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Abstract
The mammalian skin exhibits a rich spectrum of evolutionary adaptations. The pilosebaceous unit, composed of the hair 
shaft, follicle, and the sebaceous gland, is the most striking synapomorphy. The evolutionary diversification of mammals 
across different ecological niches was paralleled by the appearance of an ample variety of skin modifications. Pangolins, 
order Pholidota, exhibit keratin-derived scales, one of the most iconic skin appendages. This formidable armor is intended 
to serve as a deterrent against predators. Surprisingly, while pangolins have hair on their abdomens, the occurrence of seba-
ceous and sweat glands is contentious. Here, we explore various molecular modules of skin physiology in four pangolin 
genomes, including that of sebum production. We show that genes driving wax monoester formation, Awat1/2, show patterns 
of inactivation in the stem pangolin branch, while the triacylglycerol synthesis gene Dgat2l6 seems independently eroded 
in the African and Asian clades. In contrast, Elovl3 implicated in the formation of specific neutral lipids required for skin 
barrier function is intact and expressed in the pangolin skin. An extended comparative analysis shows that genes involved 
in skin pathogen defense and structural integrity of keratinocyte layers also show inactivating mutations: associated with 
both ancestral and independent pseudogenization events. Finally, we deduce that the suggested absence of sweat glands is 
not paralleled by the inactivation of the ATP-binding cassette transporter Abcc11, as previously described in Cetacea. Our 
findings reveal the sophisticated and complex history of gene retention and loss as key mechanisms in the evolution of the 
highly modified mammalian skin phenotypes.
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Introduction

The evolution of mammals entailed some tantalizing life-
style variations. Ecological transitions such as subterranean 
burrowing, powered flight, or obligate aquatic regimes, 

elaborated from prominent eco-physiological adaptations, 
notably in the skin (Themudo et al. 2020; Wu et al. 2022; 
Christmas et al. 2023). Some of these skin-phenotypic shifts 
were quite radical, as illustrated by the complete absence of 
glands and pelage in Cetacea skin (Fig. 1). The molecular 
foundations underscoring the skin phenotype of Cetacea is 
contingent on gene repertoire variations (Nery et al. 2014; 
Springer and Gatesy 2018; Lopes-Marques et al. 2019a, 
b; Springer et al. 2021; Themudo et al. 2020; Kowalczyk 
et al. 2022; Holthaus et al. 2021; Fuchs et al. 2022), which 
translate into a thick and smooth skin, to counterbalance the 
mechanical and thermal stress associated with an obligatory 
aquatic lifestyle (Spearman 1972; Reeb et al. 2007). In other 
mammalian lineages, the morphological co-occurrence of 
hair and associated glands (i.e., the pilosebaceous unit) has 
been more challenging to ascertain. In manatees (Trichechus 
manatus latirostris), for instance, complete sebaceous gland 
regression is still disputed, while in the semi-aquatic hip-
popotamus (Hippopotamus amphibius) hair is sparsely pre-
sent yet, sebaceous and sweat glands were so far undetected 
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(Fig. 1) (Sokolov 1982; Graham 2005; Springer et al. 2021). 
In agreement, the collection of key molecular modules par-
ticipating in sebum production in aquatic or semi-aquatic 
mammals was shown to mirror such mosaic of skin mor-
phologies: being fully absent in cetaceans but partially 
eroded in manatees and hippopotamuses (Lopes-Marques 
et al. 2019a, b; Themudo et al. 2020; Springer et al. 2021). 
Extreme skin modifications are not restricted to aquatic spe-
cies and include the naked mole rat and pangolins (Menon 
et al. 2019; Li et al. 2020; Savina et al. 2022). Species from 
the order Pholidota display a formidable keratin-scale armor 
probably serving as a key deterrent against predators and 
infections (Fig. 1) (Meyer et al. 2013; Choo et al. 2016; Li 
et al. 2020). Interestingly, while pangolins have scattered 
hair on their abdomens, the presence of exocrine glands 
is contentious, since sweat and sebaceous glands were not 
detected in their dermis (Liumsiricharoen et al. 2008; Li 
et al. 2020). Consistently, the reported gene sequence decay 
of the melanocortin 5 receptor (Mc5r) in pangolins (Springer 
and Gatesy 2018; Liu et al. 2022), a gene with abundant 
expression in exocrine glands and centrally involved in 

