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Abstract
14-3-3 proteins are signal moderators in sensing various stresses and play essential functions in plant growth and develop-
ment. Although, 14-3-3 gene families have been identified and characterized in many plant species, its evolution has not 
been studied systematically. In this study, the plant 14-3-3 family was comprehensively analyzed from green algae to angio-
sperm. Our result indicated that plant 14-3-3 originated during the early evolutionary history of green algae and expanded 
in terricolous plants. Twenty-six 14-3-3 genes were identified in the tea genome. RNA-seq analysis showed that tea 14-3-3 
genes display different expression patterns in different organs. Moreover, the expression of most tea 14-3-3 genes displayed 
variable expression patterns under different abiotic and biotic stresses. In conclusion, our results elucidate the evolutionary 
origin of plant 14-3-3 genes, and beneficial for understanding their biological functions and improving tea agricultural traits 
in the future.
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Introduction

The sessile nature of plants requires the plants to continu-
ously develop complex mechanism to adjust physiological 
processes response to changing environmental stress. 14-3-3 
proteins are characterized as phosphothreonine /phosphoser-
ine binding proteins, act as scaffolds to bind and regulate 
other proteins, thus to regulate complex environmental sign-
aling pathways (Denison et al. 2011; Ferl et al. 2002). There-
fore, 14-3-3 proteins play major functional roles in most 

processes, including signal transduction, primary metabo-
lism, protein trafficking, and stress reactions.

Plant 14-3-3 proteins comprise multiple isoforms and 
they were named as GF14 or GRF for they are a part of 
protein/G-box complex (de Vetten and Ferl 1994; Rosenquist 
et al. 2001). With the completion of the genome sequence 
in a variety of plants, many members of 14-3-3 proteins 
have been annotated. 14-3-3 protein was originally identi-
fied in the model plant Arabidopsis thaliana. To date, many 
14-3-3 s have been identified in plant genomes, including 
Arabidopsis, rice, maize, soybean, grape, and so on (Chen 
et al. 2006; Cheng et al. 2018; Denison et al. 2011; Wang 
et al. 2019). Previous studies have demonstrated that plant 
14-3-3 proteins have numerous roles in multiple physiologi-
cal processes. For example, three barley 14-3-3 isoforms 
were expressed in embryo (Testerink et al. 1999). Most 
banana 14-3-3 genes displayed high expression during fruit 
development and postharvest ripening (Li et al. 2016). In 
Arabidopsis, reduction of GRF10 and GRF9 with antisense 
technology increased the leaf starch accumulation, indicat-
ing that 14-3-3 proteins regulate starch synthesis (Sehnke 
et al. 2001). Overexpression of cotton 14-3-3L promoted 
fiber elongation and maturation, while downregulation of 
14-3-3L slowed fiber initiation and elongation (Zhou et al. 
2015). Most Arabidopsis and rice GRFs displayed variable 
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expression in response to heat, cold and salt stresses (Yash-
vardhini et  al. 2018). Overexpressed AtGRF6 in cotton 
improved tolerance to drought stress by regulate stomatal 
conductance (Yan et al. 2004). Due to their broad roles, the 
physiological functions of 14-3-3 genes are of great interest 
in plant science.

Tea is the world’s most popular drink, rich in various 
helpful secondary metabolites (theanine, caffeine, flavo-
noids) and more than two billion cups are consumed every 
day (Brody 2019). As a type of evergreen woody plant, tea 
plant (Camellia sinensis) is primarily cultivated in tropical 
and subtropical regions. During growth, tea plant is often 
affected by various environment stresses (e.g., drought, heat, 
cold, salt, pest), which significantly constrain the yield and 
quality of tea products (Zhou et al. 2014). Therefore, analyz-
ing the molecular mechanisms of tea plant response to envi-
ronment stresses is of great significance, and many genes 
related to stress resistance have been discovered (Zhang et al. 
2019). Tea plants underwent two whole-genome duplication 
(WGD) events by whole genome analysis (Wei et al. 2018; 
Xia et al. 2017). Many genes associated with secondary 
metabolisms (e.g., serine carboxypeptidase-like acyltrans-
ferase gene) and disease resistance (nucleotide-binding sites 
with leucine-rich repeats gene, pattern-recognition receptors 
gene) were significantly amplified in the tea plant genome 
(Wei et al. 2018; Xia et al. 2017). However, the 14-3-3 fam-
ily in tea plant has not been characterized to date and the 
biological functions of this family remain unknown.

