cloud of 
sampled sequences, and the difference in number of mistakes 
between the sampled sequences and the SMP is much lower 
than the difference between the sampled sequences and the 
SMP as shown in the Eick-style plots.

For LDH_CRPA2, many sampled sequences (~ 11%) in 
fact have fewer mistakes than the SMP sequence (e.g., all 
the blue-sampled sequences shown to the left of the orange 
SMP, which has 20 mistakes). The number of mistakes in 
sampled sequences follows a Poisson Binomial distribution 
roughly centered on the expected number of mistakes 
(for LDH_CRPA2 mean = 23, sd = 2.3). In general, many 
sampled sequences may have fewer mistakes than the SMP 
sequence when the SMP has high average probability (e.g., 
greater than ~ 0.9). We do not see this for LDH_THOR and 
MDH_DETH because the number of mistakes in their SMP 
sequences is far fewer than the expected number of mistakes 
for the distribution.

ESR Highlights Relative Information Content 
for Regions in a Phylogeny

The many different methods for calculating branch sup-
ports provide a measure of confidence in the existence 
of a specific branch, and by extension, a specific ances-
tral node (Anisimova and Gascuel 2006; Anisimova et al. 
2011; Minh et al. 2013). However, a branch support does 
not provide information about the quality of a sequence 
reconstruction at that node. The eLnP of a sequence 
becomes an increasingly accurate estimate of the true 
sequence LnP as the model becomes more correctly speci-
fied. The eLnP of all internal and external nodes can be 
included in a phylogeny, as a complement to branch sup-
ports, to indicate and visualize which regions have high 
information and which have low information about ances-
tral and extant nodes. As an example, for an Apicomplexa 
L/MDH dataset, we calculated the normalized eLnP for all 
nodes and mapped them onto the phylogeny (Fig. 9). We 
can see that there is a specific clade, composed of bacterial 
MDHs, whose eLnP is relatively low compared to the rest 
of the phylogeny. To improve the probability of predict-
ing the true ancestral sequence, we need to improve the 
eLnP of an ancestral sequence, which can be accomplished 
by perhaps including more sequence data targeted at this 
clade or by improving the phylogenetic model.

Fig. 9  The LG + FO + G12 tree 
colored by relative total site 
eLnP illustrates the location 
of uncertain sequences and 
regions of poor predictiveness. 
The colored bar in the figure 
represents the normalized total 
site eLnP; red is the highest 
eLnP and blue is the lowest 
eLnP. Terminal nodes are repre-
sented by colored diamonds and 
internal nodes are represented 
by colored circles. The bacterial 
MDH clade is identified by the 
polygon outlined with dashed 
lines

0
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Conclusion

We have developed a CV method called extant sequence 
reconstruction, ESR that can be used to evaluate the 
accuracy of ASR by comparing its reconstructions against 
known, true proteins. Using ESR we are able to learn how 
different phylogenetic models impact reconstructions in 
three key ways. First, improving a model (as judged by 
comparing AIC or BIC) should improve the true residue 
probability. Second, improving the model generally 
increases the expected chemical similarity between the 
reconstruction and the true sequence. The two main 
factors in improving ancestral sequence reconstructions 
are the choice of substitution matrix and among-site 
rate variation. Third, the average probability of an SMP 
reconstruction is a poor judge of the performance of a 
model. A better model frequently results in lower average 
probabilities for SMP reconstructions. Taken together, 
these takeaways point to the importance of performing 
model selection when using ASR to increase the chances 
of reconstructing the most accurate sequence.

In this study, we compare sequence reconstructions 
to truth using ESR. However, ESR provides a 
general framework to “resurrect” extant proteins and 
experimentally compare their biophysical properties (e.g., 
melting temperature or activity) to that of the true proteins. 
An important application of ESR will be in assessing 
the accuracy of ASR methodology experimentally by 
comparing the biophysical properties of ESR resurrected 
proteins to the true modern proteins, a research goal we 
will address in future work.

