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Abstract
Reactions involving water and oxygen are basic features of geological and biological processes. To understand how life 
interacts with its environment requires monitoring interactions with H

2
O and O

2
 not only at timescales relevant to organis-

mal growth but also over billions of years of geobiological evolution. Chemical transformations intrinsic to evolution and 
development were characterized by analyzing data from recent phylostratigraphic and proteomic studies. This two-stage 
analysis involves obtaining chemical metrics (carbon oxidation state and stoichiometric hydration state) from the elemental 
compositions of proteins followed by modeling the relative stabilities of target proteins against a proteomic background to 
infer thermodynamic parameters [oxygen fugacity, water activity, and virtual redox potential (Eh)]. The main results of this 
study are a rise in carbon oxidation state of proteins spanning the time of the Great Oxidation Event, a rise in virtual redox 
potential that coincides with the likely emergence of aerobic metabolism, and a rise in carbon oxidation state of proteins 
inferred from the transcriptome in late stages of Bacillus subtilis biofilm growth. Furthermore, stoichiometric hydration 
state of expressed proteins decreases through stages of biofilm development, drops at the same time as a drop in organismal 
water content during fruit fly development, and is lower for proteins with more recent gene ages, all of which support the 
inference of higher hydration potentials at earlier time points. These results show how the evolutionary and developmental 
dynamics of major chemical variables can be deciphered through thermodynamic analysis of proteins as chemical entities.
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Introduction

Many examples of dynamic hydration levels can be found 
in biology. Water content is one of the most basic biochemi-
cal quantities that changes during development (Church and 
Robertson 1966; Friis-Hansen 1983), and water is progres-
sively lost from prenatal to adult forms in mammals (Logan 
and Himwich 1972; Calcagno et al. 1972; Friis-Hansen 
1983). Conversely, relatively high water content has been 
recognized for over a century as a biochemical characteristic 
of cancer tissue (Cramer 1916; Downing et al. 1962; Saryan 

et al. 1974; Ross and Gordon 1982), and some authors have 
highlighted parallel trends of higher water content in both 
cancer and embryonic tissue (Winzler 1959; Olmstead 1966; 
McIntyre 2006). In origin-of-life research, geological envi-
ronments with low water activity ( aH2O

 ) have been proposed 
to reduce or overcome the energetic barriers to polymeri-
zation of biomolecules in an aqueous environment (Pace 
1991). This concept has received renewed attention recently 
for serpentinizing systems, which could provide not only 
oxidation–reduction (redox) disequilibria to drive the abiotic 
synthesis of various organic molecules but also pore spaces 
with reduced water activity (Lamadrid et al. 2017).

The importance of both redox conditions and water 
activity for life’s origin in geological environments 
(do Nascimento Vieira et al. 2020), not to mention the 
fact that water is involved in far more biochemical reac-
tions than any other metabolite (Frenkel-Pinter et  al. 
2021), raises the question of whether biological processes 
in general are also shaped by these chemical parameters. 
With the growing availability of evolutionary gene-age 
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estimates and measurements of protein abundance during 
organismal development, it is now possible to construct 
thermodynamic models for chemical transformations of 
the most abundant type of biomacromolecule—that is, 
proteins—that occur at timescales longer than cellular 
lifetimes.

Thermodynamic principles predict the most stable chemi-
cal species, but do not say how the reactions that lead to 
them take place (Bard 1986). Relative stability diagrams 
for minerals, also known as chemical activity or predomi-
nance diagrams, are immensely useful for interpreting geo-
logical phenomena, yet are agnostic about nucleation effects 
or whether the minerals grow through precipitation from 
solution or solid-state diffusion and replacement. This is 
because it is only the Gibbs energy of the system, and not 
any particular reaction mechanism, that determines the rela-
tive stabilities of chemical species.

In the same way that stability diagrams for mineral 
phases neither inform nor conflict with mechanistic models 
of nucleation or precipitation and replacement reactions, an 
analogous thermodynamic depiction of protein sequences 
does not conflict with elementary biochemical models of 
ATP conjugation and amino acid synthesis and polymeriza-
tion. Such a model is likewise ambivalent about biological 
mechanisms at all levels from DNA replication and mutation 
to protein function, survival, and natural selection. By saying 
nothing about these mechanisms, the model independently 
predicts which proteins are more stable in a multidimen-
sional space defined by temperature, pressure, and chemical 
potentials—the fundamental variables in thermodynamics.

The consideration of both water activity and oxygen 
fugacity ( fO2

)—a thermodynamic indicator of oxidation 
potential—is essential for thermodynamic models of melt-
ing and magmatic processes (Foley 2011) as well as lower-
temperature metasomatic processes including serpentiniza-
tion (Evans et al. 2013). Although fO2

 may have no physical 
meaning as an indicator of partial pressure, it has a thermo-
dynamic definition that makes it a useful indicator of the 
internal oxidation potential of systems without an actual gas 
phase (Frost 1991). For instance, an oxygen fugacity given 
by log fO2

 = −65 (where log denotes the common logarithm) 
is many orders of magnitude lower than an estimated upper 
bound of partial pressure of O2 in the prebiotic Archean 
near-surface atmosphere ( < 10−13 bar; Kasting 1993; Catling 
and Claire 2005), and would correspond to one molecule of 
O2 in a volume approximately equal to that of the solar sys-
tem (Anderson 2005, p. 365). Despite its unphysical inter-
pretation as a scale of partial pressure, fO2

 can be converted 
to meaningful values of redox potential in the Eh scale. By 
way of example, for unit activity of water (that is, logaH2O

 = 
0), values of log fO2

 between −60 and −83.1 correspond to 
Eh values between approximately −72 and −414 mV at pH 
7 and 25 ◦C (Garrels and Christ 1965, p. 176).

Inorganic geochemistry is primarily concerned with 
reactions among minerals and dissolved aqueous species; 
geochemical biology, as envisioned in this study, applies 
the same concepts to groups of proteins that constitute an 
evolutionary or developmental series. The thermodynamic 
model here is parameterized in terms of water activity and 
oxygen fugacity, which are then converted to the Eh scale 
of redox potential that is more common in biology. This 
method offers a path toward quantitative thermodynamic 
retrodiction of past redox conditions by comparing groups 
of proteins classified by the evolutionary ages of genes (phy-
lostrata). Similarly, a chemical representation of develop-
mental patterns of protein expression provides novel insight 
into the role of water at the nexus between protein expres-
sion and cell physiology.

Materials and Methods

Chemical Metrics

Two chemical metrics derived from the elemental com-
positions of proteins are used in this study. This chemical 
representation is the precursor to a thermodynamic analysis 
that provides a theoretical assessment of redox potential and 
water activity.

Carbon oxidation state ( ZC ) represents the average charge 
on carbon atoms in a molecule, given nominal charges of 
the other atoms ( H+1 , N−3 , O−2 , S−2). The carbon oxidation 
state can be computed directly from the elemental abun-
dances of molecules in which the heteroatoms (N, O, S) are 
bonded only to H and/or C but not to each other (Dick 2014; 
Dick et al. 2020). This condition holds for the 20 stand-
ard amino acids and for primary sequences of proteins but 
not for disulfide bonds and some types of post-translational 
modifications, none of which are considered here.

Stoichiometric hydration state ( nH2O
 ) is the coefficient on 

H2O in the mass-balanced reaction representing the theo-
retical formation of a protein from a set of thermodynamic 
components, also known as basis species. Any set of com-
ponents that represents the compositional variability of a 
system using the minimum number of components is accept-
able, and the choice of a particular set is determined only by 
convenience (Gibbs 1876, p. 117). Thus, components may 
be chosen that aid the visualization of compositional differ-
ences on two-dimensional diagrams, which have a precise 
geometric relation to field boundaries on chemical potential 
diagrams (Helgeson 1968). The basis species glutamine, glu-
tamic acid, cysteine, H2O , and O2 (denoted “QEC”) were 
used in this and other recent studies (Dick et al. 2020; Dick 
2021). This particular choice of basis species was made 
to (1) strengthen the covariation between two measures of 
oxidation state: ZC (which does not depend on the choice 
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of basis species) and the number of O2 in the theoretical 
formation reactions of proteins from basis species, and (2) 
reduce the covariation between ZC and nH2O

 . By contrast, 
when used as basis species for protein formation reactions, 
a selection of inorganic species that are commonly used to 
balance overall metabolic reactions ( CO2 , NH3 , H2S , H2O , 
O2 ) displays a negative correlation between nH2O

 and ZC 
that is stronger than the positive correlation found between 
nO2

 and ZC (Fig. 1). The large negative slope dominates the 

differences between proteins, making it very difficult to dis-
entangle distinct trends in oxidation and hydration state.