In this study, we performed a genome-wide identifica-
tion and analysis of 14-3-3 proteins in tea and other plant 
species. Phylogenetic analyses were performed to delineate 
the evolutionary history of the 14-3-3 family in major angio-
sperm lineages. The expression patterns in tissues and in 
response to abiotic and biotic stresses were characterized by 
examining publicly available RNA-seq data and qRT-PCR. 
The results explore the evolutionary relationship of 14-3-3 
gene family in plant species and provide a theoretical basis 
for future studies of the biological functions of 14-3-3 gene 
family members in tea.

Materials and Methods

Genome‑Wide Identification of Plant 14‑3‑3 Proteins

The protein sequences of Arabidopsis thaliana, Coffea 
canephora, Theobroma cacao, Oryza sativa, Glycine 
max, Zea mays, Amborella trichopoda, Selaginella moe-
llendorffii, Physcomitrella patens, Chlamydomonas rein-
hardtii were downloaded from Phytozome (http:// www. 
phyto zome. net/) and TPIA (http:// tpia. teapl ant. org/ index. 
html), respectively. HMMER search (E-value = 1e − 10) 
and NCBI Basic Local Alignment Search Tool algorithms 

(BLASTP, E-value = 1e − 10) were employed to search 
14-3-3 proteins. All obtained protein sequences were 
examined for the presence of the 14-3-3 domain (PF00244) 
using the Hidden Markov Model (HMM) of Pfam (http:// 
pfam. sanger. ac. uk/ search) (Finn et al. 2016) and SMART 
(http:// smart. emblh eidel berg. de) (Letunic et  al. 2015) 
(Table S1).

Multiple Sequence Alignment and Phylogenetic 
Analysis

Because the phylogenetic tree based on amino acid 
sequences was poor statistical support, we performed the 
Bayesian tree based on protein-coding nucleotide sequences 
(Table S2). Nucleotide sequences were aligned by MEGA 
and the hypervariable 5’and 3’ ends were trimmed. The 
Bayesian tree was constructed with MrBayes 3.2.1 software 
with the fixed Whelan and Goldman model, four Markov 
chains and an average SD of 0.01 (Ronquist and Huelsen-
beck 2003).

Gene Structure, Motif Analysis, Chromosomal 
Location and Synteny Analysis

Gene structure analysis was conducted using Gene Structure 
Display Server (http:// gsds. cbi. pku. edu. cn/) (Hu et al. 2015). 
The motifs of tea 14-3-3 proteins were analyzed using the 
online MEME program (http:// meme- suite. org/ tools/ meme) 
(Bailey et al. 2009). The motif distribution type was zero or 
one occurrence per sequence, maximum number of motifs:7, 
and only motifs with E-value > 0.05 were present. The loca-
tion data of tea 14-3-3 genes were obtained from the genome 
annotation files and the chromosomal location was drawn 
and visualized using CIRCOS (Krzywinski et al. 2009). The 
gene duplication landscape was obtained using the MCS-
canX with the default parameters (Wang et al. 2012) and the 
syntonic map was generated using CIRCOS with the puta-
tive duplicated genes were linked by the connection lines.

Expression Analysis of Tea 14‑3‑3 Genes

To determine the expression patterns of tea 14-3-3 genes, 
the publicly available RNA-seq data were used as a resource 
(transcriptome data were downloaded from the TPIA data-
base (http:// tpia. teapl ant. org/) (Xia et al. 2019). These tran-
scriptome data include 8 tissues including apical bud, flower, 
fruit, young leaf, mature leaf, old leaf, root and stem. The 
fragments per kilobase per million reads (FPKM) value rep-
resenting the expression level of CsGRF genes. The heatmap 
with k-means clustering was generated using R software.

http://www.phytozome.net/
http://www.phytozome.net/
http://tpia.teaplant.org/index.html
http://tpia.teaplant.org/index.html
http://pfam.sanger.ac.uk/search
http://pfam.sanger.ac.uk/search
http://smart.emblheidelberg.de
http://gsds.cbi.pku.edu.cn/
http://meme-suite.org/tools/meme
http://tpia.teaplant.org/
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RNA Extraction and qRT‑PCR Analysis

The tea plants (Camellia sinensis cv. Xinyanghong 10) 
were grown in a green-house maintained at 23 ± 3 °C with 
65 ± 5% room humidity and a 16/8 h (day/night) at Xinyang 
Normal University, Henan, China. The potted plants were 
watered and fertilized by the same standards. 2-year-old tea 
plants of uniform growth without signs of insects or disease 
were chosen for experiments.