sebogenesis (Eisinger et al. 2011; Xu et al. 2020; Shintani 
et al. 2021), is suggestive of a radical shift in skin exocrine 
function. Overall, the comparative molecular architecture 
governing skin physiology in particular that associated 
with the glandular exocrine and eccrine compartment in 
Pholidota is largely unknown. Here, we provide an exhaus-
tive comparative genomic analysis of the molecular modules 
governing mammalian skin homeostasis in four species of 
pangolins. Our findings provide an insight into the richness 
of evolutionary routes and processes responsible for the skin 
physiology of extant mammalian lineages.

Methods

Genome Resources

The genome regions of the target genes were retrieved 
from the NCBI (National Center for Biotechnol-
ogy Information) database. Two of the studied spe-
cies have high-quality genome annotations (M. 

Fig. 1   Schematic representation of the mammalian skin diversity, 
regarding the pilosebaceous gland. Cetaceans and the naked mole rat 
completely lack the pilosebaceous unit; although sebaceous glands 
were also lost  in hippopotamuses, sparse hair is present. In Sirenia 

and Pholidota, the presence and degree of functionality of this gland 
is disputed. Other mammalian species conserve the typical structure 
of the pilosebaceous gland. Created with BioRender.com
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javanica (GCA_014570535.1) and M. pentadactyla 
(GCA_014570555.1)) (Table 1). Thus, target genes and 
corresponding genomic regions were retrieved using gene 
symbols and manually verified. We additionally used two 
recently released genome assemblies (non-annotated) 
from M. javanica (GCA_024605085.1) and M. pentadac-
tyla (GCA_024244205.1) (Wang et al. 2022; Yan et al. 
2023). For non-annotated genomes (Table 1), we used 
BLAST (Basic Local Alignment Search Tool), using as a 
query the target and two flanking genes from species with 
annotated genomes, to extract the full scaffold sequence. 
Gene selection involved an exhaustive literature review to 
define key genetic pathways involved in skin physiology 
(e.g., Themudo et al. 2020). This initial screening was 
complemented with the investigation of the skin “enriched 
genes” list from the Human Protein Atlas resource (Uhlén 
et  al. 2015). Additionally, we used String to explore 
protein–protein networks of skin-specific gene families 
(Szklarczyk et al. 2021).

Sequence Alignment Analysis

Each gene sequence was aligned against a coding and 
curated reference sequence for each gene (Homo sapi-
ens) using PseudoChecker (Alves et al. 2020), a program 
that uses the MACSE alignment software (Ranwez et al. 
2018). PseudoChecker attributes a value ranging from 0 
to 5, the PseudoIndex, with respect to the status of the 
genomic sequence in comparison to the reference: a 
value of 0 representing a fully functional protein coding 
sequence and a value of 5 suggesting pseudogenization 
mutations (Table 1). For the genomic regions scoring 3 
or higher on PseudoIndex, a second alignment was per-
formed, against the same reference, using Geneious Prime 
2021.2.2 (https://​www.​genei​ous.​com), for manual curation 
and evaluation.

Mutational Validation via SRAs

Identified mutations were validated using Sequence Read 
Archives (SRAs) (Online Resource 1). Two independent 
projects were used per species when possible and aligned 
with our genomic sequence using Geneious Prime 2021.2.2. 
Exceptions include P. tricuspis, for which only one SRA is 
available and M. crassicaudata for which no SRA project 
exists. Cross-species conserved non-synonymous mutations 
were selected for further validation and when conservation 
was authenticated, mutations located in the mid-section of 
the gene sequence were selected, due to the increased stabil-
ity of gene structure and lower susceptibility to alignment 
artifacts.