Because a projection onto two variables is determined by 
the chemical formulas of all of the basis species, some basis 
sets strongly couple the O2 and H2O components while oth-
ers do not. In a previous study, the QEC basis species were 
selected by computing nH2O

 and nO2
 from the overall forma-

tion reactions of the 20 protein-forming amino acids from all 
possible sets of three amino acids together with H2O and O2 
and analyzing their correlations with ZC . Several candidate 

Fig. 1  Comparison of two possible sets of basis species for the theo-
retical formation reactions of proteins. Amino acid compositions of 
proteins were obtained from the Homo sapiens (Hsa) UniProt ref-
erence proteome (The UniProt Consortium 2019) downloaded on 
2016-04-03 (UP000005640) and from the Drosophila melanogaster 
(Dme) and Bacillus subtilis (Bsu) reference proteomes downloaded 
on 2021-07-12 (UP000000803 and UP000001570). Chemical metrics 
were normalized by number of carbon atoms ( Z

C
 ) or by number of 

amino acid residues ( n
O

2

 and n
H

2
O
 ) and values were plotted using the 

smoothScatter() function in R (R Core Team 2021) to generate 
a smoothed kernel density estimate of the data represented by color 
intensity. Small black symbols indicate the first 100 points in the low-
density areas. Glutamine, glutamic acid, cysteine, H

2
O , and O

2
 are 

referred to in the text as the QEC basis species. A second set of basis 
species, CO

2
 , NH

3
 , H

2
S , H

2
O , and O

2
 , includes major inorganic reac-

tants in autotrophic metabolism (Wimmer et al. 2021), except that O
2
 

was swapped for H
2
 . Of the two sets of basis species, QEC exhibits a 

stronger positive correlation between n
O

2

 (a metric of oxidation state 
derived from formation reactions) and Z

C
 (a metric of oxidation state 

derived from chemical formulas that is independent of the choice of 
basis species) and at the same time greatly reduces the correlation of 
n
H

2
O
 (a metric of hydration state) with Z

C
 . Linear fits are indicated by 

dashed gray lines and R2 values. The plots for human proteins without 
the linear fits were previously published in the Supplemental Infor-
mation of Dick (2017) (license: CC-BY 4.0)
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sets of basis species have similarly strong nO
2

−ZC and 
weak nH

2
O−ZC correlations; from these, QEC was selected 

because these amino acids are relatively biologically abun-
dant and are highly connected in metabolic networks (see 
Dick et al. 2020 for details). By projecting elemental for-
mulas of proteins using the QEC basis species, ZC and nH2O

 
can be regarded as largely uncoupled variables that enable 
changes of oxidation and hydration state to be identified as 
nearly perpendicular trends on nH

2
O−ZC scatterplots.

In order to represent chemical differences associated with 
amino acid composition, values of nH2O

 for individual pro-
teins were normalized by protein length. To illustrate the 
necessity for normalization, a 200-aa protein has more O 
and H atoms than a 100-aa protein, so the number of H2O 
molecules in the theoretical formation reaction is greater for 
the larger protein. With normalization, differences of nH2O

 
between proteins are not dominated by protein length, but 
instead represent differences in amino acid composition. In 
contrast, because ZC is defined as a per-carbon quantity, it 
does not scale with protein length, and normalizing it by 
protein length would be inappropriate.

Chemical metrics ( ZC and nH2O
 ) for individual proteins 

were used to calculate mean values and bootstrap confidence 
intervals for groups of proteins. The calculations were per-
formed either without weighting (for phylostratigraphic 
datasets or proteomic datasets that list up- and down-reg-
ulated proteins) or with weighting by abundance (for prot-
eomic or transcriptomic datasets that give expression levels). 
Means of chemical metrics were not weighted by protein 
length, so large and small proteins contribute equally to the 
mean value. To calculate thermodynamic parameters (log fO2

 
and logaH2O

 ), each group of proteins was modeled by a sin-
gle target protein having the mean amino acid composition 
of the group. In contrast to the mean values for chemical 
metrics, the mean amino acid compositions for target pro-
teins include weighting by both abundance (if available) and 
implicitly by protein length, as longer proteins have more 
amino acid residues.

Data Sources

Phylostrata were obtained from the supporting information 
of Trigos et al. (2017) and the “main_HUMAN.csv” file of 
Liebeskind et al. (2016a, 2016b). The Ensembl gene identi-
fiers in the Trigos et al. dataset were converted to UniProt 
accession numbers (The UniProt Consortium 2019) using 
the UniProt mapping tool (Huang et al. 2011); 169 of 17,318 
genes could not be mapped to UniProt and were removed 
from the subsequent analysis.

Transcriptomic and proteomic data for growing Bacillus 
subtilis biofilms were taken from Supplementary file S10 
of Futo et al. (2021), specifically the tables named “Input 
values for calculating TAI” and “Input values for calculating 

PAI.” The phylostrata given by Futo et al. (2021) were not 
included in this analysis. Data for the developmental pro-
teome of Drosophila melanogaster were extracted from Sup-
plemental Table S1 of Casas-Vila et al. (2017). The values in 
the columns for imputed log2 LFQ intensity were exponenti-
ated, then mean values were computed for each time point 
(4 replicates). For both the B. subtilis and Drosophila data-
sets, protein IDs were mapped using the UniProt mapping 
tool (Huang et al. 2011). The canonical protein sequences 
were downloaded from UniProt, and the read.fasta() 
function in the CHNOSZ package (Dick 2019) was used to 
compute the amino acid compositions of the proteins.

Differentially expressed proteins between embryos and 
adult flies were obtained from Supplementary Table S2 of 
Fabre et al. (2019). After rounding the values in the “Log2 
ratio Adult/Embryo” column to 2 decimal places and those 
in the “−log10 BH corrected p value Adult vs Embryo” 
column to whole numbers, the table was filtered to include 
proteins with log2 expression change ≥1 or ≤ − 1 and log10 
p value ≤2 . This yielded 407 and 369 proteins with higher 
expression in adults and embryos, respectively; these are 
very close to the numbers given by Fabre et al. (2019) (407 
and 371 proteins enriched in adults and embryos).

Computer Code

All figures were created in R version 4.1.2 (R Core Team 
2021). The R package CHNOSZ version 1.4.2 (Dick 2019) 
was used for thermodynamic calculations, and canprot ver-
sion 1.1.2 (Dick 2021) was used for calculating chemical 
metrics from amino acid compositions of proteins. The R 
package boot version 1.3–28 (Canty and Ripley 2021; Davi-
son and Hinkley 1997) was used for calculating bootstrap 
confidence intervals (95% confidence levels of the percentile 
type for 999 bootstrap replicates).

Results

Scope and Limitations of Phylostratigraphic 
Datasets

Phylostrata represent conservation levels of orthologous 
genes in a phylogenetic tree (Domazet-Lošo et al. 2017; 
Van  Oss and Carvunis 2019). Although the complex 
sequence of evolutionary events for any gene precludes a 
single, well-defined age, an operational definition used in 
phylostratigraphy considers the presence or absence of a 
gene family in different species (i.e., Dollo parsimony), lead-
ing to the inference that the gene family originated in the 
most recent common ancestor of all species that have that 
gene family (Capra et al. 2013). Accordingly, applications 
of phylostratigraphic analysis often refer to the evolutionary 
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age of particular genes (Trigos et al. 2017; Zhou et al. 2018; 
Futo et al. 2021). However, true orthologs that cannot be 
detected (false negatives) become more common with 
greater evolutionary divergence (Natsidis et al. 2021), which 
adds to the uncertainty of phylostratigraphic age estimates.

Homology detection based on protein domains can 
reduce false negatives compared to that based on full gene 
sequences. Sensitivity can also be increased by using hidden 
Markov models for multiple sequences (instead of pairwise 
sequence alignment), and statistical power is enhanced by 
analyzing the full genomes of hundreds of species rather 
than particular focal species. By using these techniques, 
James et al. (2021) found that the support for phylostrati-
graphic trends in protein hydrophobicity and intrinsic struc-
tural disorder was strengthened compared to previous stud-
ies. Accordingly, although false negatives may have been 
more prevalent in earlier phylostratigraphic studies, they are 
probably random errors that do not create spurious trends, 
but simply reduce the power to detect trends. It was also 
noted that ancient domains are strongly influenced by the 
amino acid availability at the time of de novo gene birth, 
even after billions of years of evolution (James et al. 2021). 
The preservation of ancient patterns of amino acid composi-
tion in contemporary sequences supports the approach used 
in the present study of comparing the chemical metrics for 
proteins in different age groups to geological events.

A further limitation is that phylostratigraphy represents 
ages of genes in a particular species (Natsidis et al. 2021). 
Therefore, phylostrata divide up a single modern proteome 
into age groups and do not yield complete ancestral pro-
teomes. For human genes, the number of genes assigned to 
particular phylostrata varies widely (Fig. 2); in the dataset 
of Trigos et al. (2017) there are as many as 4665 for PS 2 
(Eukaryota) and as few as 25 for PS 16 (Homo sapiens) 
(these counts exclude 10 genes in each of those phylostrata 
that could not be mapped to UniProt IDs). Therefore, the 
chemical analysis performed here only characterizes sub-
sets of proteins associated with particular phylogenetic 
branches, and not entire proteomes.

Another limitation of this analysis is that actual expres-
sion levels vary dramatically for different proteins, but 
phylostratigraphic datasets do not provide any abun-
dance information. In the second part of this study, pro-
tein expression levels are used to construct abundance-
weighted means of chemical metrics and amino acid 
composition for developmental proteomes. Such an abun-
dance-weighted mean is not possible for the chemical and 
thermodynamic analysis of phylostratigraphic data.
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Fig. 2  Protein length and chemical metrics for phylostratigraphic age 
groups. a Mean values of protein length, Z

C
 , and n

H
2
O
 of proteins 

for all protein-coding genes in each phylostratum (PS) given by Tri-
gos et  al. (2017). The points represent the mean values for individ-
ual phylostrata, and the shaded areas represent bootstrap confidence 

intervals. In the first plot, the (number of proteins in each phylostra-
tum)/10 is plotted on the same scale as protein length. b The same 
analysis for proteins with gene ages (GA) given by Liebeskind et al. 
(2016b). The youngest age group in this dataset is Mammalia, which 
corresponds to PS 10 in the Trigos et al. dataset
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Chemical Analysis of Proteins in Phylostratigraphic 
Age Groups

The mean lengths of proteins coded by genes in each of 16 
phylostrata (PS) for human protein-coding genes given by 
Trigos et al. (2017) are plotted in Fig. 2a. There is an initial 
rise in protein length leading up to Eukaryota, which is con-
sistent with the previously reported greater median protein 
length in eukaryotes than prokaryotes (Brocchieri and Karlin 
2005). Although it is debated whether the large decline of 
protein length for younger genes (i.e., those with lower con-
servation levels) is real (Lipman et al. 2002; Domazet-Lošo 
et al. 2017) or to some extent an artifact of BLAST-based 
homology detection (Moyers and Zhang 2017; Van Oss and 
Carvunis 2019), controlling for length either strengthens or 
has no effect on inferred trends of intrinsic structural dis-
order (ISD) (Wilson et al. 2017; Heames et al. 2020). ISD 
predicted from amino acid sequences of proteins is strongly 
associated with hydrophobicity (James et al. 2021); simi-
larly, the chemical metrics used here are derived from the 
amino acid compositions of proteins, and ZC exhibits a 
negative correlation with amino acid hydrophobicity (Dick 
2014), so trends in these metrics are likely to be robust 
against length-dependent artifacts.