For cold and salt stresses, plants were exposed to  4◦C 
for 3 days and 100 mmol/L NaCl for 2 days. For drought 
stress, plants were exposed to drought by withholding water 
for 7 days, followed by a 24-h recovery period. For insect 
feeding treatment, fifteen larvae from 3rd or 4th instar E. 
oblique were placed on each of 3 totally unfed tea plants for 
obtaining geometrid-damaged tea plant. A group of plants 
that did not experience any stress were used as control (CK).

The Total RNA was isolated from the leaf for each treat-
ment and RNA quality and quantity were determined using 
1% agarose gel electrophoresis. One microgram of RNA 
was reverse transcribed to cDNA using the PrimeScript 
RT reagent Kit. Quantitative RT-PCR (qRT-PCR) was per-
formed using SYBR Premix EX Taq on an ABI StepOnePlus 
machine. Relative expression was calculated by the  2−ΔΔCt 
method. CsPTB was used as an internal control gene. The 
expression ratio was represented relative to the control value 
observed for the gene and fold change was calculated by 
the formula  2−ΔΔCt, where ΔΔCt = (Ctgene—Ctptb) treat-
ment − (Ctgene – Ctptb) control. The experiments were 
repeated in triplicate. Specific primers for CsGRF genes 
were designed using Primer 5 software (Table S3).

Results

Identification of GRF Genes in major Plant Lineages

The complete set of GRF genes were identified from tea 
and other major plant species based on Hidden Markov 
model (HMM) algorithm and BLASTP. 147 sequences, 
each containing a 14-3-3 domain, were identified from 
11 different plant species including green algae Chla-
mydomonas reinhardtii, moss Physcomitrella patens, 
pteridophyta Selaginella moellendorffii, basal angio-
sperm Amborella trichopoda, monocots (Oryza sativa, 
Zea mays), and dicots (Arabidopsis thaliana, Theobroma 
cacao, Glycine max, Camellia sinensis, Coffea canephora) 
(Fig.  1). The tea and other 10 plants encode different 
numbers of GRF isoforms, ranging from two in the green 
algae C.reinhardtii to 11 in P.patens, 8 in O.sativa, 15 in 
A.thaliana, with the highest copy number being 26 in C. 
sinensis. These results indicate that GRFs were originated 
during the early evolutionary history of algae. Land plants 
contained higher copy numbers than algae, indicating 
that expansions of GRF genes occurred after land plants 
diverged from green algae (Fig. 1).

26 GRF proteins were identified in tea, with CsGRF21 
displayed the shortest coding sequence (363 bp), amino 
acid length (120 aa), and the smallest molecular weight 
(13.57 kDa), while CsGRF14 showed the longest coding 
sequence (867 bp), amino acid length (288 aa), and the 
biggest molecular weight (32.85 kDa) (Table 1). Their iso-
electric point (pI) values ranged from 4.67 (CsGRF16 and 
CsGRF18) to 8.78 (CsGRF21) (Table 1).

Fig. 1  Summary of the GRF gene among 11 species
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Phylogenetic Classification of GRF Genes into Two 
Groups

The GRF protein sequence can be divided into three sec-
tions: the conserved core region, and a more divergent amino 
and carboxyl terminus, respectively. The core region con-
tains nine antiparallel a-helices which are function in protein 
dimerization. The amino acid sequences of tea GRF were 
highly conserved in the core region with nine a-helices were 
identified, while its N-terminal and C-terminal regions were 
more divergent (Fig. 2). This characterization was same as 
the GRF proteins in other plants, such as Arabidopsis, rice 
and soybean (Chen et al. 2006; Wang et al. 2019; Wu et al. 
1997).