Materials and Methods

Simulated Datasets

We used INDELible (version 1.03) to generate extant 
and ancestral datasets. Sequences were simulated under 
the LG + FO + G12 model of evolution using either the 
L/MDH, Abl/Src-kinase, or terpene synthase phylogeny. 
The equilibrium frequencies, alpha parameter for rate 
variation, and guide tree were the ML estimates from the 
L/MDH, Abl/Src-kinase, and terpene synthase phylogenies 
inferred using the LG + FO + G12 model of evolution. 
The simulated alignment length was 1000 residues long 
for each simulation and was repeated 10 times. Ten 
simulations were repeated with the Poisson + FQ model 
of evolution and phylogeny for each protein families, 
resulting in 60 total simulations. ASR and ESR was 
performed on each simulated dataset using various models 

of evolution: (1) the Poisson substitution matrix with 
FQ, (2) the LG substitution matrix with FQ, (3) the LG 
substitution matrix with FO, and (4) the LG substitution 
matrix with FO and 12-category gamma G12.

Biological Datasets

Protein sequences for lactate and malate dehydrogenase 
(L/MDH), kinase, and terpene synthase homologs were 
obtained using BLAST searches with the National Center 
for Biotechnology Information nr protein sequence database 
(Wilson et al. 2015). For each dataset, a multiple sequence 
alignment was generated using MAFFT-LINSI (version 
7.487) (Katoh et al. 2002). Sequence and alignment statistics 
for each protein family are listed in Table 1.

Phylogenetic Inference

Maximum likelihood (ML) phylogenies were inferred using 
IQ-Tree (version 2.1.1) with various evolutionary models for 
a given multiple sequence alignment (Bershtein et al. 2008; 
Nguyen et al. 2015). In order of increasing complexity, the 
models were (1) the Poisson substitution matrix with equal 
equilibrium frequencies (FQ), (2) the LG substitution matrix 
with FQ, (3) the LG substitution matrix with optimized 
equilibrium frequencies (FO), (4) the LG substitution matrix 
with FO and 12-category gamma distributed among-site rate 
variation (G12), (5) the LG substitution matrix with FO, 
G12, and a proportion of invariant sites (I), and (6) GTR20 
with FO and G12.

ASR Methodology Provides a Distribution of Amino 
Acid States for a Reconstructed Protein

Here we provide a brief overview of standard ASR 
methodology for calculating ancestral protein sequences. 
The ancestral sequence probability distribution for a 
given internal node, hereafter referred to as the ancestral 
distribution or simply the “reconstruction,” is an inferred 
amino acid distribution for every site in an ancestral sequence 
conditional on a given phylogeny, model of evolution, and 
corresponding ML model parameters (Songyang et al. 1995; 
Yang et al. 1995). The ancestral probability distribution 
reflects our confidence in the presence of each amino acid 
at every site in the ancestral sequence (Finnigan et al. 2012; 
Hanson-Smith et al. 2010; Songyang et al. 1995; Yang et al. 
1995; Zhang and Nei 1997).

Consider the simple tree on the left-hand side of 
Fig. 1, which shows the phylogenetic relationships among 
three observed, modern sequences (A, B, and C) and 
an unobserved, ancestral sequence D. Since we assume 
site independence, when calculating probabilities of the 
sequence data we can consider one site at a time (Felsenstein 
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1981; Yang 1994). The joint probability of the amino acids 
in the four sequences at a site may be written:

where p(D|A,B,C) is the probability of observing the amino 
acid for ancestral sequence D, conditional on the observed 
amino acids in sequences A, B, and  C. For clarity we omit 
the conditional dependencies on the ML phylogeny and 
model parameters. The probabilities in Eq. (3) above can be 
calculated using standard probabilistic models of sequence 
evolution. In general, we do not know the ancestral states, 
but the joint probability of the observed amino acids (in 
sequences A, B, and C) can still be calculated by integrating 
out the ancestral state in D (i.e., by summing over all 
possible amino acid states at that ancestral site):

where k is one of the possible 20 amino acids (Felsenstein 
1981; Yang 1994). This is the usual form of the phylogenetic 
likelihood function for observed sequence data that is 
maximized in a ML phylogenetic analysis. In conventional 
ASR (for the marginal reconstruction), Bayes rule provides 
the probability distribution for the unobserved ancestral site 
D:

Equation 5 gives the probability that the ancestral state is 
amino acid k. This calculation can be made for every amino 
acid to produce the full ancestral probability distribution 
at that site. By repeating the calculation at every site, we 
construct the full ancestral probability distribution for the 
ancestral sequence D (Songyang et al. 1995; Yang et al. 
1995).