Figure 2a reveals distinct evolutionary patterns of oxida-
tion state and hydration state of proteins. ZC forms a strik-
ingly smooth hump between PS 1 and 11 then increases rap-
idly to the maximum at PS 14, followed by a smaller decline 
to PS 16, which corresponds to Homo sapiens. In contrast, 
nH2O

 shows an overall decreasing trend toward younger phy-
lostrata, although there are positive jumps between PS 3 and 
4 and PS 7 and 8.

Figure 2b shows the same analysis applied to proteins 
grouped into eight gene ages (GA) reported by Liebeskind 
et al. (2016b) based on consensus tables of gene-age esti-
mates from different orthology inference algorithms. The 
gene ages of Liebeskind et al. have three steps between cel-
lular organisms and Eukaryota, providing a greater resolu-
tion in earlier evolution compared to the phylostrata of Tri-
gos et al., and stop at Mammalia, which corresponds to PS 
10 of Trigos et al. Keeping in mind the different resolutions 
and scales of the Trigos et al. phylostrata and Liebeskind 
et al. gene ages, the two datasets show similar maxima for ZC 
and protein length between the origins of Opisthokonta and 
Eumetazoa, and an overall decrease of nH2O

 in younger age 
groups (Fig. 2b).

The Great Oxidation Event refers to the rise of atmos-
pheric oxygen, originally thought of as a single-step increase 
between 2.45 and 2.32 billion years ago to 1–40% of present 
levels (Kump 2008), but now recognized as an approach to 
near-modern levels followed by a plunge (Lyons et al. 2014). 
Therefore, the organic processes required for the origin of 
cellular organisms at ca. 4290 Mya and for the emergence 

of eukaryotes at 2101 Mya (divergence times from Kumar 
et al. 2017) must have taken place under vastly different 
oxygen regimes.

If Earth’s oxygenation is thermodynamically linked to the 
oxidation state of proteins, then a rise in ZC should be appar-
ent for multiple lineages, not only the human one represented 
in Fig. 2. To investigate the ZC trends in other eukaryotic lin-
eages, additional phylostratigraphic data were analyzed for 
31 model organisms representing opisthokonts (fungi, ani-
mals, and some protists) studied by Liebeskind et al. (2016b) 
and for homology groups from 435 fully sequenced animal, 
plant, and fungal species reported by James et al. (2021). For 
every opisthokont, mean ZC of proteins in phylostratigraphic 
age groups shows an overall increase between cellular organ-
isms (GA 1) and Eukaryota (GA 4) and continues to increase 
to Opisthokonta (GA 5). For later age groups, the lineages 
of the included organisms diverge, as do their ZC trends 
(Fig. 3a). For homology groups in 435 species, ZC of non-
transmembrane protein domains increases with a fitted slope 
of 0.015 to 0.018 Gya−1 in plants and animals (Fig. 3b). This 
is comparable to a rise of ca. 0.019 ZC/Gya in the human 
lineage leading up to the emergence of opisthokonts at 1105 
Mya (Fig. 3a). Therefore, the carbon oxidation state of new 
proteins in multiple eukaryotic lineages likely increased over 
an interval spanning the Great Oxidation Event.

Thermodynamic Model for Maximum Activities 
of Proteins

To take the step from chemical composition to chemical 
potential, a thermodynamic model is described here for 
predicting the oxidation and hydration potentials that stabi-
lize particular proteins compared to others. This analysis of 
relative stability does not refer to the forces that determine 
protein conformations (i.e., 3-dimensional structures), but to 
the Gibbs energies of the theoretical formation reactions of 
proteins from basis species. It follows that the relative sta-
bilities of proteins are influenced by the chemical activities 
of basis species whose stoichiometric coefficients depend 
on the elemental abundances and therefore amino acid 
sequences of different proteins.

To give a worked-out example, the balanced forma-
tion reaction of a well-known protein, chicken egg-white 
lysozyme (UniProt: P00698, LYSC_CHICK), can be writ-
ten as

Here, the chemical formula of the whole protein 
( C613H959N193O185S10 ) is divided by the protein length (129) 
to give the per-residue formula that is a product of the reac-
tion. The only other species in the reaction are the basis 

(R1)

0.5144Gln + 0.3892Glu + 0.0780Cys

= C4.752H7.434N1.496O1.434S0.078 + 0.8794H2O + 0.4713O2.
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species glutamine ( C5H10N2O3 ), glutamic acid ( C5H9NO4 ), 
cysteine ( C3H7NO2S ), H2O , and O2 . The coefficient on H2O 
in this reaction is the opposite of the stoichiometric hydra-
tion state; that is, nH2O

 = −0.879. The carbon oxidation state 
of the protein, ZC = 0.016, can be computed from either 
its chemical formula or amino acid composition (see Dick 
et al. 2020).

The central thermodynamic quantity in this model is chemi-
cal affinity (A), which is the opposite of the non-standard 
Gibbs energy change of the reaction (Denbigh 1981, p. 143) 
and can be computed from (e.g., Solel et al. 2019)

where K is the equilibrium constant and Q is the activity 
product for the formation reaction for a particular protein. 
Factorization using the natural logarithm of 10 ( ≈2.303) 

(1)A = −�G = 2.303RT log(K∕Q),

means that common logarithms of variables are used 
throughout. Because it includes the chemical activities of 
all the species in the reaction, Q is affected by both fO2

 and 
aH2O

 , which represent oxidation and hydration potential, 
while K is a function of the standard Gibbs energy of the 
reaction and therefore of temperature and pressure.

The standard Gibbs energies ( ΔG◦

f
 ) of proteins were cal-

culated using amino acid group additivity as described by 
Dick et al. (2006) together with later updates for methionine 
and glycine groups and the protein backbone (LaRowe and 
Dick 2012; Kitadai 2014). For the purpose of quantifying 
the relative stabilities of proteins in terms of hydration and 
oxidation potential, the calculations were limited to proteins 
treated as neutral species using values of ΔG◦

f
 calculated 

for 25◦C and 1 bar. For each protein, ΔG◦

f
 was also divided 

by the protein length to obtain the per-residue value, which 
was combined with the standard Gibbs energies of the other 
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Fig. 3  Carbon oxidation state of proteins is higher for younger pro-
teins in eukaryotic lineages. a Mean protein Z

C
 was computed for 

consensus gene ages of the 31 model organisms in Table 1 of Liebe-
skind et  al. (2016b). All these organisms are opisthokonts (com-
monly characterized by flagellate cells and formerly known as the 
Fungi/Metazoa group), so they have a common ancestry up to GA 5, 
but their lineages diverge for later gene ages. Names of age catego-
ries and number of organisms are shown below the plot; the upper 
labels give the divergence times for the human lineage (Kumar et al. 
2017), which is highlighted in red in the plot. b Z

C
 calculated for 

amino acid compositions of protein homology groups generated by 
James et  al. (2021). In that study, protein sequences were obtained 

from 435 genomes, protein domains were annotated using the Pfam 
database (El-Gebali et al. 2019) and were used to construct homology 
groups representing the average for each Pfam, and age assignments 
of Pfam domains were made using TimeTree (Hedges et  al. 2006) 
with exceptions for LUCA and domains that emerged after LUCA but 
before eukaryotes. Numbers of homology groups are given in the plot 
titles, and box widths are proportional to the square root of number of 
groups for each age. Horizontal dashed gray lines indicate the median 
value for LUCA in each plot. Data were obtained from the AAcomp_
pfam_*.csv files for untransformed amino acid proportions in Homol-
ogyDictionaryFiles.zip downloaded from Figshare (James et al. 2020)
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species in the reaction to calculate the standard Gibbs energy 
of reaction ( ΔG◦

r
 ), and from that, logK. The standard Gibbs 

energies for H2O , O2 , and amino acids were taken from Haar 
et al. (1984), Wagman et al. (1982), and Dick et al. (2006). 
By using the subcrt() function in the CHNOSZ package 
(Dick 2019), logK for Reaction (R1) at 25◦C and 1 bar can 
be computed to be −39.84.

Calculation of the activity product (Q) requires values for 
activities of all the species in the reaction; because oxygen is 
a gas, the fugacity of O2 is used instead of activity. logaH2O

 
and log fO2

 were chosen as the descriptive variables, so 
their values correspond to the axes of a 2-dimensional grid 
( 256 × 256 resolution) used to plot the relative stabilities 
of the proteins. Although the chemical activities of all the 
basis species could be varied in the thermodynamic model, 
it is not feasible to produce a 5-dimensional visualization of 
the system. Therefore, the activities of the other basis spe-
cies were set to constants that correspond to biochemically 
reasonable concentrations. Specifically, mean concentrations 
of amino acids in human plasma (Tcherkas and Denisenko 
2001) were used; expressed as logarithms of concentrations 
in mol/L, these are −3.2 for glutamine, −4.5 for glutamic 
acid, and −3.6 for cysteine. Finally, the activity of the per-
residue formula for each protein was set to unity. The activi-
ties were combined to give values of Q that were then used 
to calculate chemical affinity from Eq. (1). Continuing the 
example for LYSC_CHICK, logQ for Reaction (R1) at nomi-
nal values of log fO2

 (−70) and logaH2O
 (0) is −29.33, which 

yields log(K/Q) = −10.52.
The relative stabilities of proteins represented by their 

per-residue formulas were computed by using the Boltzmann 
distribution written as

where a is activity, A is affinity calculated given unit activity 
of the per-residue formula for each protein, and i designates 
a single protein in a system of any number of proteins. Activ-
ity coefficients were taken to be unity, and the total activ-
ity ( 

∑

ai ) was also fixed at unity. Consequently, ai for each 
protein represents its fractional abundance at equilibrium 
with all other proteins in the system. This metastable equi-
librium model for the relative abundances of proteins does 
not inform about the total equilibrium state of the system.

