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Abstract
Results from phylogenetic analyses that study the evolution of species according to their biological characteristics are fre-
quently structured as phylogenetic trees. One of the most widely used methods for reconstructing them is the distance-based 
method known as the neighbor-joining (NJ) algorithm. It is known that the NJ algorithm can produce different phylogenetic 
trees depending on the order of the taxa in the input matrix of evolutionary distances, because the method only yields bifur-
cating branches or dichotomies. According to this, results and conclusions published in articles that only calculate one of 
the possible dichotomic phylogenetic trees are somehow biased. We have generalized the formulas used in the NJ algorithm 
to cope with Multifurcating branches or polytomies, and we have called this new variant of the method the multifurcating 
neighbor-joining (MFNJ) algorithm. Instead of the dichotomic phylogenetic trees reconstructed by the NJ algorithm, the 
MFNJ algorithm produces polytomic phylogenetic trees. The main advantage of using the MFNJ algorithm is that only one 
phylogenetic tree can be obtained, which makes the experimental section of any study completely reproducible and unbiased 
to external issues such as the input order of taxa.
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Introduction

The neighbor-joining (NJ) algorithm is a well-known dis-
tance-based method for reconstructing phylogenetic trees, 
introduced by Saitou and Nei (1987). It is an agglomerative 
or bottom-up method that forms a phylogenetic tree group-
ing pairs of taxa into nodes in a greedy manner. Since its 
publication, the NJ algorithm has become the most widely 
used method for building phylogenetic trees from distances 
(Gascuel and Steel 2006).

Any taxon in a leaf and any internal node of a phyloge-
netic tree is called an operational taxonomic unit (OTU). It 
is long known that more than one phylogenetic tree can be 
obtained when there are identical sums of branch lengths 
between different pairs of OTUs, at any iteration of the 
agglomerative process guided by the NJ algorithm. This 
characteristic of the algorithm is known as the ties in prox-
imity problem (Backeljau et al. 1996). When different phy-
logenetic trees are possible, the reproducibility of the results 
is complicated and generally biased towards just one of the 
possible solutions. Thus, any conclusion acquired from a 
single phylogenetic tree is partial and, therefore, question-
able (Segura-Alabart et al. 2022).

Over the last years, the scientific community has developed 
several alternative versions of the NJ algorithm. To name just 
a few, there are algorithms that use heuristics to reduce their 
running time, making them suitable for large-scale applica-
tions: QuickTree (Howe et al. 2002), QuickJoin (Mailund and 
Pedersen 2004), relaxed neighbor joining (Evans et al. 2006), 
and fast neighbor joining (Elias and Lagergren 2009). Some 
algorithms try to recover the minimum evolution tree keeping 
track of several partial solutions along the execution of the 
algorithm and, thus, exploring a greater part of the tree space: 
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generalized neighbor joining (Pearson et al. 1999), neighbor-
joining maximum likelihood (Ota and Li 2000), and multi-
neighbor joining (Silva et al. 2005). And other possibilities 
include BIONJ (Gascuel 1997) and weighted neighbor joining 
(Bruno et al. 2000), which consider differently long genetic 
distances than short ones, and MJOIN (Levy et al. 2006), 
which uses estimates of phylogenetic diversity rather than 
pairwise distances in the tree.

However, none of the above alternatives to the NJ algo-
rithm addresses the ties in proximity problem. This problem 
arises because the NJ algorithm creates internal nodes that are 
always dichotomies. An internal node of a phylogenetic tree 
is a dichotomy when the tree is rooted and the node is linked 
to two child subtrees, or when the tree is unrooted and three 
branches are connected to the node. If more branches are con-
nected to an internal node, then we have a polytomy.

Solutions based on the conversion of multiple bifurcat-
ing trees into a single multifurcating tree using any consen-
sus method would be computationally inefficient because an 
exhaustive search for all possible bifurcating trees would be 
needed. In addition, general users are unaware of the ties in 
proximity problem, and they do not run the NJ method several 
times changing the input order of taxa to check whether differ-
ent phylogenetic trees are obtained.