Gene Expression Analysis of Elovl3 and Abcc11 
in Pangolin Tissues

RNA-seq data for the tissues of M. javanica from previ-
ously published bioprojects were downloaded from NCBI’s 
database (Online Resource 2). In order to map the SRAs to 
the reference genome, we indexed the genome using Hisat2 
v.2.2.0 (Kim et al. 2015, 2019; Zhang et al. 2021) to enable 
the mapping of both forward and reverse sequences (within 
the SRA archives) to the species’ reference genome (YNU_
ManJav_2.0). In this mapping, the option for downstream 
transcriptome assembly was triggered to reduce computa-
tional and memory consumption with transcript assembly. 
The generated SAM files were then converted and sorted to 
BAM files using samtools and submitted to featureCounts, 
to quantify the raw reads that were mapped to the transcrip-
tomic components (Liao et al. 2014); the raw read quantifi-
cation was then transformed to transcripts per million (TPM) 
using an in-house script.

Results and Discussion

In the present work, we set to analyze the status of skin-
specific genes, mostly involved in sebaceous gland function, 
across four Pholidota species: M. javanica, M. pentadac-
tyla, M. crassicaudata, and P. tricuspis. Pangolins diver-
sified approximately 38 million years ago and have since 
colonized two continents, Africa and Asia (Fig. 2) (Gaubert 
et al. 2018). We first identified the gene-containing scaffold 
in each of the investigated genome assemblies, using Pseu-
doIndex to classify the coding condition of the studied genes 
in pangolin genomes (Alves et al. 2020) (Online Resource 
3). This classification system varies in a discrete scale from 
0 to 5, with 0 suggesting full functionality of the candidate 
gene and a value of 5 indicating a complete inactivation 
(Table 1). Genes with PseudoIndex above 2 were further 
validated and the retrieved mutations carefully annotated.

Sebum‑Producing Genes Show Signs of Erosion

Sebum comprises a complex lipid mixture. The biosyn-
thesis of sebum components involves the action of various 
key modules: i.e., monoacylglycerol O-acyltransferases—
Mogat2 and Mogat3; diacyl-glycerol O-acyltransferases—
Dgat2 and Dgat2l6; and wax alcohol acyltransferases—
Awat1 and Awat2 (Bell and Coleman 1980; Turkish et al. 
2005; Holmes 2010; Kawelke and Feussner 2015). Besides 
fatty acid esterification to produce triglycerides or waxes, 
these modules also encompass fatty acid elongation (i.e., 
elongases—Elovl3), as well as trafficking and signal-
ing (i.e., fatty acid-binding protein—Fabp9), required 
for the upstream regulation of sebum production via fatty 

https://www.geneious.com
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acid-responsive transcription factors (i.e., Peroxisome pro-
liferator-activated receptors—PPARs) (Fig. 2) (Trivedi et al. 
2006; Kobayashi and Fujimori 2012).

Our comparative analysis showed that numerous disrup-
tive mutations are present in the sebum production-related 
genes in pangolins. Regarding Awat1, using the reference 

genome we identified and validated, with independent SRA 
data, a conserved premature stop codon in the sixth exon 
in M. javanica, M. pentadactyla, and P. tricuspis (Fig. 2; 
Online Resources 3 and 4); in the M. crassicaudata genome, 
no Awat1-containing scaffold was found yet, a possible 
problem in the genome assembly cannot be discarded (not 

Fig. 2   Mutational landscape of skin-specific genes in pangolins. Cen-
tral top panel shows a phylogenetic tree of the evolution of Pholidota 
and geographic distribution of extant species. On the upper half, in 
each side are represented the gene pathways: on the right side, genes 
associated with the production of sebum and lipid synthesis; on the 
left side, genes which play a role in skin defense, integrity of skin 
layers, and homeostasis. On the lower half of the panel a representa-