According to the equilibrium model, each protein in a 
system of candidate proteins has a finite value of activity 
that depends on logaH2O

 and log fO2
 , which are the only free 

variables. The predominant protein for any combination of 
these variables (“condition”) is the one with the highest pre-
dicted activity. In thermodynamic models for inorganic sys-
tems, analogous calculations are used to make predominance 
diagrams for aqueous species (e.g., Kinniburgh and Cooper 

(2)
ai

∑

ai
=

eAi∕RT

∑

eAi∕RT
,

2004), but for the analysis of biological data it is more 
informative to find the sets of conditions that, respectively, 
maximize the activity of each of the proteins in a system and 
not only the predominant one. This model, which is referred 
to as “MaximAct” in the present study, is described next.

Maximizing Stabilities of Target Proteins 
on a Proteomic Background

In order to thermodynamically characterize the differences 
in protein composition between phylostrata, model proteins 
for each phylostratum (referred to here as target proteins) 
were generated by computing the mean amino acid com-
position of all proteins in each phylostratum. Equilibrium 
calculations for the 16 target proteins for the Trigos et al. 
phylostrata are displayed on the logaH2O

–log fO2
 diagram in 

Fig. 4a. Predominance fields for just a few proteins are vis-
ible on the diagram. These fields represent the proteins that 
have the highest activities; those with lower activity do not 
predominate, but they still have calculable values of chemi-
cal activity. The conditions for maximum activity for each of 
the 16 target proteins (indicated by the points) are found at 
extreme values of logaH2O

 and log fO2
 . Finite conditions for 

maximum activity of some of the proteins could be found by 
extending the range of the diagram, but the activities of the 
predominant proteins maximize at infinite values of logaH2O

 
and/or log fO2

 . Therefore, it is not possible to use this simple 
model to find particular values of water activity and oxygen 
fugacity that characterize each phylostratum.

A key innovation in this study is the addition of more 
proteins to the thermodynamic system to represent a back-
ground population, or biological context, that allows the 
transformations between target proteins to be resolved in 
finer detail. An appropriate set of background proteins would 
have a wider compositional range than the mean amino acid 
compositions used to make the target proteins. Because the 
background proteins are now competing for formation with 
the target proteins, the conditions for maximum activity of 
the latter will be constrained to smaller and more meaning-
ful ranges of logaH2O

 and log fO2
 . The background proteins 

should also represent the actual biological range of amino 
acid composition, so a plausible choice is to use all the pro-
teins coded by the human genome. To reduce model bias 
that could be caused by the inclusion of background pro-
teins with unusual amino acid compositions, a representa-
tive human proteome background was constructed by taking 
the intersection of UniProt IDs for proteins coded by genes 
in the Trigos et al. and Liebeskind et al. datasets, yielding 
16,723 unique sequences.

The calculated predominance diagram for a system of 16 
target proteins together with 200 randomly sampled back-
ground proteins reveals that a relatively small number of 
background proteins predominate at equilibrium (Fig. 4b). 
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None of the 16 target proteins predominates, but instead 
their activities are maximized at particular values of logaH2O

 
and log fO2

 . Figure 4b is a result that corresponds to only 
one random subsample of the background human proteome. 
There are many possible versions of Fig. 4b, which are not 
shown here. Instead, the logaH2O

 and log fO2
 values obtained 

by using many random subsamples of the human proteome 
with a larger number of sampled proteins (2000) are shown 
in Fig. 5a and b. This number was chosen to be able to run 
the calculation within computer memory limits, and the ran-
dom subsampling was repeated 100 times to obtain mean 
values for logaH2O

 and log fO2
 , which approximate the values 

that would be obtained if a single calculation could be per-
formed with all 16,723 proteins in the background proteome.

The variability among calculations displayed in Fig. 5a 
and b is due to the limited subsample size of background 
proteins, not to intrinsic biological variability. The use of a 
single mean amino acid composition for each target protein 
precludes the calculation of confidence intervals for ther-
modynamic parameters (logaH2O

 and log fO2
 ), but relative 

uncertainties within datasets may be assessed by comparison 
with the confidence intervals for the corresponding chemi-
cal metrics.

It is not surprising to find that the trends of logaH2O
 and 

log fO2
 depicted in Fig. 5a and b are similar to those of the 

corresponding chemical metrics, nH2O
 and ZC , in Fig. 2a. For 

instance, PS 1 (cellular organisms) has both the highest nH2O
 

and logaH2O
 . It is noteworthy that the water activity for PS 

2–10 predicted by the MaximAct model fluctuates around 
unity, which is indicated by the horizontal dot-dashed line at 
logaH2O

 = 0 in Fig. 5c. Between PS 10 (Mammalia) and PS 
15 (Homininae), both nH2O

 and logaH2O
 decrease consider-

ably. However, although PS 16 (Homo sapiens) has the low-
est nH2O

 of any phylostratum (Fig. 2a), the thermodynamic 
model predicts a higher logaH2O

—closer to 0—for PS 16 
compared to PS 15. Looking at the oxidation trends, the 
broad hump in ZC between PS 1 and 11 is reflected in log fO2

 
values but with a more rugged profile, and PS 11 (Theria) 
has both the lowest ZC and lowest log fO2

 (Fig. 5b).

Virtual Redox Potential

Oxygen fugacity is a thermodynamic quantity that implies 
nothing about the actual mechanism of oxidation or reduc-
tion (Anderson and Crerar 1993) and in practice is used to 
calculate other parameters that are easier to measure (Ander-
son 2005, p. 245). In this study, the theoretical values of 
not only log fO2

 but also logaH2O
 are used to calculate vir-

tual redox potential (Eh) for comparison with experimental 
measurements of Eh. The qualifier “virtual” signifies that 
the calculated values of Eh are not obtained from stand-
ard laboratory techniques, but rather from an independent 

Fig. 4  Strategy for deriving values of water activity (loga
H

2
O
 ) and 

oxygen fugacity (log f
O

2

 ) that maximize the predicted metastable 
equilibrium activity of target proteins defined by the mean amino acid 
compositions for phylostrata. a A system consisting of 16 target pro-
teins derived from the phylostrata of Trigos et al. (2017). The stabil-
ity fields represent the computed predominant proteins at equilibrium 
and the lines represent equal activities for the predominant proteins. 
Only five target proteins predominate in the plotted range of loga

H
2
O
 

and log f
O

2

 ; all the others have lower activity. The yellow circles indi-
cate the conditions for the maximum activity of each of the target 
proteins; a small amount of jitter is added to aid visualization. b A 

system that includes the same 16 target proteins and 200 randomly 
sampled proteins from the human proteome (background proteins). In 
this case, the predicted predominant proteins all come from the back-
ground population, and are labeled with their UniProt IDs. The target 
proteins have lower activities that are maximized at the conditions 
indicated by the yellow circles. This and following thermodynamic 
calculations were carried out for 25◦C and 1 bar with unit activities 
of length-normalized formulas of proteins and logarithms of activities 
of the basis species glutamine, glutamic acid, and cysteine equal to 
−3.2, −4.5, and −3.6, respectively
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thermodynamic model for the chemical differences of pro-
teins over evolutionary and developmental time scales.

Virtual redox potential was calculated by considering the 
half-cell reaction for H2O:

For equilibrium of Reaction (R2), we can write

where pH = − log aH+ and pe = − log ae− . Eq. (3) was com-
bined with pH 7 and values of log fO2

 and logaH2O
 from the 

MaximAct model to calculate pe, which was then converted 
to Eh using

(R2)H2O = 0.5O2 + 2H+ + 2e−.

(3)logK = 0.5 log fO2
− 2pH − 2pe − log aH2O

,

(4)Eh =
2.303RTpe

F
,

where R, T, and F are the gas constant, temperature in Kel-
vin, and Faraday constant. Note that virtual Eh is increased 
by either increasing log fO2

 or decreasing logaH2O
.

Figure  5d shows virtual Eh for the target proteins 
calculated using Eqs. (3–4) at 25◦C , 1 bar, and pH 7. 
Compared to that of log fO2

 , the entire Eh profile is tilted 
up, which reflects the decline of logaH2O

 for proteins 
in younger phylostrata. Representative values of redox 
potential of the glutathione redox couple ( EGSH ) in sub-
cellular compartments, whole cell lysates, and human 
blood plasma are shown for comparison (Jones and Sies 
2015; Schwarzländer et al. 2016). EGSH values for whole 
cell lysates reflect contributions from more reducing 
compartments including the cytosol and mitochondria 
and more oxidizing compartments including the endo-
plasmic reticulum (ER) and vacuole (Schwarzländer et al. 
2016). The PS 1–11 hump begins and ends close to the 
EGSH of cell lysates and maximizes near the EGSH of the 
ER. Between PS 11 and 15 there is a rapid rise toward 
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Fig. 5  Analysis of optimal water activity and oxygen fugacity for 
phylostrata and calculation of virtual redox potential (Eh). a and b 
Values of loga

H
2
O
 and log f

O
2

 that maximize the activity of target pro-
teins for the Trigos et al. phylostrata in metastable equilibrium with 
each other and 2000 randomly sampled background proteins. Each 
thin gray line represents a calculation for one random sample, and 
thick red lines show the means for 100 calculations. c Comparison 
of mean values of loga

H
2
O
 with pure water (horizontal dot-dashed 

line at loga
H

2
O
 = 0). Vertical lines at cellular organisms, Eukaryota, 

Eumetazoa, and Mammalia indicate coinciding gene ages in the 
Liebeskind et al. dataset. The shaded gray area represents phylostrata 
that postdate the emergence of Mammalia, which are not available in 

the Liebeskind et al. dataset. d Virtual Eh calculated from the mean 
values of loga

H
2
O
 and log f

O
2

 using Eqs. (3–4) (thick red line) and 
from the same values of log f

O
2

 with loga
H

2
O
 = 0 (dashed red line). 

Horizontal dotted lines represent redox potentials for the glutathione 
redox couple (GSSG/2GSH) measured in human blood plasma (Jones 
and Sies 2015) and in whole cell lysates or monitored with fluores-
cent protein sensors in the cytosol and endoplasmic reticulum (ER) 
of multiple cell lines (Schwarzländer et al. 2016). e and f Analogous 
calculations of loga

H
2
O
 and Eh using the Liebeskind et al. gene ages; 

vertical lines represent cellular organisms, Eukaryota, Eumetazoa, 
and Mammalia
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EGSH values characteristic of blood plasma, followed by a 
return in PS 16 to a value close to EGSH of the ER.

