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Abstract
The ability to encode and convert heritable information into molecular function is a defining feature of life as we know it. The 
conversion of information into molecular function is performed by the translation process, in which triplets of nucleotides in a 
nucleic acid polymer (mRNA) encode specific amino acids in a protein polymer that folds into a three-dimensional structure. 
The folded protein then performs one or more molecular activities, often as one part of a complex and coordinated physi-
ological network. Prebiotic systems, lacking the ability to explicitly translate information between genotype and phenotype, 
would have depended upon either chemosynthetic pathways to generate its components—constraining its complexity and 
evolvability— or on the ambivalence of RNA as both carrier of information and of catalytic functions—a possibility which is 
still supported by a very limited set of catalytic RNAs. Thus, the emergence of translation during early evolutionary history 
may have allowed life to unmoor from the setting of its origin. The origin of translation machinery also represents an entirely 
novel and distinct threshold of behavior for which there is no abiotic counterpart—it could be the only known example of 
computing that emerged naturally at the chemical level. Here we describe translation machinery’s decoding system as the 
basis of cellular translation’s information-processing capabilities, and the four operation types that find parallels in computer 
systems engineering that this biological machinery exhibits.
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The ability to encode and convert heritable information into 
molecular function is a defining feature of life as we know it 
(Schrödinger 1944; Joyce 1994). The conversion of informa-
tion into molecular function is performed by the translation 
process, in which triplets of nucleotides in a nucleic acid 
polymer (mRNA) encode specific amino acids in a pro-
tein polymer that folds into a three-dimensional structure. 
The folded protein then performs one or more molecular 
activities, often as one part of a complex and coordinated 

physiological network (Goldman et al. 2012; Cuevas-Zuviría 
et al. 2023). Prebiotic systems, lacking the ability to explic-
itly translate information between genotype and phenotype, 
would have depended upon either chemosynthetic pathways 
to generate its components—constraining its complexity and 
evolvability (Vasas et al. 2010; Tessera 2018)—or on the 
ambivalence of RNA as both carrier of information and of 
catalytic functions—a possibility which is still supported by 
a very limited set of catalytic RNAs (Bernhardt 2012, Gold-
man et al. 2021). Thus, the emergence of translation during 
early evolutionary history may have allowed life to unmoor 
from the setting of its origin (Wolf and Koonin 2007; Gold-
man et al. 2016).

The emergence of translation machinery during early 
evolution also represents an entirely novel and distinct 
threshold of behavior for which there is no abiotic coun-
terpart–it could be the only known example of computing 
that emerged naturally at the chemical level. The translation 
machinery’s decoding system is the basis of cellular trans-
lation’s information-processing capabilities, and it exhibits 
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at least four operation types that find parallels in computer 
systems engineering.

First, this system performs an explicit mapping operation 
between one set of molecules, nucleic acids, and another 
(very different) set of molecules, proteins. This mapping 
operation, or ‘the genetic code,’ is arguably the most funda-
mental logical relationship of all living systems, establish-
ing a semantic connection between two different kinds of 
polymers, each with orthogonal functions in the cell. Sec-
ond, this operation is followed by the folding of the resulting 
string of amino acids, a process that we could consider like 
compiling a set of instructions. Recent research has shown 
that the folding process requires a very delicate kinetic 
control of the translation pace (Jiang et al. 2022). Third, 
translation has flow-control operations, i.e., using “ribos-
witches,” to debug and regulate its elemental operations. 
Translation can be stopped, re-started, stalled, and rescued 
by different processes that ensure that it continues to operate 
under diverse contingencies (Starosta et al. 2014; Breaker 
2018). Fourth and finally, translation’s accuracy is afforded 
by non-linear process controls between different translation 
components and assemblies, with different kinetic partition-
ing checkpoints that favor forward-process steps for correct 
substrates and disfavor or delay these steps for the entry 
of poor substrates (Milón and Rodnina 2012). No other 
chemical system, either natural or synthetic, shows so many 
information-processing features bundled together as part of 
a single, multi-layered apparatus.

The principal of the correspondence between discrete 
nucleic acid and protein sequences is so inherently infor-
matic that it can be analyzed in such terms without explicit 
reference to the underlying chemistry (Shannon 1948; Itzko-
vitz and Alon 2007; Adami 2012; Wills et al. 2015, Sonner-
bon 1965). The information changes from a storage format 
into a functional format by decoding a set of three nucleotide 
monomers (a triplet codon) into one amino acid monomer 
along a growing peptide chain. The use of three bits of four 
RNA letters (64 possibilities) to specify one bit of amino 
acid information (20 possibilities), at first glance, may seem 
wasteful. But the excess capacity of the mapping assignment 
scheme, ‘code degeneracy,’ remarkably connects two very 
disparate needs of life: the consistency of information pro-
cessing with the variability of novelty (Haig and Hurst 1991; 
Koonin and Novozhilov 2016; Błażej et al. 2018).

Degeneracy affords, for example, multiple and adjacent 
code assignments for amino acids with similar chemical 
properties (impacting functional divergence), variable trans-
lation speed (affecting folding), multiple stop codons limit-
ing frameshifting or read-throughs (avoiding the waste of 
resources) (Nirenberg et al. 1966; Taylor and Coates 1989; 
Lehmann and Libchaber 2008, Liu et al. 2020, Křížek and 
Křížek 2012), and codon content and preference variability 
across different organisms (Shiba et al. 1997; Yacoubi et al. 

2012; Fujishima and Kanai 2014; Pust et al. 2022, Novoa 
et al. 2012). Synonymous codon usage patterns (Labella et al. 
2019), a ribosome’s interaction partners, and ribosomal assem-
bly processes may not strictly map across related organisms 
(Timsit et al. 2021) but code degeneracy in translation as a 
fundamental informatic attribute is universal and conserved. 
For all these reasons, code degeneracy is better viewed as a 
hedge against (inevitable) error and a springboard of potential 
novelty than a wasteful use of computing resources. It is a 
feature, not a bug.

The information-processing capabilities of translation are 
distributed among the many components and subprocesses 
of the translation machinery, but the process of reading and 
decoding of sequence information at the molecular scale is 
nevertheless incredibly efficient. For each round of translation, 
the ribosome expends around four GTP molecules through 
translation factors and one ATP during the aminocylation of 
tRNAs. Despite its multiple layers of control, the nominal 
cellular replication process is still orders of magnitude more 
efficient on a per-bit basis when compared to even the most 
idealized conceivable electronic computers; this is also within 
an order of magnitude of theorized universal minimal bounds 
for information processing of any architecture (Zhirnov and 
Cavin 2013; Kempes et al. 2017).

Translation represents a uniquely evolved form of chemical 
computation with no known naturally occurring equivalent. 
This chemical intelligence is reliably repetitive, and at the 
same time robust to perturbation, but it is also not monolithic. 
The many components that take part in the translation system 
have intertwined, yet potentially distinct histories (Fournier 
et al. 2011; Fournier and Alm 2015; Petrov et al. 2015; Pou-
plana 2020; Fer et al. 2022). As its components co-evolved, the 
translation system would likely have had changing informatic 
capabilities, which in turn would restrict or expand the pos-
sible functions that it could have conducted. Understanding 
the origin of translation, from the perspective of its emerging 
information-processing attributes, will lead to profound new 
insights into the conditions in which biochemistry emerged 
from geochemistry.
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