tive  and conserved  (within pangolin lineages or in stem of the pan-
golin clade) disruptive mutation for each gene  is shown; as well as 
a more global view of the numerous non-synonymous modifications 
along the gene. For Slurp1 and Mogat3, no fully conserved mutations 
were detected, therefore the mutations displayed in the corresponding 
box are from P. tricuspis. Created with BioRender.com
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shown). Other mutations, including nucleotide deletions 
and premature stop codons, were also retrieved, nota-
bly a set of mutations conserved within the Manis genus 
(Online Resources 3 and 4). Curiously, no Awat1 was 
found in the novel non-annotated genome of M. javanica 
(GCA_024605085.1), whereas for M. pentadactyla the 
additional genome largely confirmed previous observa-
tions (GCA_024244205.1) (Online Resource 5). Similarly 
to Awat1, Awat2 displays a mutational pattern concurrent 
with the inactivation of the gene in the stem of the pango-
lin clade, exhibiting a conserved loss of a canonical splice 
site in exon 6 and lack of terminal stop codon in all exam-
ined species. Additionally, other disruptive mutations were 
mapped and validated; notably, a four-nucleotide insertion in 
the fourth exon found conserved within the Manis genus or 
a 2-nucleotide deletion retrieved in the exon 4 of P. tricuspis 
(Fig. 2; Online Resources 3 and 4). Dgat2l6 orthologues also 
displayed several disruptive mutations in pangolins (Fig. 2; 
Online Resources 3 and 4); yet, unlike Awat1 and Awat2, 
none was shared across all pangolin species. Still, muta-
tions were found to be conserved within the Manis genus 
(i.e., premature stops codons, nucleotide insertions, and 
losses of splice sites in multiple different exons), notably 
a two-nucleotide insertion in the second exon, leading to a 
premature stop codon, which was further validated by SRA 
analysis (Fig. 2; Online Resources 3 and 4). In P. tricuspis, 
a set of nucleotide deletions, premature stop codons, and a 
validated single-nucleotide insertion were identified (Online 
Resources 3 and 4). Additionally, exon 1 of P. tricuspis and 
exon 5 of M. pentadactyla were not found (not shown). Such 
mutational patterns indicate an independent Dgat2l6 erosion 
among pangolin lineages.

We next investigated Fabp9 (Fatty Acid-Binding Protein 
9) and Aadacl3 (Arylacetamide Deacetylase-Like 3). Fabp9 
is typically expressed in the testis (Selvaraj et al. 2010), but 
previous findings have also suggested a role in skin homeo-
stasis in Artiodactyls (Jiang et al. 2014). Aadacl3, although 
poorly studied, appears to be related with epidermal fat dep-
osition (Lu et al. 2020; Sweet-Jones et al. 2021). Addition-
ally, analysis of the Human Protein Atlas (www.​prote​inatl​as.​
org) shows a very specific pattern with expression noted only 
in skin, breast, and placenta (not shown). Importantly, both 
these genes have been found to be inactivated on the stem 
Cetacea branch (Huelsmann et al. 2019; Lopes-Marques 
et al. 2019a, b; Springer et al. 2021). Aadacl3 is also eroded 
in the African elephant (Huelsmann et al. 2019), a lineage 
where the presence of sebaceous glands has been contentious 
(Spearman 1970; Lopes-Marques et al. 2019a, b). Sequence 
analysis allowed the identification of a conserved single-
nucleotide deletion in the third exon of Aadacl3, found in 
M. javanica, M. pentadactyla, and P. tricuspis, leading to 
the emergence of a premature stop codon (Fig. 2; Online 
Resources 3 and 4), as well as a conserved two-nucleotide 

insertion in the same exon (Fig. 2; Online Resources 3 and 
4). No gene ORF was found for M. crassicaudata possibly 
due to low-quality genome assembly (not shown). Regarding 
Fabp9, a transversal canonical splice site loss was found in 
exon 3 for M. javanica, M. pentadactyla, and P. tricuspis. 
Additional lineage-specific nucleotide deletions were also 
retrieved and validated (Fig. 2; Online Resource 3 and 4). 
In M. crassicaudata the first exon was not found (Online 
Resources 3). Finally, for Mogat3, no conserved mutation 
was detected, although the genomic sequences display 
several species-specific mutations across the four species, 
including a premature stop codon on the sixth exon of M. 
pentadactyla, a single-nucleotide deletion in the fourth 
exon of M. crassicaudata and numerous insertions in the 
second exon of P. tricuspis (Fig. 2; Online Resources 3 and 
4). During our analysis, we came across a possible case of 
gene duplication, followed by erosion of both copies of the 
gene (not shown), similarly to a previous duplication found 
in the hippopotamus (Springer et al. 2021). Altogether, 
our analyses show a comprehensive mutational landscape 
in sebum-related genes and highlight distinct evolutionary 
routes, with genes inactivated in the stem of the pangolin 
clade (i.e., Awat1) and genes apparently lost independently 
in both Asian and African lineages (i.e., Dgat2l6).