Figure 5e and f shows the results of the MaximAct 
analysis applied to target proteins for the consensus gene 
ages of Liebeskind et al. (2016b). The first four gene ages 
correspond to the emergence of cellular organisms (GA 
1), the last common ancestor of Eukaryota and Archaea 
(GA 2; Euk_Archaea), genes that are present only in 
Eukaryotes and Bacteria, representing the horizontal 
transfer of genes to Eukaryotes (GA 3; Euk+Bac), and 
Eukaryota (GA 4). There is an increase of both nH2O

 
(Fig. 2b) and logaH2O

 between GA 1 and 2, and these val-
ues are higher than those for all later gene ages. The tar-
get proteins for later gene ages are relatively stable near 
logaH2O

 = 0 and are characterized by virtual Eh values 
that are higher than EGSH of whole cell lysates (Fig. 5f).

Sensitivity of Thermodynamic Parameters 
to Proteomic Background

It was argued above that the background proteome should 
reflect the complete range of biological amino acid composi-
tion. However, it might also be prudent to select the back-
ground proteins from the genome of the particular organism 
that is being studied. To examine these effects, Fig. 6a shows 
the chemical metrics for the proteomes of organisms con-
sidered in this study (H. sapiens, B. subtilis, and D. mela-
nogaster). Overlaid on this figure are the chemical metrics 
for target proteins for phylostrata and biofilm and fly devel-
opment. The developmental proteomic datasets are analyzed 
separately below. Because the background proteins are indi-
vidual protein sequences from a particular genome, while 
the target proteins have the mean amino acid compositions 
of groups of proteins identified in distinct phylostratigraphic 
and proteomic datasets, the target proteins occupy a much 
smaller region of compositional space than the background 

Fig. 6  Chemical metrics and thermodynamic parameters calculated 
using different background proteomes. a Chemical metrics calcu-
lated for all protein sequences in different background proteomes 
and for target proteins described in the text; the latter are indicated 
by differently colored symbols. The human background proteome was 
obtained as described in the text; other sources of proteomic data and 
interpretation of the smooth scatter plots are described in Fig. 1. This 
plot shows that the compositional range of all the target proteins for 

different datasets analyzed in this study is much smaller than that of 
the background proteomes; the differences between sets of target pro-
teins are not analyzed here. b Thermodynamic parameters for target 
proteins for 16 phylostratigraphic age groups (based on Trigos et al. 
2017) calculated using the MaximAct model with different back-
ground proteomes. For all other figures in this paper, the background 
proteome was obtained from the same organism as the source of tar-
get proteins
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proteins. Therefore, the presence of background proteins in 
equilibrium calculations has a buffering effect that keeps the 
target proteins away from the edges of stability diagrams like 
that in Fig. 4b. Introducing a set of background proteins in 
relative stability calculations is a novel way of representing 
the internal milieu of cells, which is tightly regulated and 
has a restricted range of chemical properties compared to the 
exterior (Smith and Morowitz 2016).

Figure 6b shows how changing the background proteome 
for a single set of target proteins affects the thermodynamic 
parameters calculated with the MaximAct model. For 
instance, note that the B. subtilis proteome has a somewhat 
lower median carbon oxidation state and higher median stoi-
chiometric hydration state compared to the human proteome 
(Fig. 6a). Because of the greater number of high-nH2O

 pro-
teins in the genome of B. subtilis, it provides background 
proteins that are relatively stable in the high-logaH2O

 region 
of chemical potential space, which pushes the maximum 
activities of the target proteins to lower logaH2O

 values 
(Fig. 6b). Likewise, the relatively low oxidation state of the 
B. subtilis proteome pushes the maximum activities of the 
target proteins to higher log fO2

 values.
Changing the background proteome affects the specific 

values of thermodynamic parameters but does not greatly 
affect the qualitative trends within a given dataset (Fig. 6b). 
For all other calculations in this study, the organism used 
for the background proteome was selected to be the same 
as that of target proteins. In future studies that may aim to 
assess the relative stabilities of target proteins among dif-
ferent organisms, a generic background proteome should be 
devised that is representative of the total range of biological 
amino acid composition and that would also be applicable 
to other domains of life.

Chemical and Thermodynamic Analysis of Biofilm 
Development

In a transcriptomic and proteomic study of the development 
of Bacillus subtilis biofilms, Futo et al. (2021) described 
three periods of biofilm growth: early (6 h to 1 day), mid (3 
to 7 days), and late (1 to 2 months). Time points of 2 days 
and 14 days were regarded as transitional stages between 
these periods. In the early period of development, there 
is a decline in the mean protein length (Fig. 7a). This was 
computed by combining the lengths of canonical protein 
sequences from the UniProt database with normalized gene 
or protein expression values reported by Futo et al. (2021); 
no phylostrata assignments were used for this or any of the 
following calculations. The late period of biofilm devel-
opment, for which only transcriptomic data are available, 
shows another drop in mean length of the corresponding 
proteins.

The chemical metrics for individual proteins at each time 
point were used to compute abundance-weighted mean val-
ues of ZC and nH2O

 . After remaining nearly constant in the 
early period, the mean nH2O

 of the proteome-based sequences 
declines in the first transition and mid-developmental period 
(2 to 7 days) (Fig. 7b). The time course for the transcrip-
tome-based abundances exhibits fluctuating nH2O

 of proteins 
during this time, followed by a steady drop from 7 days to 
2 months. Unfortunately, proteomic data for the late devel-
opmental period are not available for comparison. Through 
early and mid-development there is relatively little variation 
in mean ZC of either the proteome or proteins coded by the 
transcriptome, but the latter become much more oxidized in 
the late period (Fig. 7c).

To calculate thermodynamic parameters, amino acid 
compositions of target proteins were calculated as the 
abundance-weighted means for sequences inferred from 
transcriptomes and proteomes. The declining trend of nH2O

 
is reflected in values of logaH2O

 computed from the Maxi-
mAct thermodynamic model, which are positive at all but 
the last time point (Fig. 7d). This can be interpreted as a 
signal of relatively high hydration potential during the early 
growth period, followed by proteomic abundances that are 
closer to metastable equilibrium with each other in an aque-
ous growth medium. The ambient aH2O

 is likely to be not 
far from unity, as it has been shown that the activity of H2O 
in agar medium is very close to that of the solution used to 
prepare the medium (Gervais et al. 1988).

Optimal values of logaH2O
 were combined with those of 

log fO2
 (Fig. 7e) to compute virtual Eh using Eqs. (3–4). The 

virtual redox potential rises through development, especially 
in the last period (Fig. 7f). Even if water activity is set to 
unity instead of taken from the MaximAct model, the sharp 
rise in ZC for the transcriptome-inferred proteins is associ-
ated with a predicted increase in virtual Eh. Notably, the 
formation of wrinkles in biofilms has been postulated to 
enhance oxygen uptake (Okegbe et al. 2014), and wrinkling 
in E. coli biofilms has been experimentally associated with 
greater oxygen penetration than that into the flat base of the 
biofilm (Hartmann et al. 2021). The carbon oxidation state 
of transcriptome-inferred proteins rises in 1- to 2-month-old 
B. subtilis biofilms, well after the appearance of wrinkles 
around day 3 noted by Futo et al. (2021). This suggests a 
delay between wrinkling and the putative transcriptional 
adjustment to oxidizing conditions within the biofilm. Pro-
teomic and oxygen microelectrode or other redox measure-
ments should be obtained at all growth stages in the same 
biofilms to enable a direct comparison between this model 
and experiments.
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Hydration Dynamics in Development of Fruit Flies

The fruit fly, Drosophila melanogaster, is a well-studied 
invertebrate model organism in genetics and developmen-
tal biology. The changes of whole-organism water content 
and other biochemical constituents during the development 
of D. melanogaster from larvae to adults, when grown 
on chemically defined axenic medium, were reported by 
Church and Robertson (1966). As larvae progress through 
different instars (i.e., a few days post-hatching), the water 
content first rises to > 80% , then varies between about 
75 to 80%. The water content decreases suddenly to 66% 
in the prepupal stage followed by a small rise in adults 
(Fig. 8a).

Casas-Vila et  al. (2017) reported proteomic data for 
developmental stages of D. melanogaster, including embry-
ogenesis, larvae, pupae, and adults. The mean stoichiomet-
ric hydration state of proteins from the fly developmental 
proteome is plotted in Fig. 8b. nH2O

 is almost constant dur-
ing embryogenesis and three instars of larvae (L1, L2, L3), 

then drops abruptly in stage L3c (L3 crawling larva). The 
pupae collected on different days (P1 to P5) exhibit a some-
what higher and variable nH2O

 , which is still lower than the 
embryos. Finally, nH2O

 increases in young adults and then 
again in old adults, which have nH2O

 values somewhat less 
than those of embryos and early larvae.

Remarkably, the stoichiometric hydration state of pro-
teins drops precipitously when the crawling larvae leave the 
medium, at the same time as a sharp drop in organismal 
water content (Church and Robertson 1966). Later, a higher 
organismal water content in adult flies compared to pupae is 
reflected in rising proteomic nH2O

 for adults. Water activity 
computed from the MaximAct analysis, in which the target 
proteins were modeled as having the mean amino acid com-
position for the proteome at each developmental time point, 
is plotted in Fig. 8c. The theoretical values of logaH2O

 are all 
positive, with the closest approach to unit activity of H2O in 
stage L3c. The highest values are found for embryos, early 
larvae, and older adults.
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Analysis of proteomic data from a different study (Fabre 
et  al. 2019) shows significantly higher stoichiometric 
hydration state of proteins enriched in embryos compared 
to adults, in contrast to nearly indistinguishable mean val-
ues of carbon oxidation state (Fig. 8d). For this dataset, 
only binary classification of differentially expressed pro-
teins was used, and the MaximAct analysis was performed 
for each differentially expressed protein rather than for 
mean amino acid compositions. Although the precise age 
of the adult flies was not given by Fabre et al. (2019), 
their description refers to the emergence of adults less 
than 9 days after egg laying. Considering the number of 
days spent in larval and pupal growth, this suggests an 
age closer to the young adults (4 hours after eclosure) 
than the old adults (1 week-old flies) studied by Casas-Vila 

et al. (2017). Accordingly, the developmental proteome 
of Casas-Vila et al. (2017) and differentially expressed 
proteins of Fabre et al. (2019) both exhibit considerably 
higher theoretical water activity in embryos than in young 
adults (Fig. 8c, e).