In order to allow for polytomies, one could use phylogenetic 
networks that, in spite of no longer trees, can present a unique 
network for a matrix of evolutionary distances (Bryant and 
Moulton 2004). Another possibility could be to modify the NJ 
algorithm accordingly. As a matter of fact, the NJ algorithm 
itself is based on the simultaneous partitioning method by Sai-
tou (1986), which considers all possible partitions of N OTUs 
into two clusters with m and n OTUs respectively ( m + n = N ; 
m, n ≥ 2 ), and selects the best one. Unfortunately, consider-
ing all possible partitions into two clusters has the problem of 
combinatorial explosion (Saitou 2018).

We introduce here a generalization of the formulas used 
in the NJ algorithm so that they can create internal nodes 
that are polytomies. We have called the method that uses 
these formulas the multifurcating neighbor-joining (MFNJ) 
algorithm, which always returns a unique phylogenetic tree 
independently of the order of the taxa in the input matrix 
of evolutionary distances. That is, the algorithm presented 
here is capable of grouping any number of OTUs at the same 
time, and therefore, it is not affected by the ties in proximity 
problem. Besides, when there are no ties, the MFNJ algo-
rithm gives the same results as the NJ algorithm.

Methods

In this section, we first review the formulas used in the NJ 
algorithm, and then we explain our proposal to generalize 
them.

Neighbor‑Joining

The NJ algorithm builds a phylogenetic tree from a matrix 
of evolutionary distances, Dij , between each pair of taxa 
i, j under study. The whole set of taxa is taken as the start-
ing set of OTUs, and they are initially arranged in a star-
like tree as in Fig. 1, assuming that there is no clustering 
of OTUs. In each iteration of the algorithm, the values Sij 
are calculated for each pair of OTUs i, j as follows:

where N is the current number of OTUs, and Ri is the sum of 
distances between OTU i and all the other OTUs:

Note that Equation (1) is the one in Studier and Keppler 
(1988), and minimizing it is equivalent to minimizing the 
sum of branch lengths of Saitou and Nei (1987) (Gascuel 
1994).

A pair of OTUs for which Sij is the smallest is selected. 
Let I = {i1, i2} be a pair of selected OTUs that minimize 
Sij . Then, i1 and i2 are clustered together generating a new 
internal node u (refer Fig. 2), and the distance between 
the new node u and any other OTU k ≠ i1, i2 is calculated 
as follows:

Again, Equation  (3) is the one in Studier and Keppler 
(1988), not the one in Saitou and Nei (1987), although they 
are equivalent and both of them reconstruct the same tree 
(Gascuel 1994).

Finally, the length of the new branch linking i1 and u is 
calculated as follows:

(1)Sij = (N − 2)Dij − Ri − Rj,

(2)Ri =
∑

k

Dik.

(3)Duk =
Di1k

+ Di2k

2
−

Di1i2

2
.

Fig. 1  A starlike tree with no hierarchical structure
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where I∁ is the complement of I, RiI∁ is the sum of distances 
between an OTU i ∈ I and all the other OTUs k ∉ I:

and RII∁ is the sum of distances between all the OTUs i ∈ I 
and all the other OTUs k ∉ I:

Li2u can be obtained in the same way or simply subtracting 
Li1u from Di1i2

.
In each iteration, the two selected OTUs, i1 and i2 , are 

removed from the distance matrix, D, and a new internal 
node u is added. The procedure ends when the current num-
ber of OTUs is equal to three, and there is only one possible 
unrooted tree. The branch length for each one of the last 
three OTUs, i1 , i2 and i3 , is calculated as follows:

Note that in the NJ algorithm, if more than one pair of OTUs 
have the smallest Sij , only one pair can be selected. To avoid 
any arbitrary decision, we propose a generalization of the 
method capable to cope with the selection of more than one 
pair of OTUs.