Elovl3 is Functional and Expressed in Pangolin Skin 
Tissue Compartments

Fatty acid elongation is a critical pathway for skin lipid 
homeostasis. A skin-specific elongase, Elovl3, has been 
shown to participate in the formation of specific and essen-
tial neutral lipids (Westerberg et al. 2004). In effect, the 
removal of Elovl3 in mice leads to a phenotype of sparse 
hair coat, hyperplastic pilosebaceous unit, and perturbation 
of hair lipid contents (Westerberg et al. 2004). In Cetacea, 
Elovl3 was previously shown to display inactivating muta-
tions (Lopes-Marques et al. 2019a, b; Springer et al. 2021). 
The identified and examined pangolin Elovl3 orthologues 
(Online resource 6) all classified with a PseudoIndex of 0, 
an indication of sequence functionally (Table 1). Yet, we 
could not exclude deleterious mutations in the regulatory 
region of the gene that could hamper gene expression and 
function. Thus, we next examined the expression of Elovl3 
in a comprehensive panel of tissues (Fig. 3; Online Resource 
2). Of the examined tissues, the Pholidota Elovl3 is uniquely 
expressed in the skin components, including hair follicles 
(Fig. 3).

Hair Growth and Robustness are Shaped by Gene 
Loss Episodes

We next expanded our analysis to a group of genes 
that play a pivotal role in hair follicle homeostasis: 

http://www.proteinatlas.org
http://www.proteinatlas.org
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Ectodysplasin A2 Receptor (Eda2r) and Trichohyalin-Like 
1 (Tchhl1). Eda2r is a membrane receptor which partici-
pates in the regulation of the hair follicle growth cycle 
(Kwack et al. 2019; Lan et al. 2020; Cai et al. 2021; Font-
Porterias et al. 2022). Within the Manis genus, we detected 
a single-nucleotide deletion in exon 2 and a premature 
stop codon in exon 4 of Eda2r (Fig. 2; Online Resources 
3 and 4); the latter was validated using independent SRAs 
(Online Resource 4). For P. tricuspis, a 2-nucleotide inser-
tion in exon 3 and a premature stop codon in exon 5 were 
retrieved, denoting an independent Eda2r loss across 
Asian and African pangolin lineage. Additionally, multi-
ple non-conserved alterations of the nucleotide sequence 
were identified in all four species, including insertions, 
deletions, premature stop codons, loss of splicing sites, 
and missing exons (Online Resource 3).

We next investigated Tchhl1, a gene responsible for pro-
viding mechanical strength to the hair follicle inner root 
sheath through keratin intermediate filaments (Makino et al. 
2020). Numerous disruptive mutations were retrieved and 
found conserved among members of the Manis genus; a con-
served two-nucleotide deletion in the second, and last exon 
of the gene, was selected for further scrutiny using independ-
ent SRAs (Fig. 2; Online Resources 3 and 4). For P. tricus-
pis, no gene remnant was found. Curiously, Tchhl1, which 
is chiefly expressed in the stratum basale of the epidermal 
layer, is also inactivated in cetaceans and hippopotamuses 
(Springer et al. 2021).