Although many plant GRF proteins have been identi-
fied, the evolutionary origin was still not clear. In previous 

studies, many neighbour-joining (NJ) phylogenetic trees 
were constructed based on GRF amino acid sequences, 
however, these NJ trees were not good in statistical support. 
To explore the evolutionary origin of plant GRF gene fam-
ily members, we used the core protein-coding nucleotide 
sequences and phylogenetic tree was conducted with Bayes-
ian method (Fig. 3). Based on the phylogenetic analyses, 
plant GRF genes can be divided into two major groups (ε 
group and non-ε group) with non-ε group contains more 
isoforms (Fig. 3), consistent with the former classification 
in other plants, including Arabidopsis (Ferl et al. 2002), rice 
(Yashvardhini et al. 2018), grape (Cheng et al. 2018), and 
soybean (Wang et al. 2019). Both groups contain genes from 
moss, indicating an early origin of GRF genes before the 
divergence of land plants. The green alga C.reinhardtii has 
two GRF genes and they were included in the non-ε group 
for them containing four and one introns, respectively.

In A.trichopoda, O.sativa, Z.mays, C.arabica and 
C.sinensis, the majority of GRF isoforms were included in 
the non-ε group, while in lower plants and Eudicots, the 
number of GRF isoforms in ε group was equal to that in 
non-ε group (Figs. 1, 3). These results indicate different pat-
terns of expansion of GRF proteins in monocots and eud-
icots, respectively. 26 GRF isoforms were identified in tea 
(Fig. 3). While only 8 and 11 GRF isoforms were identified 
in cacao and coffee, respectively (Fig. 4). The tea genome 
experiences two rounds of whole-genome duplications 
(WGD) that occurred ~ 30 to 40 and ~ 90 to 100 Mya since 
the γ-event ∼140 Mya (Wei et al. 2018; Xia et al. 2017). 
However, the coffee and cacao genomes display no sign of 
WGD in its lineages since the γ triplication at the origin of 
the core eudicots (Argout et al. 2011; Denoeud et al. 2014) 
(Fig. 4). The different expansion patterns of GRF isoforms 
among these three economical plants suggesting functional 
variations GRF among tea, coffee and cacao.

Structure Analysis of CsGRF Genes and CsGRF 
Proteins

To butter understand the gene structural evolution, the 
exon–intron organization of CsGRF genes were analyzed 
with the online service GSDS based on their genome and 
coding sequences (Fig. 5). The ε group has six to seven 

Table 1  List of all CsGRF genes identified in the tea genome

Gene name Gene locus Length (aa) pI Molecular 
weight (Da)

Group

CsGRF1
CsGRF2
CsGRF3
CsGRF4
CsGRF5
CsGRF6
CsGRF7
CsGRF8
CsGRF9
CsGRF10
CsGRF11
CsGRF12
CsGRF13
CsGRF14
CsGRF15
CsGRF16
CsGRF17
CsGRF18
CsGRF19
CsGRF20
CsGRF21
CsGRF22
CsGRF23
CsGRF24
CsGRF25
CsGRF26

CSS0013665
CSS0025248
CSS0039114
CSS0042487
CSS0032859
CSS0014184
CSS0042088
CSS0004258
CSS0009214
CSS0023510
CSS0024947
CSS0008011
CSS0017401
CSS0001272
CSS0002272
CSS0000996
CSS0013188
CSS0014576
CSS0042610
CSS0034316
CSS0034623
CSS0027025
CSS0013218
CSS0036348
CSS0018642
CSS0001833

251
256
252
251
263
263
261
253
260
259
259
261
245
288
261
253
257
253
233
253
120
278
127
260
253
127

5.33
4.89
5.91
5.30
4.76
4.76
4.76
4.77
4.73
4.92
4.76
4.95
5.02
5.08
4.70
4.67
4.86
4.67
4.77
4.71
8.78
4.8
7.78
4.71
4.97
8.50

29,468.48
28,912.03
28,357.38
28,398.45
29,681.27
29,681.27
29,435.09
28,551.35
29,282.74
29,646.27
29,450.08
29,737.39
27,838.32
32,852.02
29,412.99
28,613.45
29,509.27
28,594.41
26,460.00
28,593.42
13,569.34
31,742.74
14,549.64
29,543.96
28,896.43
14,486.54

Non-ε
Non-ε
Non-ε
Non-ε
Non-ε
Non-ε
Non-ε
Non-ε
Non-ε
ε
ε
ε
ε
ε
Non-ε
Non-ε
ε
Non-ε
Non-ε
Non-ε
Non-ε
Non-ε
Non-ε
Non-ε
ε
Non-ε

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310

CssGRF26
CssGRF23
CssGRF24
CssGRF25
CssGRF1
CssGRF2
CssGRF3
CssGRF4
CssGRF5
CssGRF6
CssGRF17
CssGRF18
CssGRF19
CssGRF20
CssGRF21
CssGRF22
CssGRF7
CssGRF8
CssGRF9
CssGRF10
CssGRF12
CssGRF11
CssGRF13
CssGRF14
CssGRF15
CssGRF16