The fundamental result of ASR is not a single 
reconstructed sequence, but rather a distribution that assigns 
probabilities to all possible sequences of length N, the length 
of the alignment. The extant reconstructed distribution 
provides all information possible from our evolutionary 
model and sequence dataset to evaluate the plausibility of 
different sequences and amino acids at the node of interest. 
There are two main types of descriptive statistics we can 
calculate from the reconstructed probability distribution: 
(1) sequence-specific statistics, which apply only to a single 
reconstructed sequence (e.g., the SMP) and (2) global 
reconstruction statistics, which describe an average or 
expected quantity over all possible reconstructed sequences 
for a given ancestor. For example, from the reconstructed 
distribution we can quantify the probability of any specific 
sequence, sample sequences from the distribution, and 

(3)p(A,B,C,D) = p(D|A,B,C)p(A,B,C),

(4)p(A,B,C) =

20∑

k

p(A,B,C,D = k),

(5)p(D = k|A,B,C) =
p(A,B,C,D = k)

p(A,B,C)
.

generate the SMP sequence (Chang et al. 2002; Eick et al. 
2017; Gaucher et al. 2008). Based on the entire distribution, 
we can calculate the expected average probability and the 
expected log-probability of the true sequence at the node. 
In the following we assess the utility of these and other 
statistics and observe how they are affected by competing 
evolutionary models of increasing complexity.

Ancestral and Extant Reconstructions

Herein we refer to a “reconstruction” as the probability 
distribution of amino acid states for a single sequence at 
a hidden node in a phylogeny. For ASR, the hidden node 
corresponds to an internal node, whereas for extant sequence 
reconstruction (ESR), the hidden node corresponds to a 
terminal node. A reconstructed probability distribution is 
a 20 × N matrix of N sites corresponding to the N columns 
in the sequence alignment. Each site j in the reconstruction 
probability distribution is a categorical distribution 
represented by 20 vectors of amino acid probabilities 
that sum to 1. In this work, we use what is known as the 
“marginal reconstruction” of a hidden node (as opposed to 
the “joint reconstruction”), in which the uncertainties in the 
hidden states of all other nodes are integrated over (Yang 
et al. 1995).

Site‑Wise CV

The goal of site-wise CV is to phylogenetically reconstruct 
the sequence of a modern protein. The amino acid 
probability distribution of a site in a single modern 
sequence is calculated analogously to how conventional 
ASR calculates the amino acid probability distribution for 
an ancestral site. For site-wise CV (Fig. 3, top right), the 
training dataset is the original alignment with a single site 
removed from a single modern sequence corresponding to 
a terminal node (i.e., a single amino acid was deleted from 
the alignment). The validation dataset is the single amino 
acid that is deleted from the original alignment to produce 
the training dataset.

First, a new ML phylogeny and model parameters were 
inferred for the training dataset. Depending on the particular 
phylogenetic model under consideration, the parameters 
may include one or more of branch lengths, equilibrium 
frequencies, alpha rate variation, invariant sites fraction, 
and amino acid exchangeabilities. Then, using the ML 
parameters from the training set, the probability distribution 
of the deleted extant amino acid site was calculated. IQ-Tree 
only reconstructs states for internal nodes of a phylogeny, 
so a workaround to reconstruct terminal nodes was coded 
using IQ-Tree and in-house shell and Python scripts. The 
extant node corresponding to the site and sequence of 
interest was made an internal node in a new proxy tree by 
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artificially adding two daughter nodes with branch lengths 
of 1000 to the ML tree constructed from the training set. 
The corresponding sequence alignment was also modified 
to include an additional poly-Leu sequence corresponding 
to one of the new daughter nodes; the other daughter node 
corresponds to the original sequence of interest with the 
single site deleted. ASR was then performed with IQ-Tree 
(by invoking the ‘-asr’ command line option) without 
optimization using the proxy tree, sequence alignment, and 
ML parameters previously inferred from the training dataset. 
This procedure forces IQ-Tree to reconstruct the sequence 
corresponding to the extant node (now internal) in the proxy 
tree. Because the two new daughter nodes are attached to 
the original extant node by very long branches, the daughter 
nodes contribute no information to the reconstruction at the 
internal node (a fact which was confirmed empirically by 
performing analyses with various branch lengths, short 
to long). These steps were repeated for each site in each 
sequence in the alignment.

The reconstructed conditional probability distribution for 
an entire extant sequence was then constructed by collating 
the conditional probability distribution for each removed site 
in the extant sequence from the IQ-Tree ASR output files.