Despite the small difference in ZC between groups of 
proteins with higher expression in embryos or adults, vir-
tual Eh derived from the MaximAct analysis is higher in 
adults (Fig. 8f). This occurs because logaH2O

 and pe have 
the same sign in Eq. (3), so higher logaH2O

 corresponds 
to lower pe and Eh at constant log fO2

 ; if water activity is 
fixed at unity, then the difference in virtual Eh vanishes 
(open symbols in Fig. 8f). In vivo measurements using 
roGFP2 fusion proteins reveal pro-oxidative changes in 
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aging flies (Albrecht et al. 2011) that support the physi-
ological relevance of the predicted rise in virtual Eh.

Discussion

Carbon Oxidation State and Redox Potential

In a first approximation, carbon oxidation state of bio-
molecules can be predicted to increase as an energy-mini-
mizing response to higher environmental O2 concentration 
or intracellular redox potential, depending on the scale 
of the system under consideration, but thermodynamic 
models provide a more theoretically grounded prediction 
of protein (or proteomic) transformations in changing 
redox conditions. It is tempting to speculate that the ini-
tial rise of ZC of proteins that appeared after the origin of 
the first cells (Fig. 2) might be a geobiochemical record 
of the oxygenation of Earth’s atmosphere and oceans. 
The last universal common ancestor (LUCA) was most 
likely an anaerobic chemoautotroph that inhabited reduc-
ing hydrothermal environments (Weiss et al. 2016), so it 
comes as little surprise that the oldest gene ages in Fig. 3a 
and b correspond to proteins with relatively low carbon 
oxidation state. The next oldest age group in Fig. 3b is 
for Pfam domains that emerged after LUCA but before 
the emergence of eukaryotes from Bacteria and Archaea 
(as described by James et al. 2021; see also Weiss et al. 
2016, their Figure 1). The boxplots in Fig. 3b are consist-
ent with rising ZC between protein domains conserved in 
LUCA and the pre-eukaryotic ancestors. Additional work 
is needed to confirm whether these trends inferred from 
amino acid compositions of proteins in extant eukaryotes 
are also present in the archaeal and bacterial domains.

Compared to transmembrane domains that likely 
evolved in a hydrophobic environment, non-transmem-
brane (cytosolic) domains have a higher ZC and exhibit 
a larger and more significant increase of ZC across phy-
lostrata (Fig. 3b). A low ZC of membrane-associated pro-
teins can be expected based on their high content of hydro-
phobic amino acids (Dick 2014). The relatively flat trend 
for transmembrane domains suggests a smaller evolution-
ary variability in their elemental composition compared to 
cytosolic proteins. The findings for cytoplasmic proteins in 
particular are compatible with a chemical link between the 
oxygenation of Earth’s atmosphere and the carbon oxida-
tion state of proteins. This geobiochemical model should 
be considered as being complementary to interpretations 
based on biophysical metrics that are also linked to the 
amino acid compositions of proteins (e.g., hydrophobicity 
and intrinsic structural disorder; James et al. 2021).

Following from the chemical analysis, a thermodynamic 
model allows predicting the virtual redox potentials (Eh) 

that stabilize target proteins for phylostratigraphic age 
groups. The Euk_Archaea group is of particular interest 
because it represents the last common ancestor of Eukary-
ota and Archaea. Although proteins coded by genes in the 
Euk_Archaea group are slightly more oxidized than those 
of cellular organisms (Fig. 2b), their maximum activity 
occurs at higher logaH2O

 . It follows from Eqs. (3–4) that 
the Euk_Archaea proteins are stabilized by a lower virtual 
redox potential, close to −300 mV (Fig. 5f). Notably, such 
a low virtual redox potential is not possible if the activity 
of H2O is assumed to be unity (dashed line in Fig. 5f). This 
low virtual redox potential is consistent with the views of 
a reductive overall cellular physiology, typical of archaeal 
cells, that operated before the endosymbiotic transfer of 
mitochondria (Martin and Sousa 2016), and of the reduc-
ing cytosolic EGSH of modern cells as a remnant of redox 
conditions in the primordial environment (Schwarzländer 
et al. 2016). The subsequent innovation of oxidative chem-
istry in aerobes (Williams and Fraústo Da Silva 2003) is a 
plausible explanation for the rise in virtual Eh at GA 3 to 
5. Further support for this thermodynamic characteriza-
tion requires analysis of phylostratigraphic data for other 
lineages, which is not done here.

Although oxygen is required for complex animal life, 
oxygen concentrations decline rapidly within multicellular 
structures if the supply is by diffusion alone. The effect of 
such oxygen gradients on carbon oxidation state of proteins 
is apparent in laboratory experiments: cells grown in 3D cell 
culture, whose interiors are characterized by hypoxic condi-
tions, express proteins with lower ZC than do cells grown 
in monolayers (Dick 2021). Therefore, a plausible hypoth-
esis is that the beginning of a negative shift in ZC around 
the emergence of Eumetazoa (Figs. 2, 3a) reflects oxygen 
gradients in early multicellular structures. The continued 
drop in subsequent phylostrata might result from hypoxic 
microniches (for example, those that sustain stem cells) even 
as circulatory systems became more advanced. Although 
speculative at the moment, this type of reasoning centered 
on oxidation–reduction conditions might one day lead to 
deeper links between protein evolution and cell physiology.

Stoichiometric Hydration State and Water Activity

Through analysis of stoichiometric hydration state, it is 
apparent that protein expression at the proteome scale 
may be chemically coupled to water content in develop-
ing organisms. Specifically, for Drosophila melanogaster, 
the large decrease in proteomic nH2O

 at the crawling larva 
stage (L3c) is aligned with the measured prepupal decrease 
in organismal water content (Church and Robertson 1966). 
Stoichiometric hydration state of proteins also decreases 
during growth of Bacillus subtilis biofilms, but no experi-
mental reports of measured water content could be found for 
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comparison. This chemical representation suggests that the 
hydration dynamics of developing biofilms might exhibit 
similarities with that of animals, for which a large body of 
work documents decreasing water content through early 
developmental stages (Logan and Himwich 1972; Calcagno 
et al. 1972; Friis-Hansen 1983). Together with the relatively 
high nH2O

 of proteins in the earliest phylostratigraphic age 
groups, these results can be used to postulate that elevated 
hydration potential is a key factor in the maintenance of 
protein expression patterns that are characteristic of both 
embryos and unicellular organisms.

Thermodynamic models in geochemistry often involve 
one or more “perfectly mobile components,” which are 
represented by their chemical potentials, instead of by 
bulk composition (Rumble 1982; Evans et al. 2013). Oxy-
gen fugacity is one such descriptive variable in many geo-
chemical models, while water activity is often considered 
to remain close to unity except for certain systems such as 
brines (Helgeson 1968). In contrast, in this study the chemi-
cal potentials of both O2 and H2O were used as independent 
variables in order to explore the landscape of relative protein 
stabilities in two dimensions. The theoretical aH2O

 reaches 
much lower values than measurements in saturated salt solu-
tions (e.g., saturation of NaCl corresponds to 0.755 water 
activity; Stevenson et al. 2015). At the other extreme, the 
theoretical values can be greater than unity. This represents 
an unphysical condition as pure water has unit activity. It 
may be possible to obtain aH2O

> 1 in molecular dynamics 
simulations of mixtures of H2O and organic media due to 
oversaturation of H2O and cluster formation in a non-polar 
solvent, but those results were regarded as anomalous by the 
investigators (Wedberg et al. 2012).

By analogy with the situation for oxygen fugacity in 
petrology, where vanishingly low values have no physical 
meaning as partial pressure but remain useful as indicators 
of oxidation potential (Frost 1991), water activity predicted 
from metastable equilibrium calculations for proteins must 
be interpreted as a theoretical indicator of hydration poten-
tial that may not coincide with experimental measurements. 
Despite this, it is noteworthy that the thermodynamic analy-
sis yields theoretical values of aH2O

 that approach unity for 
later phylostratigraphic age groups and for advanced stages 
of biofilm development (Figs. 5e, 7d). An exception seems 
to be stages of fly development, which appear to be poised at 
higher water activity (Fig. 8c). This could be in part a con-
sequence of higher aH2O

 predicted by using the background 
proteome from Drosophila compared to those from other 
organisms. A productive line of inquiry would be to find a 
universal set of background proteins with the property that 
thermodynamic models for various evolutionary and devel-
opmental datasets overlap with unit water activity, that is, a 
physically realistic condition.

In summary, when analyzed using thermodynamic meth-
ods adapted from geochemistry, differences in amino acid 
compositions and abundances of proteins reflect a water-
dominated but dynamic hydration state of cells. Besides its 
importance for polymerization reactions in prebiotic condi-
tions and for macromolecular crowding and phase separa-
tion in living cells (Bagatolli and Stock 2021), water activity 
can therefore be regarded as a fundamental thermodynamic 
parameter for organismal development and Darwinian 
evolution.

Funding No funding was received for this work.

Data Availability Data were obtained from the UniProt database (The 
UniProt Consortium 2019) and the supporting files of previous studies 
(Liebeskind et al. 2016b; Casas-Vila et al. 2017; Trigos et al. 2017; 
Fabre et al. 2019; Futo et al. 2021; James et al. 2021) as described in 
the Materials and Methods and figure captions. Files with phylostrata 
assignments and UniProt IDs are available in the R package canprot 
version 1.1.2 (Dick 2021). Processed data files used in this study are 
in the “extdata/evdevH2O” directory of the JMDplots package (ver-
sion 1.2.12 deposited on Zenodo with accession number 6137783) 
(Dick 2022), except for the differential expression dataset of Fabre 
et al. (2019), which is located under “extdata/expression/development.”

Declarations 

Conflict of interest The author declares no competing interests.