- - - MA T P T P - - - - R EDNVCMAKL AKQ AE RYE EMVE F ME KVS - - - - - - - - - - - - A AVS Q P P L - - - - - R R LQ ER HRS P P RL V A - - - - - - - - - - - - DH I F - - - - - - DRAEGGVS RQC R PC R N - - - - - - - DQG VS DQ DR VL A F I - - - D L R R YL A E F KT GGKRME AAE NT L NAYKAA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DAML VYV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - MA T P T P - - - - R EDNVYMAKL AKQ AE RYE EMVE F ME KVS - - - - - - - - - - - - A AVS Q P P L - - - - - R R LQ ER HRS P P RL V V - - - - - - - - - - - - DH I F - - - - - - DRAEGGVS RQC R PC R N - - - - - - - DQG VS DQ DR VL A F I - - - D L R R YL A E F KT GGKMME AAE NT L NAYKAA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DAML VYV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - MA T S T P - - - - RE E SVYMAKL AEQ AE RYE EMVE F ME KVS - T VV - - - E SE - E L T V E E RNL L S VAYKNV I G A R R AS WR I I S S I EQK E E SRGNADHVS T I KDYR S K I E NE L S S I C DG I L K L L D T K L I P S AT AG DS KVF YL KM KG DYHR YL AE F KTG S ER KE AAE NT L NAYKAA Q D I AN T E L A P THP I R LG L A L N F S VF YYE I L NS P DR AC SL A KQ AF DE A I A E L DT L G EDS YKDS T L - I MQ L L R DNL T L WT S DMQ DDG - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ADE I K E AP P KR DD - - - - - - - EQQQ
- - - - - ME KE - - - - R EQQVYS AR L A EQAE RYDEMV E AMKKVA - - - - - - - KM DV E L T V E E RNL VS VG YKNV I G A R R AS WR I L S S I EQKE EGKG HEQ NVKR I K E YRQR VE DE L A K I C ND I L A V I DE HL L P S S S TG ES TVF YHKMKG DYYR YL AE F KAG NDRKE VADQ AL KAYE AA I G T A S T E L T P T HP I R LG L AL NF S VF YYE I M NS P ER AC HL A KQ AF DE A I A E L DS L NE DS YKDS T L - I MQ L L R DNL T L WT S DL P E EG - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G EQ SKG E E PT A E K - - - - - - - - - - -
- - - MA I VVP E NMS R YE CF YMAKL AQQ ANR YKDS VNF ME KL I I G ST S S - S SG SE L T I E E RNL L S T A T KKE I D S L R AAWQ AL S S TEQN - - - - - HNNHVAL VT DYKS K I E SE L S R I C NR VL N L L E KHL I P SAYE S ES KVF YL KM KG DYYR YMME F KVG T E KT E AVE NT I M AYKAAE E I AVS E L S PT L P T RLG L A L N F S VF CYE I EG AS EKAC S MAR E AY E E AMAKL G SLG NKS YK E T SL L I L Q LMR DNL NL WA S DME I T S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Y S Y - - - - - - - - - - - - - - - - - - - - -
MSMA I AAVP E NL T R EQYVY MAKL AEQ AE RYE EMVKF ME KL V I G ST - - - S AG F E L T V E E RNL L S VAYKNV I G S L R AAWR I VS S I EQKE EGRKN E EHVVL VKDYR S MVE S E L S DVC AG I L K L L D S HL I P S AS AS ES KVF YL KM KG DYHR YM AE F KVG TQ R KE AAE DTML S YKAA Q D I AVADL AP T HP I R LG L AL NF S VF YYE I L NAS E KAC S MAKQ AF E E A I AQ L DT LG E E SYKDS T L - I MQ L L R DNL T L WT S DMQ EQ I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DE A - - - - - - - - - - - - - - - - - - - - -
- - - MAMG VRG NMS R YE CF YMAKL AQQ ANR YKDT VNF ME KL I I G ST S S P S SG SE L T I E E RNL L S T A T KKV MD S L R AAWR AL S S TEQN - - - - - HNNHVAL VT DYKS K I E SE L S H I C NR VL N L L E KHL I P S AS KS ES KVF YL KM KG DYYR YM T E F KVG T E RT E AAE NT I M AYE AAE A I AVS E L A P T L P T RLG L A L N F S VF CYE I EG AS EKAC S MAR E AY E E AMAKL DS LG NKS YK E T SL L I L Q LMR DNL NL WA S DME I T S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Y S C - - - - - - - - - - - - - - - - - - - - -
- - - MAMAVP E NMS R YE CF YMAKL AQ E ANR YKDT VNF ME KL I I V S T S S - S SG SE L I I E E RNL L S T A T KKV I D S L R AAWQ AL S S TEQN - - - - - HNNHVAL VT DYKS K I E SE L S H I C NR VL N L L E KHL I P S AS KS ES KVL YL KM KG DYYR YM T E F KVG T E KT E AVE NT I M AYKAAE A I AVS E L A P T L P T RLG L A L N F S VF F YE I EGAS E KAC S I AR E AY E E AMAKL DS LG NE S YK E T CL F I L Q LMR DNL NL WA S DME I T S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Y S Y - - - - - - - - - - - - - - - - - - - - -
- - MA S T E SS - - - - RE ENVYMAKL AEQ AE RYE EMVE F ME KVA - K T V - - - DVE - E L T V E E RNL L S VAYKNV I G A R R AS WR I I S S I EQK E E SRGNE DHVS I I KE YRG K I E A E L S K I C DG I L S L L D S HL V P S AS S AE SKVF YL KM KG DYHR YL AE F KTG AE R KE AAE NT L L AYKS AQ D I A L A E L A P THP I R LG L A L N F S VF YYE I L NS P DR AC NL A KQ AF DE A I S E L DT L G E E SYKDS T L - I MQ L L R DNL T L WT S D I T DEG - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G DE I KE AS KR E SG - - - - - - EGQQQ
- - MA S T E SS - - - - RE ENVYMAKL AEQ AE RYE EMVE F ME KVA - K T V - - - DVE - E L T V E E RNL L S VAYKNV I G A R R AS WR I I S S I EQK E E SRGNE DHVS I I KE YRG K I E A E L S K I C DG I L S L L D S HL V P S AS S AE SKVF YL KM KG DYHR YL AE F KTG AE R KE AAE NT L L AYKS AQ D I A L A E L A P THP I R LG L A L N F S VF YYE I L NS P DR AC NL A KQ AF DE A I S E L DT L G E E SYKDS T L - I MQ L L R DNL T L WT S D I T DEG - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G DE I KE AS KR E SG - - - - - - EGQQQ
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Fig. 2  Sequence alignment of tea GRF proteins. Nine α-helices were marked as α1-α9
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introns, while the majority of the non-ε group has tree 
introns, except for CsGRF1, CsGRF3, CsGRF4, CsGRF18, 
CsGRF20 genes have no introns (Fig. 5). Exon–intron gene 
structure correlates with division into epsilon and non-epsi-
lon groups. The exon/intron pattern in terms of the number 
of introns and exon length were obviously different in the 
two groups of GsGRF genes, suggesting the diversity of 
CsGRF genes during the evolution. To investigate the protein 
sequence features of the CsGRFs, 7 motifs were predicted 
by the MEME tool (Fig. 5). Majority of CsGRF (18/26, 
69%) contained all seven motifs, while the others mem-
bers contained variable numbers of motifs with CsGRF21, 
CsGRF23, CsGRF26 only had motifs 4 and 5. The differ-
ences in the type and number of motifs in CsGRFs indicate 
the structural basis for the diversity in protein function.