Sequence‑Wise CV

The purpose of sequence-wise CV is to closely approximate 
the results of single-site CV by generating a probability 
distribution for each extant sequence, but with considerably 
less computation. For sequence-wise CV, the training dataset 
is the original sequence alignment with no sites removed, 
and the validation dataset is a single extant sequence (Fig. 3, 
bottom right). First, using IQ-Tree a maximum likelihood 
phylogeny was inferred for the alignment that contained 
the full sequence set. Then, like in the site-wise CV, the 
original phylogeny was modified to internalize the node 
corresponding to the chosen extant sequence by making it 
the parent of two introduced daughter nodes and a poly-
Leu sequence was added to the original alignment. Finally, 
ASR was performed on the modified phylogeny using the 
ML estimate of each parameter from the original phylogeny 
to generate a file containing the posterior probability 
distributions for each internal node. The process was 
repeated for each sequence in the alignment. A probability 
distribution is calculated at each site of the alignment, so 
for sequence-wise CV, the corresponding gaps from the true 
alignment were applied to the extant reconstruction. While 
this sequence-wise procedure is not strictly CV, the results 
are extremely close to that of site-wise CV (Supplementary 
Figure S8) because the respective training sets typically 
differ by only one residue out of thousands in an entire 
alignment (e.g., only one difference out of 39,080 total 
residues for the L/MDH dataset). Sequence-wise CV speeds 

up the computation time by several orders of magnitude 
relative to site-wise CV.

To demonstrate that sequence-wise CV reconstruction 
probabilities are approximately equivalent to site-wise CV 
probabilities we used the LG + FO + G12 model and the L/
MDH dataset we took two approaches. First, we compared 
the overall true sequence reconstructions between the two 
CV methods. A line of best fit for the LnP of each true 
sequence reconstruction between the two cross-validation 
methods has a slope of 1.001 and an intercept of 3.824 
(Supplementary Figure S7a). The slope indicates that the 
true sequence LnP from sequence-wise CV approximates 
closely the true sequence LnP from site-wise CV and scales 
with it almost perfectly. The intercept indicates a small 
positive offset to the sequence-wise reconstructions, which is 
expected from the fact that the sequence-wise approximation 
to LnP should always be less than or equal to the correct site-
wise value. A histogram of the difference in LnP for each 
true sequence (the difference is sequence-wise LnP from 
site-wise LnP) demonstrates that the LnP from a site-wise 
reconstruction is always lower than from a sequence-wise 
reconstruction (Supplementary Figure S8b). The average 
difference in LnP between two sequences reconstructed from 
site-wise and sequence-wise is -3.66 with a 0.16 standard 
error of the mean.

We also compared the individual site reconstructions 
for the true residues for site-wise CV and sequence-wise 
CV. A line of best fit for the true residue LnP calculated 
by sequence-wise CV as a function of the true residue 
LnP by site-wise CV is 0.954 and an intercept of -0.007 
(Supplementary Figure S8c). Even the individual LnP for 
each sites reconstructed using sequence-wise CV is a good 
approximation of the site-wise CV. We repeated the process 
with the probability of each true residue and, like with the 
LnP, sequence-wise CV is a good approximation to site-wise 
CV (Supplementary Figure S8d). Each site reconstructed 
requires a new phylogeny and parameters estimated by 
IQ-Tree, which is 39,080 unique runs for a single alignment. 
The average absolute error per true residue between the two 
CV methods is 0.001.

Phylogenetic Tree Pruning

To determine if the estimates of fraction correct and of true 
sequence LnP are robust to the branch length, an L/MDH 
phylogenetic tree was pruned of selected branches and 
sequence-wise CV was performed. First, for the phylogeny 
inferred using LG + FO + G12, taxa and adjacent branches 
were removed and a list of the remaining taxa was stored. 
Next, taxa from LG + FO, LG + FQ, and Poisson + FQ 
were also removed, provided they were removed from the 
LG + FO + G12 phylogeny. The internal nodes associated 
with each branch were also removed while maintaining total 
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branch lengths. Finally, sequence-wise CV was performed on 
each pruned phylogenetic tree. For each dataset the slope was 
calculated for a line of best fit between average fraction correct 
against average SMP sequence probability (averaging over all 
extant reconstructions).