Erosion of the Gasdermin Gene Repertoire

Gasdermins comprise a protein family involved in mem-
brane permeabilization and pyroptosis, a lytic pro-inflamma-
tory type of cell death leading to the release of intracellular 
contents (Broz et al. 2019; de Schutter et al. 2021). Impor-
tantly, members of this gene family are expressed in the 
skin (Tamura et al. 2007). Gsdma is specifically expressed 
in human epidermis, hair follicles, and sebaceous glands 
and was recently shown to be required for epidermal corni-
fication and skin regeneration (Lachner et al. 2017; Huang 
et al. 2023); in mice, Gsdma3 mutation leads to alopecia 
(Runkel et al. 2004). Gsdmb and Gsdmc, expressed in human 
keratinocytes, were also suggested to contribute to keratino-
cyte differentiation and cornification (Lachner et al. 2017). 
In addition to skin build-up and maintenance, gasdermins, 
notably Gsdmb and Gsdmd, were shown to affect T-cell dif-
ferentiation and function, as well as macrophage infiltration, 
protecting the skin against bacterial infections and contribut-
ing to the pathophysiology of skin diseases, such as psoriasis 
or skin fibrosis (Liu et al. 2021; Yang et al 2022; Ji et al 
2023). Our study of the gasdermin family (Gsdma, Gsdmb, 
Gsdmc, and Gsdmd) revealed some very different scenarios 
regarding the conservation status of these genes. For Gsdma, 
preliminary PseudoIndex analysis suggested pseudogeniza-
tion for M. crassicaudata and M. javanica (PseudoIndex, 
5), while P. tricuspis scored 0, suggestive of an intact gene 
(Table 1). Further analysis highlighted a missing exon in 

Fig. 3   Tissue expression of Elovl3 and Abcc1 in the Java pangolin (M. javanica)
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M. crassicaudata (exon 6), out of the eleven that compose 
the gene (Online Resource 3). Regarding M. javanica, the 
available genomes displayed a single (exon 6) or two miss-
ing exons (exons 6 and 7; Online Resource 3). M. penta-
dactyla genomes, however, yielded contradicting results, 
with the PseudoIndex analysis scoring 0 for the gene region 
extracted from the annotated genome (GCA_014570555.1) 
and scoring 5 with the novel non-annotated genome 
(GCA_024244205.1) (Table 1 and Online Resource 3). 
Manual curation of the putatively pseudogenized Gsdma in 
M. pentadactyla unraveled two missing exons, as observed 
in M. javanica, in addition to the loss of a splicing site and 
a single-nucleotide deletion, both in exon 8, confirming the 
predicted coding status (Online Resource 3). Gsdmb, on the 
other hand, displayed various mutations conserved across 
the Manis lineage, including a five-nucleotide deletion in 
the third exon, which was independently validated by SRAs 
(Online Resources 3 and 4). Other non-conserved muta-
tions were identified and several exons could not be found 
through our analysis, especially in P. tricuspis, for which 
only two out of the nine exons were retrieved, possibly 
due to a low-quality assembly (Fig. 2). Yet, the P. tricuspis 
sequence also harbored a disruptive premature stop codon 
in exon 1, which was further validated (Online Resources 3 
and 4). Regarding Gsdmc, no gene was found for M. cras-
sicaudata and P. tricuspis but an assembly artifact cannot 
be discarded (Online Resource 4). Curiously, for M. javan-
ica and M. pentadactyla, two Gsdmc copies were found in 
the previous available reference genomes, yet the duplica-
tion was not corroborated by the novel genome assemblies 
(GCA_024244205.1; GCA_024605085.1). Nonetheless, all 
retrieved copies displayed PseudoIndex scores of 5 (Table 1 
and Online Resource 7). Further analysis highlighted the 
transversal absence of exons 6 and 7 (Online Resources 3 
and 4). Numerous inactivating mutations were also retrieved, 
including mutations conserved between the novel genome 
assemblies of M. javanica and M. pentadactyla, such as a 
two-nucleotide deletion in exon 3, as well as two losses of 
splicing sites in exons 3 and 4 (Online Resource 3). For 
Gsdmd, M. crassicaudata and P. tricuspis yielded Pseu-
doIndex values above 2, suggesting gene sequence erosion 
(Table 1). While P. tricuspis revealed a case of exon loss 
in the sixth exon from a total of ten coding exons, in M. 
crassicaudata the alignment similarity of the sixth exon 
was particularly low, hindering further conclusions (Online 
Resources 3 and 4). Regarding M. javanica and M. pentadac-
tyla, PseudoIndex scores differed between genome assem-
blies, yielding a value of 0, indicating a high level of conser-
vation of the genomic sequence, for the reference genomes 
(Table 1), and a value of 5, suggestive of pseudogeniza-
tion, for the non-annotated genomes (GCA_024244205.1; 
GCA_024605085.1). Regarding the latter, further scrutiny 
highlighted the loss of exon 6, as observed for the remaining 

species, and a conserved premature stop codon in the last 
exon of both species. Finally, although our results support 
several gene erosion events within this gene family, further 
clarifications may be required to fully ascertain the gasder-
min repertoire in pangolin species, given the observed dis-
crepancies between current genome assemblies.