Chromosome Distribution and Synteny Analysis 
of CsGRFs

Twenty-three CsGRF genes were distributed unevenly on 
nine chromosomes, and we named the CsGRF genes accord-
ing to their positions on chromosomes (Fig. 6). The chr1 
contained six CsGRF genes, and chr2, 6, 8 only contained 
one CsGRF gene. Segmental duplication played an essen-
tial role in CsGRF expansion in Arabidopsis, rice, Vitis, 
Soybean and Populus (Cheng et al. 2018; Tian et al. 2015; 
Wang et al. 2019; Wu et al. 1997; Yashvardhini et al. 2018). 
To better understand the evolution of CsGRF genes, we 
conducted a synteny analysis (Fig. 7A). 14 CsGRF iso-
forms exhibiting segmental duplication events between 
different chromosomes and contigs (CsGRF5/CsGRF7, 
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CsGRF6/CsGRF7, CsGRF8/CsGRF16, CsGRF9/CsGRF15, 
C s G R F 1 0 / C s G R F 1 7 ,  C s G R F 1 2 / C s G R F 1 3 , 
CsGRF22/CsGRF15, CsGRF23/CsGRF26) (Fig. 7A). 8 iso-
forms were located on one block and lacked duplicates on 
their corresponding blocks (CsGRF1, CsGRF11, CsGRF14, 