Code Availability The code used to make the figures for this paper is 
available in the JMDplots package (Dick 2022). The maximum activity 
analysis described here has been implemented in a new function named 
MaximAct(). The “evdevH2O.Rmd” vignette in the package runs the 
functions to make each of the figures and has code blocks to generate 
particular values mentioned in the text.

References

Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP (2011) 
In vivo mapping of hydrogen peroxide and oxidized glutathione 
reveals chemical and regional specificity of redox homeostasis. 
Cell Metab 14(6):819–829. https:// doi. org/ 10. 1016/j. cmet. 2011. 
10. 010

Anderson GM (2005) Thermodynamics of natural systems, 2nd edn. 
Cambridge University Press, Cambridge

Anderson GM, Crerar DA (1993) Thermodynamics in geochemistry: 
the equilibrium model. Oxford University Press, New York

Bagatolli LA, Stock RP (2021) Lipids, membranes, colloids and cells: 
a long view. Biochim Biophys Acta Biomembr 10:183684. https:// 
doi. org/ 10. 1016/j. bbamem. 2021. 183684

Bard JP (1986) Microtextures of igneous and metamorphic rocks. D. 
Reidel, Dordrecht

Brocchieri L, Karlin S (2005) Protein length in eukaryotic and prokary-
otic proteomes. Nucleic Acids Res 33(10):3390–3400. https:// doi. 
org/ 10. 1093/ nar/ gki615

Calcagno PL, Hollerman CE, Jose PA (1972) Total body water: man. 
In: Altman PL, Dittmer DS (eds) Biology data book, vol 3, 2nd 
edn. Federation of American Societies for Experimental Biology, 
Bethesda, pp 1986–1989

https://doi.org/10.1016/j.cmet.2011.10.010
https://doi.org/10.1016/j.cmet.2011.10.010
https://doi.org/10.1016/j.bbamem.2021.183684
https://doi.org/10.1016/j.bbamem.2021.183684
https://doi.org/10.1093/nar/gki615
https://doi.org/10.1093/nar/gki615


198 Journal of Molecular Evolution (2022) 90:182–199

1 3

Canty A, Ripley BD (2021) boot: bootstrap R (S-Plus) functions. R 
package version 1.3-28

Capra JA, Stolzer M, Durand D, Pollard KS (2013) How old is my 
gene? Trends Genet 29(11):659–668. https:// doi. org/ 10. 1016/j. 
tig. 2013. 07. 001

Casas-Vila N, Bluhm A, Sayols S, Dinges N, Dejung M, Altenhein T, 
Kappei D, Altenhein B, Roignant JY, Butter F (2017) The devel-
opmental proteome of Drosophila melanogaster. Genome Res 
27(7):1273–1285. https:// doi. org/ 10. 1101/ gr. 213694. 116

Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to 
an oxic state: a status report. Earth Planet Sci Lett 237(1):1–20. 
https:// doi. org/ 10. 1016/j. epsl. 2005. 06. 013

Church RB, Robertson FW (1966) A biochemical study of the growth 
of Drosophila melanogaster. J Exp Zool 162(3):337–351. https:// 
doi. org/ 10. 1002/ jez. 14016 20309

Cramer W (1916) On the biochemical mechanism of growth. J Physiol 
50(5):322–334. https:// doi. org/ 10. 1113/ jphys iol. 1916. sp001 758

Davison AC, Hinkley DV (1997) Bootstrap methods and their applica-
tion. Cambridge University Press, Cambridge

Denbigh K (1981) The principles of chemical equilibrium, 4th edn. 
Cambridge University Press, Cambridge

Dick JM (2014) Average oxidation state of carbon in proteins. J R Soc 
Interface 11:20131095. https:// doi. org/ 10. 1098/ rsif. 2013. 1095

Dick JM (2017) Chemical composition and the potential for proteomic 
transformation in cancer, hypoxia, and hyperosmotic stress. PeerJ 
5:e3421. https:// doi. org/ 10. 7717/ peerj. 3421

Dick JM (2019) CHNOSZ: thermodynamic calculations and diagrams 
for geochemistry. Front Earth Sci 7:180. https:// doi. org/ 10. 3389/ 
feart. 2019. 00180

Dick JM (2021) Water as a reactant in the differential expression of 
proteins in cancer. Comput Syst Oncol 1(1):e1007. https:// doi. 
org/ 10. 1002/ cso2. 1007

Dick JM (2022) JMDplots 1.2.12. Zenodo, https:// doi. org/ 10. 5281/ 
zenodo. 61377 83

Dick JM, LaRowe DE, Helgeson HC (2006) Temperature, pressure, and 
electrochemical constraints on protein speciation: group additivity 
calculation of the standard molal thermodynamic properties of 
ionized unfolded proteins. Biogeosciences 3(3):311–336. https:// 
doi. org/ 10. 5194/ bg-3- 311- 2006

Dick JM, Yu M, Tan J (2020) Uncovering chemical signatures of salin-
ity gradients through compositional analysis of protein sequences. 
Biogeosciences 17(23):6145–6162. https:// doi. org/ 10. 5194/ 
bg- 17- 6145- 2020

Domazet-Lošo T, Carvunis AR, Albà MM, Šestak MS, Bakarić R, 
Neme R, Tautz D (2017) No evidence for phylostratigraphic bias 
impacting inferences on patterns of gene emergence and evolu-
tion. Mol Biol Evol 34(4):843–856. https:// doi. org/ 10. 1093/ mol-
bev/ msw284

Downing JE, Christopherson WM, Broghamer WL (1962) Nuclear 
water content during carcinogenesis. Cancer 15(6):1176–1180

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, 
Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer 
ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD 
(2019) The Pfam protein families database in 2019. Nucleic Acids 
Res 47(D1):D427–D432. https:// doi. org/ 10. 1093/ nar/ gky995

Evans KA, Powell R, Frost BR (2013) Using equilibrium thermody-
namics in the study of metasomatic alteration, with an application 
to serpentinites. Lithos 168–169:67–84. https:// doi. org/ 10. 1016/j. 
lithos. 2013. 01. 016

Fabre B, Korona D, Lees JG, Lazar I, Livneh I, Brunet M, Orengo 
CA, Russell S, Lilley KS (2019) Comparison of Drosophila mel-
anogaster embryo and adult proteome by SWATH-MS reveals 
differential regulation of protein synthesis, degradation machin-
ery, and metabolism modules. J Proteome Res 18(6):2525–2534. 
https:// doi. org/ 10. 1021/ acs. jprot eome. 9b000 76

Foley SF (2011) A reappraisal of redox melting in the Earth’s mantle 
as a function of tectonic setting and time. J Petrol 52(7–8):1363–
1391. https:// doi. org/ 10. 1093/ petro logy/ egq061

Frenkel-Pinter M, Rajaei V, Glass JB, Hud NV, Williams LD (2021) 
Water and life: the medium is the message. J Mol Evol 89(1):2–
11. https:// doi. org/ 10. 1007/ s00239- 020- 09978-6

Friis-Hansen B (1983) Water distribution in the foetus and newborn 
infant. Acta Paediatr 72(s305):7–11. https:// doi. org/ 10. 1111/j. 
1651- 2227. 1983. tb098 52.x

Frost BR (1991) Introduction to oxygen fugacity and its petrologic 
importance. Oxide minerals, Reviews in mineralogy, vol 25. De 
Gruyter, Berlin, pp 1–10

Futo M, Opašić L, Koska S, Čorak N, Široki T, Ravikumar V, Thorsell 
A, Lenuzzi M, Kifer D, Domazet-Lošo M, Vlahoviček K, Mijako-
vic I, Domazet-Lošo T (2021) Embryo-like features in developing 
Bacillus subtilis biofilms. Mol Biol Evol 38(1):31–47. https:// doi. 
org/ 10. 1093/ molbev/ msaa2 17

Garrels RM, Christ CL (1965) Solutions, minerals, and equilibria. 
Harper & Row, New York

Gervais P, Molin P, Grajek W, Bensoussan M (1988) Influence of the 
water activity of a solid substrate on the growth rate and sporo-
genesis of filamentous fungi. Biotechnol Bioeng 31(5):457–463. 
https:// doi. org/ 10. 1002/ bit. 26031 0510

Gibbs JW (1876) On the equilibrium of heterogeneous substances. 
Trans Conn Acad Arts Sci 3:108–248

Haar L, Gallagher JS, Kell GS (1984) NBS/NRC steam tables: ther-
modynamic and transport properties and computer programs for 
vapor and liquid states of water in SI units. Hemisphere Publish-
ing Corporation, Washington DC

Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S, Bayer M, Rode 
DKH, Vidakovic L, Díaz-Pascual F, Fong JCN, Dragoš A, Lam-
precht O, Thöming JG, Netter N, Häussler S, Nadell CD, Sourjik 
V, Kovács ÁT, Yildiz FH, Drescher K (2021) Quantitative image 
analysis of microbial communities with BiofilmQ. Nat Microbiol 
6(2):151–156. https:// doi. org/ 10. 1038/ s41564- 020- 00817-4

Heames B, Schmitz J, Bornberg-Bauer E (2020) A continuum of 
evolving de novo genes drives protein-coding novelty in Dros-
ophila. J Mol Evol 88(4):382–398. https:// doi. org/ 10. 1007/ 
s00239- 020- 09939-z

Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowl-
edge-base of divergence times among organisms. Bioinformatics 
22(23):2971–2972. https:// doi. org/ 10. 1093/ bioin forma tics/ btl505

Helgeson HC (1968) Evaluation of irreversible reactions in geochemi-
cal processes involving minerals and aqueous solutions. I. Ther-
modynamic relations. Geochim Cosmochim Acta 32(8):853–877. 
https:// doi. org/ 10. 1016/ 0016- 7037(68) 90100-2

Huang H, McGarvey PB, Suzek BE, Mazumder R, Zhang J, Chen Y, 
Wu CH (2011) A comprehensive protein-centric ID mapping ser-
vice for molecular data integration. Bioinformatics 27(8):1190–
1191. https:// doi. org/ 10. 1093/ bioin forma tics/ btr101

James J, Willis S, Nelson P, Weibel C, Kosinski L, Masel J (2020) Data 
from: Universal and taxon-specific trends in protein sequences as 
a function of age. Figshare. https:// doi. org/ 10. 6084/ m9. figsh are. 
12037 281. v1