Single Most Probable (SMP) Reconstructed 
Sequence

SMP sequences are generated by selecting the most probable 
residue at each site from the reconstructed conditional 
probability distribution for each sequence. Extant SMPs 
are constructed from an extant reconstruction probability 
distribution; ancestral SMPs are constructed from an ancestral 
reconstruction probability distribution. In many publications, 
SMP sequences are referred to as “maximum likelihood (ML) 
ancestral sequences,” which strictly is a misnomer because the 
SMP state is not an ML estimate (Eick et al. 2017; Wheeler 
et al. 2016). Reconstructed hidden states are not parameters of 
the likelihood function; rather, they are unobserved data states 
that are integrated out of the likelihood function.

Log‑Probability of a Specific Sequence

The log-probability (LnP) of a sequence is the sum of the LnP 
for the amino acid state a at each site j of the sequence:

Expected Log‑Probability for a Reconstruction

The expected log-probability (eLnP) of a reconstruction can 
be thought of as the average log-probability of a sequence 
sampled from the reconstructed distribution:

where ak is the amino acid state, which can be any one k of 
the 20 amino acids and p (ak)j is the probability of the amino 
acid state ak at site j of the sequence. Note that here the 
expectation is taken over the entire reconstructed probability 
distribution (i.e., over all sites and over all 20 possible amino 
acid states). The eLnP of a reconstruction is equivalent to the 
negative entropy of the reconstructed probability distribution 
and is an estimate of the log-probability of the corresponding 
true sequence.

(6)LnP =
∑

j

lnp(a)j.

(7)eLnP = E
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Average Probability or Expected Fraction Correct 
for a Specific Sequence

For a given sequence i, the expected fraction f of 
correct residues is equal to the arithmetic average of 
the probabilities for the amino acid at each site j in the 
sequence:

where Ni is the length of sequence i and ai is the amino acid 
state at site j in sequence i. The “fraction correct” f is defined 
as the actual number of correct residues in the sequence 
divided by the sequence length. We usually refer to the 
expected fraction correct as simply the “average probability” 
of a reconstructed sequence.

Because we model the probability of successfully 
identifying the correct amino acid at each site as an 
independent Bernoulli, the average probability over sites 
is a scaled sum of independent Bernoulli probabilities. 
Hence, both the expected number of correct residues and the 
expected fraction of correct residues follow from a Poisson 
Binomial distribution (Chen and Liu 1997; Wang 1993).

Expected fraction correct for a reconstruction

The expected fraction of correct amino acids f for a 
reconstruction is calculated as

where the summation is taken over sites j and amino acids 
k. This expectation can be thought of as the average, over all 
possible sequences, of the expected fraction correct for each 
sequence, weighted by the probability of each sequence.

Chemical Similarity Between SMP and True 
Sequences

To account for chemical similarity among mutations, we 
calculated the Grantham distance (Gd) between the SMP 
sequence and the true extant sequence as

where d (a,b) is Grantham’s distance between the true amino 
acid a and the SMP amino acid b, summing over each site 
j in the sequence (Grantham 1974). To calculate Gd for an 
entire alignment we sum over each protein in the alignment.

(8)E(f )i =

∑
j p
�
ai
�
j

Ni

,

(9)E(f ) = E
[
p(a)

]
=
∑

j

∑

k

p
(
ak
)2
j,
,

(10)Gd =
∑

j

d
(
aj, bj

)
,
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Chemical Similarity Between a Sequence 
Reconstruction and the True Sequence

To quantify the expected chemical similarity between 
the true sequence and sequences sampled from the 
reconstructed distribution, we calculate an expected Gd as

E[Gd] is the expected Gd and p (b) is the probability 
of the amino acid state. To calculate E[Gd] for an entire 
alignment we sum over all possible amino acids, for each 
site in a protein, and for each protein in the alignment.

Model selection information criteria

The Akaike Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC) were calculated as

respectively, where LnL is the maximum log-likelihood for 
the model, K is the number of free parameters, and N is the 
number of columns in the alignment.

Tree Visualization

To visualize the uncertainty in our ancestral sequences, we 
map normalized eLnP of each node onto the phylogeny. 
We calculate the eLnP (Eq. 7) for each ancestral and extant 
node and normalize each ancestral and extant eLnP with 
the maximum and minimum eLnP, so that the normalized 
value is between 0 and 100. Then, we modify the Newick 
formatted tree file so that each node is associated with the 
corresponding normalized eLnP. The subsequent tree was 
displayed with FigTree (version 1.4.3).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00239- 024- 10162-3.
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