MultiFurcating Neighbor‑Joining

The method we propose, the MFNJ algorithm, is a generali-
zation of the NJ algorithm. Both algorithms use Equation (1) 
to compute Sij in the same way, where the two algorithms 
diverge is in the procedure for joining OTUs. Suppose that, 
in a specific iteration, two pairs of OTUs, i1, i2 and i2, i3 , 
have the smallest Sij ; that is, Si1i2 = Si2i3 = Smin . In this case, 
the NJ algorithm can only join one of these pairs of OTUs, 
i1, i2 or i2, i3 , to generate a new internal node u, which pair 

(4)Li1u =
Di1i2

2
+

Ri1I
∁

N − 2
−

RII∁

2(N − 2)
,

(5)RiI∁ =
∑

k∉I

Dik,

(6)RII∁ =
∑

i∈I

∑

k∉I

Dik.

(7)Li1u =
Di1i2

+ Di1i3
− Di2i3

2
.

is selected has consequences for the next steps of the NJ 
algorithm. In the MFNJ algorithm, given that both pairs of 
OTUs, i1, i2 and i2, i3 , have i2 in common, we propose to 
generate a new internal node u joining the set of three OTUs 
I = {i1, i2, i3}.

Distance Between an Internal Node and an OTU

More generally, let I = {i1, i2,… , iP} be a set of OTUs to 
be clustered together generating a new internal node u. The 
distance between any OTU i ∈ I and any other OTU k ∉ I 
can be separated in two parts (refer Fig. 2):

Taking this equality for all the OTUs i ∈ I , the distance 
between the new node u and any OTU k ∉ I can be aver-
aged as  follows:

where |I| is the number of OTUs to be joined to the internal 
node u. Now, using the equality that Saitou and Nei (1987) 
gave for the sum of branch lengths of a starlike tree with 
central node u:

where RII is the sum of distances between all the OTUs in I:

we finally propose to generalize Equation (3) for the calcu-
lation of the distance Duk between the new node u and any 
other OTU k ∉ I as follows:

where RIk is the sum of distances between all the OTUs in 
I and OTU k ∉ I:

Distance Between Two Internal Nodes

As a matter of fact, there may be cases where more than 
one set of OTUs can be clustered during the same iteration 
of the algorithm, being these sets of OTUs disjoint sets. In 
these cases, when there are two new internal nodes u and v 

(8)Dik = Liu + Duk.

(9)Duk =
1

|I|
∑

i∈I

(
Dik − Liu

)
,

(10)
∑

i∈I

Liu =
RII

|I| − 1
,

(11)
RII =

∑

i∈I

∑

i� ∈ I

i� > i

Dii� ,

(12)Duk =
RIk

|I|
−

RII

|I|(|I| − 1)
,

(13)RIk =
∑

i∈I

Dik.

Fig. 2  A tree with OTUs I = {1, 2} joined to new node u 
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joining two disjoint sets of OTUs I = {i1, i2,… , iP} and 
J = {j1, j2,… , jQ} , respectively, the distance between any 
OTU i ∈ I and any other OTU j ∈ J can be separated in three 
parts (refer Fig. 3):

Taking this equality for all the OTUs i ∈ I and j ∈ J , the 
distance between the new nodes u and v can be averaged 
as follows:

which, using Equation (10), can be expressed as follows:

where RIJ is the sum of distances between pairs of OTUs 
in I and J:

and RII and RJJ are calculated using Equation (11).

Branch Length when the Complement of I is not Empty

To generalize Equation (4), let u be a new internal node join-
ing all the OTUs in I = {i1, i2,… , iP} . Given any OTU i ∈ I , 
when I∁ ≠ � we can sum the equality in Equation (8) for all 
the OTUs k ∉ I:

(14)Dij = Liu + Duv + Ljv.