Skin‑Layer Integrity Genes Display ORF‑Disruption 
Mutations

Next, we investigated a gene related to the integrity of the 
skin layers—Secreted LY6/PLAUR Domain Containing 1 
(Slurp1)—responsible for the stabilization of epithelial cell 
junctions (Campbell et al. 2019; Okamoto et al. 2020) and 
found to be eroded in Cetacea (Themudo et al. 2020). Muta-
tions in this gene underlie a rare palmoplantar keratoderma 
exhibiting increased keratinocyte proliferation, lipid accu-
mulation, and water barrier deficiency (Fischer et al. 2001). 
We were unable to identify the Slurp1-containing scaffold 
in the M. crassicaudata genome (not shown). The remaining 
species showed solid evidence of pseudogenization: missing 
exons, in M. javanica and M. pentadactyla, loss of splicing 
sites in M. pentadactyla, or a deletion in the first exon of 
the gene in P. tricuspis (Fig. 2). Validation of the mutations 
using independent SRAs was only possible for P. tricuspis 
(Online Resource 3 and 4).

Sweat Gland Gene Marker are Functional 
in Pangolins

Water evapotranspiration from the skin is fundamental for 
thermoregulation. This physiological process is dependent 
on the action of a subset of skin elements and the sweat 
glands: eccrine, opening directly into the skin surface, and 
apocrine, opening into the pilosebaceous unit (Kobielak 
et al. 2015). Similarly to sebaceous glands, the presence of 
sweat glands in pangolins was so far unreported (Liumsir-
icharoen et al. 2008). Here, we investigated the expression 
status of Abcc1, a gene maker of apocrine sweat glands 
(Martin et al. 2010). Abcc1 gene was previously shown to 
be eroded in Cetacea, paralleling sweat gland loss in this 
lineage (Oh et al. 2015). Expression analysis revealed a 
marked gene expression in the skin (Fig. 3). Thus, despite 
the apparent absence of sweat glands, Abcc1 was found 
intact in pangolins.

Gene Loss and the Uniqueness of the Skin 
Phenotype in Pangolins

Comparative genomics is a powerful tool to decipher the 
origin and loss of phenotypic variations (Huelsmann et al. 
2019; Zoonomia Consortium 2020; Alves et al. 2021; Fuchs 
et al. 2022; Zheng et al. 2022). Specifically, gene loss-aware 
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research is reverberating, highlighting the role of second-
ary losses in the emergence of diverse biological features, 
including the simplification of body plans (i.e., urochor-
dates), the deconstruction of the vertebrate organs (i.e., 
stomach, pineal gland), the modulation of sensory acuity 
(i.e., vision, taste), or even behavior and locomotion (Castro 
et al. 2014; Zhao et al. 2015; Lopes-Marques et al. 2019a, 
b; Valente et al. 2021a, b; Carneiro et al. 2021; Ferrández-
Roldán et al. 2021; Indrischek et al. 2022).

Pholidota skin is unique among mammals (Yan et al. 
2023). This group evolved from a common ancestral skin 
phenotype to armored keratinous-scale appendices (Meyer 
et al. 2013). The main function of the keratinous scales is 
to serve as protection for the soft skin underneath, making 
it a natural shield against predators and external harm, such 
as UV radiation, as well as pathogenic agents (Wang et al. 
2016). Keratins are the key components of pangolin scales 
(Ehrlich et al. 2019). In effect, a recent genome analysis 
identified a unique expansion in the number of high glycine-
tyrosine keratin-associated proteins (HGT-KRTAPs) specifi-
cally associated with the phenotype of the pangolin scale 
(Yan et al. 2023). Interestingly, the presence and functional 
status of sebaceous and sweat glands in Pholidota are so 
far unclear (Liumsiricharoen et al. 2008). Previous works 
emphasized gene loss landscapes in other mammalian lin-
eages with divergent skin phenotypes, such as cetaceans, 
and large African mammals, such as the African elephant 
(Loxodonta Africana) or the white rhinoceros (Ceratoth-
erium sinum) (Fig. 4) (Plochocki et al. 2017; Springer and 
Gatesy 2018; Lopes-Marques et al. 2019a, b; Springer et al. 
2021); this prompted us to address whether similar genomic 
variations underlined the emergence of the distinctive skin 
phenotype in pangolins. Our comparative analysis led to the 