CsGRF18, CsGRF19, CsGRF20, CsGRF21, CsGRF24). 
These results suggested that CsGRF genes were also evolved 
from segment duplication. Similar results were also identi-
fied in GRF genes in T.cacao and C.canephora.
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To compare the origin and evolutionary relatedness 
among tea, Arabidopsis, T.cacao and C.canephora, the 
shared synteny was analyzed (Fig. 7B). In tea, 10 GRF genes 
(38%) were found to have syntenic pairing with 11 Arabi-
dopsis GRF genes (73%). In C.canephora, 9 GRF genes 
(81%) were found to have syntenic pairing with 6 T.cacao 
GRF genes (75%). These results furthered indicated that seg-
mental duplication contributed predominantly to expansion 
of GRF genes.

Expression Pattern of CsGRF Genes in Different 
Tissues and Under Abiotic and Biotic Stresses

The expression patterns of CsGRF genes in different tea 
tissues (e.g., apical bud, flower, fruit, young leaf, mature 
leaf, old leaf, root and stem) were performed based on the 
previous RNA-seq data generated by Wei and co-workers 
(Wei et al. 2018) (Fig. 8). Only two GRF genes (CsGRF18 
and CsGRF19) did not expressed in that dataset, and the 
other 24 CsGRF genes were expressed in more than one 
but not all tissues. In addition, most CsGRF genes showed 
a distinct tissue-specific expression pattern, suggesting 
the diversity of their roles (Fig. 8). For instance, six genes 
(CsGRF4/7/9/11/16/24) displayed high expression in the 
flower. Two genes (CsGRF5/22) were specifically expressed 
in old leaf. CsGRF1 and CsGRF12 had a significantly tran-
script accumulation in fruit and root, respectively. These 
tissue-specific expression patterns were consistent with the 

previous research in AtGRFs, OsGRFs, GmGRFs, VvGRFs 
and PtGRFs (Cheng et al. 2018; Tian et al. 2015; Wang 
et al. 2019; Yashvardhini et al. 2018), indicating that CsGRF 
genes had extensive functional divergence.

Different abiotic and biotic stresses such as cold, drought, 
salinity, and pest adversely affect plant growth and develop-
ment. Considerable evidence has shown that GRF proteins can 
regulate the expression of many other stress-related genes and 
play vital roles in response to both abiotic and biotic stresses 
(Denison et al. 2011; Yang et al. 2019). To explore the roles 
of CsGRF genes in tea plant under diverse environmental 
conditions, the expression patterns of CsGRF genes in dif-
ferent stresses (cold, PEG, NaCl, Ectropis oblique damage) 
were examined using qRT-PCR (Fig. 9). Ten genes showed 
no or very low expression in leaves were not further analyzed. 
The expression levels of most CsGRF genes were changed, 
and all of them showed significantly different expression pat-
terns in response to different stresses (Fig. 9). The expression 
of CsGRF14 and CsGRF17 genes were specially upregu-
lated under cold stress, while the expression of CsGRF10 
and CsGRF16 were specially downregulated under cold and 
E.oblique stresses, respectively (Fig. 9). Expression levels of 
CsGRF21 were increased under drought, salt and E.oblique 
stresses, while expression levels of CsGRF5 were decreased 
under these stresses. CsGRF9 was significantly upregulated 
under abiotic stresses (cold, salt, drought), while CsGRF9 
was upregulated under cold stress and downregulated under 
drought and salt stresses. These results indicate the different 
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roles of CsGRFs in different stress conditions and reveal that 
the response mechanism is complex and diverse.