(15)Duv =
1

|I||J|
∑

i∈I

∑

j∈J

(
Dij − Liu − Ljv

)
,

(16)Duv =
RIJ

|I||J|
−

RII

|I|(|I| − 1)
−

RJJ

|J|(|J| − 1)
,

(17)RIJ =
∑

i∈I

∑

j∈J

Dij,

(18)
∑

k∉I

Dik = (N − |I|)Liu +
∑

k∉I

Duk.

Using the definition given in Equation (5) and substituting 
Duk with the expression in Equation (12), we obtain

Now, we can use the definition given in Equation (6) and 
divide everything by N − |I| , obtaining

which, rearranging terms, finally yields

where RII , RiI∁ , and RII∁ are defined in Equations (11), (5), 
and (6), respectively.

Branch Length when the Complement of I is Empty

In case that all the remaining OTUs are clustered together 
in the same set I and, therefore, the set I∁ is empty, then the 
new internal node u joins all the remaining OTUs, and the 
distance between any OTU i ∈ I and any other OTU i� ∈ I , 
i′ ≠ i , can be separated as  follows:

Summing this equality for all the OTUs i� ∈ I , i′ ≠ i , we 
obtain

where RiI is the sum of distances between OTU i ∈ I and all 
the other OTUs i� ∈ I , i′ ≠ i:

Now, if we use Equation (10) for the sum of branch lengths 
of a starlike tree, we see that Equation (23) is equivalent to

which, rearranging terms and dividing everything by |I| − 2 , 
can be finally expressed as follows:

It is important to note here that both Equations (21) and 
(26) satisfy Equation (10) for the sum of branch lengths of 
a starlike tree.

(19)RiI∁ = (N − |I|)Liu +
∑

k∉I

(
RIk

|I|
−

RII

|I|(|I| − 1)

)
.

(20)
RiI∁

N − |I|
= Liu +

RII∁

|I|(N − |I|)
−

RII

|I|(|I| − 1)
,

(21)Liu =
RII

|I|(|I| − 1)
+

RiI∁

N − |I|
−

RII∁

|I|(N − |I|)
,

(22)Dii� = Liu + Li�u.

(23)RiI = (|I| − 1)Liu +
∑

i�∈I

Li�u − Liu,

(24)
RiI =

∑

i� ∈ I

i� ≠ i

Dii� .

(25)RiI = (|I| − 2)Liu +
RII

|I| − 1
,

(26)Liu =
RiI

|I| − 2
−

RII

(|I| − 1)(|I| − 2)
.

Fig. 3  A tree with OTUs I = {1, 2} joined to a new node u, and 
OTUs J = {3, 4, 5} joined to another new node v, during the same 
iteration of the algorithm
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In each iteration, all the OTUs in I are removed from the 
distance matrix, and the new node u is added. The proce-
dure ends when all the remaining OTUs are clustered in the 
same set I and the set I∁ is empty. If there are no polytomies, 
this will happen for sure when the number of remaining 
OTUs is equal to three. In this case, Equation (26) reduces 
exactly to Equation (7). As a matter of fact, when there are 
no polytomies, the MFNJ algorithm reconstructs the same 
phylogenetic trees as the NJ algorithm.

To the best of our knowledge, there is only one method 
that deals with the ties in proximity problem: the extended 
neighbor-joining algorithm (Hong et  al. 2021). Never-
theless, the formulas proposed in the extended neighbor-
joining algorithm do not satisfy Equation (10) for the sum 
of branch lengths of a starlike tree, and the method is still 
limited because it can only join up to three OTUs to a new 
internal node. The MFNJ algorithm is more general than 
the extended neighbor-joining algorithm because Equa-
tions (12), (16), (21), and (26) can be used for any number 
of OTUs.

Results

This section shows an example of the differences between 
the phylogenetic trees reconstructed by the NJ and the MFNJ 
algorithms using a specific distance matrix. In the case of 
the NJ algorithm, two possible phylogenetic trees are recon-
structed. In the case of the MFNJ algorithm, only one phy-
logenetic tree is possible.