annotation and validation of numerous disruptive mutations 
in target genes—related with sebum production, skin layer 
development and maintenance, and hair growth—across four 
studied species spanning the two pangolin lineages. These 
results support the role of gene pseudogenization episodes 
as drivers of the extant skin phenotype in Pholidota. Ances-
tral (i.e., Awat1, Awat2, Aadacl3) and independent (i.e., 
Dgat2l6) pseudogenization events in genes associated with 
epidermal lipids and sebum production strongly suggest a 
progressive impairment of the sebum-producing molecu-
lar machinery in pangolin lineages. Similar genomic sig-
natures were previously proposed for mammalian lineages 
with derived skin phenotypes, particularly visible in the 
fully aquatic Cetacea (Sokolov 1982; Springer and Gatesy 
2018; Lopes-Marques et al. 2019a, b). Sebum, a mammalian 
synapomorphy, is mainly produced to serve as a protective 
layer against UV radiation, bacteria, and skin dehydration 
(Lobitz 1957; Pappas 2009; Niemann and Horsley 2012). 
These functions, although vital when considering exposed 
skin, may have diminished relevance in an armor-like skin, 
as observed in Pholidota (Fig. 4). A similar hypothesis can 
be drawn regarding genes related to skin protection against 
external dangers (i.e., microbial infection)—the gasdermin 
family, responsible for host defense and cell death (Tamura 
and Shiroishi 2015). In effect, pangolins display an innate 
immune gene repertoire that is strikingly variable as com-
pared to other mammalian lineages (Haley 2022), and events 
of pseudogenization have been described for various genes 
(e.g., viral DNA sensors cGAS and STING; Fisher et al. 
2020).

Whereas sebaceous gland dismantling is supported by 
our data, the current results do not unequivocally clarify 
the fate of sweat glands in pangolins. Abcc1 gene, a marker 

Fig. 4   Schematic illustration of the loss of sebaceous glands in mam-
mals and associated gene loss events. Phylogenetic tree of mammals, 
with emphasis on the different sebaceous gland-related phenotypes. 
In each branch of the tree are highlighted the different genes each 

mammalian group lost during the course of its evolutionary develop-
ment. Each skin phenotype and gene are colour-coded. Created with 
BioRender.com
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of apocrine sweat glands (Martin et al. 2010), generally 
associated with the hair follicle, was shown to be intact and 
expressed in pangolins. Yet, unlike their back and tail, the 
abdomen of pangolins yields an exposed skin with sparse 
hair and thicker stratum corneum (Meyer et al. 2013). In 
agreement, evidence of erosion was found in genes related 
with keratinocyte proliferation and stabilization (i.e., Slurp1) 
or hair development and mechanical strength (i.e., Edar2, 
Tchhl1) (Campbell et al. 2019; Lan et al. 2020; Cai et al. 
2021). Conversely, other genomic components were found 
intact. Among these, we find Alox15A and Alox3, epider-
mal lipoxygenases participating in the maintenance of the 
cornified layer (Krieg et al. 2013) (not shown) or Elovl3. 
Such mosaic gene retention has been previously proposed 
for mammalian species with derived skin phenotypes (i.e., 
elephant, rhinoceros, hippopotamuses) (Lopes-Marques 
et al. 2019a, b; Springer et al. 2021).

Conclusion

Our findings show that species of the order Pholidota dis-
play numerous skin-related gene pseudogenization events 
paralleled by the dismantling of the sebaceous gland in this 
mammalian group and the emergence of their idiosyncratic 
skin phenotype. Importantly, the present work reinforces the 
role of gene loss as a powerful evolutionary driver, notably 
in transitional scenarios or radical phenotypic adaptation, 
as reported for other mammalian groups such as the fully 
aquatic Cetacea and Sirenia.
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