Discussion

GRFs Genes Have Been Conserved During Speciation

Plant GRFs play important roles in the developmental 
regulation and in response to environmental stresses. 
Although, many plant GRFs have been identified, the 

evolutionary origin and phylogenetic relationship of GRFs 
are not yet fully explored. In this study, a comprehensive 
phylogenetic analysis of the plant GRFs from algae, Bry-
ophyta, Pteridophyta and angiosperms was performed 
(Fig. 3). All the GRFs genes were divided into two groups 
(ε group and non-ε group), which is in accordance with 
previous studies in Arabidopsis, rice, grape and soybean 
(Cheng et al. 2018; Wang et al. 2019; Yashvardhini et al. 
2018). In the ancient terricolous plants, there are 11 and 
6 GRF isoforms in Physomitrella patens and Selaginella 
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moellendorffii, respectively (Figs. 1, 3). In neonatal ter-
ricolous plants, there are 17, 8, 25, 11, 26, 18, 8 and 15 
GRF isoforms in Amborella trichopoda, Oryza sativa, 
Zea mays, Coffea canephora, Camellia sinensis, Glycine 
max, Theobroma cacao and Arabidopsis thaliana, respec-
tively. These results indicate that the number of GRF was 
expanded in land plants. Based on the phylogenetic analy-
sis, plant GRFs were originated during the early evolution-
ary history of algae (Fig. 3).

26 GRF isoforms were identified from tea genome 
(Figs. 1, 3), and this number was substantially more than 
those identified in other plants, including coffee and cacao 
(Figs. 1, 3, 4). In previous studies, the tea genome was 
shown to experience two WGD events, one occurred ~ 30 to 
40 million years ago (Mya) and the second occurred ~ 90 to 
100 Mya (Wei et al. 2018; Xia et al. 2017). The high GRFs 
numbers in tea genome, indicating that the WGD duplica-
tion might be the main mechanism of GRF gene family 
expansion during the evolution of tea. Previous studies have 
revealed that segmental duplication events contributed to 
GRF gene duplication in rice, grape and soybean (Cheng 

et al. 2018; Wang et al. 2019; Yashvardhini et al. 2018). 
The synteny analysis also showed that segment duplication 
was the major gene duplication for GRF expansion in tea. 
Regulatory genes and signaling genes were showed to be 
retained after duplication comparted to the genome-wide 
average, and many genes associated with secondary metabo-
lisms and disease resistance were significantly amplified in 
the tea genome (Wei et al. 2018; Xia et al. 2017). GRFs 
play important roles in regulating complex environmental 
signaling pathways and networks, and allowing crosstalk 
between different pathways. Therefore, the GRFs have been 
conserved throughout evolution.

Functional Divergence in CsGRF Genes

Many researches have suggested that plant GRF gens are 
signal moderators, its transcription were regulated by vari-
ous environmental signals, consistent with their diverse roles 
in growth, development and stress responses (Denison et al. 
2011). Most tea GRF genes were differentially expressed 
in the different tissues of tea plant (Fig. 5), indicating that 
CsGRFs play different roles in different organs or tissues. 
This phenomenon is also reported in other species, including 
Arabidopsis, rice, grape, maize and soybean (Cheng et al. 
2018; Denison et al. 2011; Wang et al. 2019; Yashvardhini 
et al. 2018).

The transcription of the GRFs genes was either induced 
or inhibited by cold, drought, salt and E.oblique (Fig. 9), 
indicating that CsGRFs play important roles in plant 
response to various abiotic and biotic stresses. In addi-
tion, we found that many close CsGRF genes exhibit the 
opposite expression trend under different stress. For exam-
ple, CsGRF9 was upregulated under cold, drought and salt 
stresses, while CsGRF10 was only down-regulated under 
cold stress. CsGRF24 was upregulated under cold, drought 
and E.oblique stresses, while CsGRF16 was only down-
regulated under E.oblique stress. CsGRF2 and CsGRF21 
were upregulated under salt stress, while its expressions 
display an opposite trend under E.oblique stress with 
CsGRF2 was down-regulated while CsGRF21 was up-reg-
ulated. Therefore, GRFs have different expression patterns 
in different tissues, various abiotic and biotic stresses, sug-
gesting that the CsGRF genes are involved in the tea plant 
growth, development and responses to stresses, and differ-
ent isoforms may play specific roles in specific processes. 
The complex and diverse expression patterns of CsGRF 
genes suggested that they potentially related to environ-
mental adaptation and phytochemical properties within the 
tea lineage.
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Fig. 9  Expression analysis of CsGRF genes in response to cold, 
drought, salt and E. oblique treatments by qRT-PCR. Expression data 
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isks on top of the bars indicating statistically significant differences 
(*p < 0.05)
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