To do so, we used as input for both algorithms the matrix 
of distances given in Table 1. It is composed of the pairwise 
differences among mitochondrial DNA sequences of nine 
brown bears (Ursus arctos L.). We selected this case study 
because it had been previously used in one of the first arti-
cles that described the ties in proximity problem (Backeljau 
et al. 1996).

After four iterations of the NJ algorithm, Kodiak, Cap-
tive-3, Captive-5, Grizzly, and Polar-2 are clustered together 
in a subtree that we call Subtree-4 (colored in blue in Fig. 4), 
and the other four bears remain nonclustered. At the fifth 

iteration of the algorithm, there is a tie between the pairs 
Captive-4 and Subtree-4, and Subtree-4 and Black, because 
their Sij values are equal and the smallest. Since the NJ algo-
rithm cannot cluster three OTUs in a single step, two distinct 
phylogenetic trees are possible depending on the criterion 
used to break the tie. If Captive-4 and Subtree-4 are clus-
tered first, then the phylogenetic tree in Fig. 4a is obtained. 
However, if Subtree-4 and Black are clustered first, then the 
phylogenetic tree in Fig. 4b is obtained.

When the MFNJ algorithm is used with the same dataset, 
the first iterations are identical to the NJ algorithm, until the 
tie is found at the fifth iteration. Then, the MFNJ algorithm 
clusters Captive-4, Subtree-4, and Black at the same time 
forming a polytomy. Figure 4c shows the complete phyloge-
netic tree reconstructed by the MFNJ algorithm. This mul-
tifurcating tree is uniquely determined, what guarantees the 
reproducibility of any study on it.

Conclusion

In this work, we propose a new method called the multi-
furcating neighbor-joining (MFNJ) algorithm, which is a 
generalization of the neighbor-joining (NJ) algorithm by 
Saitou and Nei (1987). The input of both algorithms is the 
same matrix of evolutionary distances among a set of taxa 
for which we want to reconstruct a phylogenetic tree. When 
there are no ties, the MFNJ algorithm gives the same results 
as the NJ algorithm. However, when ties exist, the advan-
tage of the MFNJ algorithm is that it generates polytomic 
phylogenetic trees that do not depend on the order of taxa in 
the input matrix, whereas the NJ algorithm generates dicho-
tomic phylogenetic trees that can be different depending on 
the order of the input taxa.

We have applied both the NJ and the MFNJ algorithms 
to the same real example composed of the pairwise dif-
ferences among mitochondrial DNA sequences of nine 
brown bears. The NJ algorithm reconstructed two distinct 
dichotomic phylogenetic trees, depending on the order of 
the input data. Then, we have seen how this drawback 

Table 1  Pairwise percentage 
differences among 
mitochondrial DNA sequences 
of nine brown bears (Randi 
et al. 1994)

Abruzzo Pyrenees Kodiak Captive-3 Captive-4 Captive-5 Grizzly Polar-2

Pyrenees 1.3
Kodiak 4.3 4.3
Captive-3 4.3 4.3 0.7
Captive-4 2.7 2.3 5.0 5.0
Captive-5 3.0 3.0 1.3 1.3 3.7
Grizzly 1.7 1.7 2.7 2.7 2.3 2.0
Polar-2 2.0 2.0 3.0 3.0 2.7 2.3 0.3
Black 8.7 8.0 10.0 10.0 10.0 8.7 9.0 9.4
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can be easily avoided using the MFNJ algorithm, which 
reconstructs a unique polytomic phylogenetic tree for the 
same dataset.

We have shown the usability of the MFNJ algorithm with 
one example published in the literature. In future work, we 
plan to analyze the advantages of using the MFNJ algorithm 
on other public data presented in articles that have used the 
NJ algorithm. We also think that it is worthwhile to ana-
lyze bootstrap probabilities in case of nonunique dichotomic 
phylogenetic trees, since the existence of tied distances may 
have an important effect on these probabilities.
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