James JE, Willis SM, Nelson PG, Weibel C, Kosinski LJ, Masel J 
(2021) Universal and taxon-specific trends in protein sequences 
as a function of age. eLife 10:e57347. https:// doi. org/ 10. 7554/ 
eLife. 57347

Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 
23(9):734–746. https:// doi. org/ 10. 1089/ ars. 2015. 6247

Kasting JF (1993) Earth’s early atmosphere. Science 259(5097):920–
926. https:// doi. org/ 10. 1126/ scien ce. 11536 547

Kinniburgh DG, Cooper DM (2004) Predominance and mineral stabil-
ity diagrams revisited. Environ Sci Technol 38(13):3641–3648. 
https:// doi. org/ 10. 1021/ es034 927l

https://doi.org/10.1016/j.tig.2013.07.001
https://doi.org/10.1016/j.tig.2013.07.001
https://doi.org/10.1101/gr.213694.116
https://doi.org/10.1016/j.epsl.2005.06.013
https://doi.org/10.1002/jez.1401620309
https://doi.org/10.1002/jez.1401620309
https://doi.org/10.1113/jphysiol.1916.sp001758
https://doi.org/10.1098/rsif.2013.1095
https://doi.org/10.7717/peerj.3421
https://doi.org/10.3389/feart.2019.00180
https://doi.org/10.3389/feart.2019.00180
https://doi.org/10.1002/cso2.1007
https://doi.org/10.1002/cso2.1007
https://doi.org/10.5281/zenodo.6137783
https://doi.org/10.5281/zenodo.6137783
https://doi.org/10.5194/bg-3-311-2006
https://doi.org/10.5194/bg-3-311-2006
https://doi.org/10.5194/bg-17-6145-2020
https://doi.org/10.5194/bg-17-6145-2020
https://doi.org/10.1093/molbev/msw284
https://doi.org/10.1093/molbev/msw284
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1016/j.lithos.2013.01.016
https://doi.org/10.1016/j.lithos.2013.01.016
https://doi.org/10.1021/acs.jproteome.9b00076
https://doi.org/10.1093/petrology/egq061
https://doi.org/10.1007/s00239-020-09978-6
https://doi.org/10.1111/j.1651-2227.1983.tb09852.x
https://doi.org/10.1111/j.1651-2227.1983.tb09852.x
https://doi.org/10.1093/molbev/msaa217
https://doi.org/10.1093/molbev/msaa217
https://doi.org/10.1002/bit.260310510
https://doi.org/10.1038/s41564-020-00817-4
https://doi.org/10.1007/s00239-020-09939-z
https://doi.org/10.1007/s00239-020-09939-z
https://doi.org/10.1093/bioinformatics/btl505
https://doi.org/10.1016/0016-7037(68)90100-2
https://doi.org/10.1093/bioinformatics/btr101
https://doi.org/10.6084/m9.figshare.12037281.v1
https://doi.org/10.6084/m9.figshare.12037281.v1
https://doi.org/10.7554/eLife.57347
https://doi.org/10.7554/eLife.57347
https://doi.org/10.1089/ars.2015.6247
https://doi.org/10.1126/science.11536547
https://doi.org/10.1021/es034927l


199Journal of Molecular Evolution (2022) 90:182–199 

1 3

Kitadai N (2014) Thermodynamic prediction of glycine polymerization 
as a function of temperature and pH consistent with experimen-
tally obtained results. J Mol Evol 78(3–4):171–187. https:// doi. 
org/ 10. 1007/ s00239- 014- 9616-1

Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a 
resource for timelines, timetrees, and divergence times. Mol Biol 
Evol 34(7):1812–1819. https:// doi. org/ 10. 1093/ molbev/ msx116

Kump LR (2008) The rise of atmospheric oxygen. Nature 
451(7176):277–278. https:// doi. org/ 10. 1038/ natur e06587

Lamadrid HM, Rimstidt JD, Schwarzenbach EM, Klein F, Ulrich S, 
Dolocan A, Bodnar RJ (2017) Effect of water activity on rates of 
serpentinization of olivine. Nat Commun 8(1):16107. https:// doi. 
org/ 10. 1038/ ncomm s16107

LaRowe DE, Dick JM (2012) Calculation of the standard molal ther-
modynamic properties of crystalline peptides. Geochim Cosmo-
chim Acta 80:70–91. https:// doi. org/ 10. 1016/j. gca. 2011. 11. 041

Liebeskind B, McWhite CD, Hines K (2016a) Gene-Ages v1.0. 
Zenodo. https:// doi. org/ 10. 5281/ zenodo. 51708

Liebeskind BJ, McWhite CD, Marcotte EM (2016) Towards consensus 
gene ages. Genome Biol Evol 8(6):1812–1823. https:// doi. org/ 10. 
1093/ gbe/ evw113

Lipman DJ, Souvorov A, Koonin EV, Panchenko AR, Tatusova TA 
(2002) The relationship of protein conservation and sequence 
length. BMC Evol Biol 2(1):20. https:// doi. org/ 10. 1186/ 
1471- 2148-2- 20

Logan JE, Himwich WA (1972) Animal tissues and organs: water con-
tent. In: Altman PL, Dittmer DS (eds) Biology data book, vol 
1, 2nd edn. Federation of American Societies for Experimental 
Biology, Bethesda, pp 392–398

Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in 
Earth’s early ocean and atmosphere. Nature 506(7488):307–315. 
https:// doi. org/ 10. 1038/ natur e13068

Martin WF, Sousa FL (2016) Early microbial evolution: the age of 
anaerobes. Cold Spring Harbor Perspect Biol 8(2):a018127. 
https:// doi. org/ 10. 1101/ cshpe rspect. a0181 27

McIntyre GI (2006) Cell hydration as the primary factor in carcinogen-
esis: a unifying concept. Med Hypotheses 66(3):518–526. https:// 
doi. org/ 10. 1016/j. mehy. 2005. 09. 022

Moyers BA, Zhang J (2017) Further simulations and analyses dem-
onstrate open problems of phylostratigraphy. Genome Biol Evol 
9(6):1519–1527. https:// doi. org/ 10. 1093/ gbe/ evx109

do Nascimento Vieira A, Kleinermanns K, Martin WF, Preiner M 
(2020) The ambivalent role of water at the origins of life. FEBS 
Lett 594(17):2717–2733. https:// doi. org/ 10. 1002/ 1873- 3468. 
13815

Natsidis P, Kapli P, Schiffer PH, Telford MJ (2021) Systematic errors 
in orthology inference and their effects on evolutionary analyses. 
Science 24(2):102110. https:// doi. org/ 10. 1016/j. isci. 2021. 102110

Okegbe C, Price-Whelan A, Dietrich LEP (2014) Redox-driven regula-
tion of microbial community morphogenesis. Curr Opin Micro-
biol 18:39–45. https:// doi. org/ 10. 1016/j. mib. 2014. 01. 006

Olmstead EG (1966) Mammalian cell water. Lea & Febiger, 
Philadelphia

Pace NR (1991) Origin of life: facing up to the physical setting. Cell 
65(4):531–533. https:// doi. org/ 10. 1016/ 0092- 8674(91) 90082-A

R Core Team (2021) R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. 
https:// www.R- proje ct. org

Ross KFA, Gordon RE (1982) Water in malignant tissue, measured 
by cell refractometry and nuclear magnetic resonance. J Microsc 
128(1):7–21. https:// doi. org/ 10. 1111/j. 1365- 2818. 1982. tb004 33.x

Rumble D III (1982) The role of perfectly mobile components in meta-
morphism. Annu Rev Earth Planet Sci 10(1):221–233. https:// doi. 
org/ 10. 1146/ annur ev. ea. 10. 050182. 001253

Saryan LA, Hollis DP, Economou JS, Eggleston JC (1974) Nuclear 
magnetic resonance studies of cancer. IV. Correlation of water 

content with tissue relaxation times. J Natl Cancer Inst 52(2):599–
602. https:// doi. org/ 10. 1093/ jnci/ 52.2. 599

Schwarzländer M, Dick TP, Meyer AJ, Morgan B (2016) Dissecting 
redox biology using fluorescent protein sensors. Antioxid Redox 
Signal 24(13):680–712. https:// doi. org/ 10. 1089/ ars. 2015. 6266

Smith E, Morowitz HJ (2016) The origin and nature of life on Earth. 
Cambridge University Press, Cambridge

Solel E, Tarannam N, Kozuch S (2019) Catalysis: energy is the measure 
of all things. Chem Commun 55:5306–5322. https:// doi. org/ 10. 
1039/ C9CC0 0754G

Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen 
N, McClure CD, Grant IR, Houghton JD, Quinn JP, Timson 
DJ, Patil SV, Singhal RS, Anton J, Dijksterhuis J, Hocking AD, 
Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren 
A, Timmis KN, McGenity TJ, Hallsworth JE (2015) Is there a 
common water-activity limit for the three domains of life? ISME 
J 9(6):1333–1351. https:// doi. org/ 10. 1038/ ismej. 2014. 219

Tcherkas YV, Denisenko AD (2001) Simultaneous determination of 
several amino acids, including homocysteine, cysteine and glu-
tamic acid, in human plasma by isocratic reversed-phase high-
performance liquid chromatography with fluorimetric detection. J 
Chromatogr A 913(1–2):309–313. https:// doi. org/ 10. 1016/ S0021- 
9673(00) 01201-2

The UniProt Consortium (2019) UniProt: a worldwide hub of protein 
knowledge. Nucleic Acids Res 47(D1):D506–D515. https:// doi. 
org/ 10. 1093/ nar/ gky10 49

Trigos AS, Pearson RB, Papenfuss AT, Goode DL (2017) Altered 
interactions between unicellular and multicellular genes drive 
hallmarks of transformation in a diverse range of solid tumors. 
Proc Natl Acad Sci 114(24):6406–6411. https:// doi. org/ 10. 1073/ 
pnas. 16177 43114

Van Oss SB, Carvunis AR (2019) De novo gene birth. PLoS Genet 
15(5):e1008160. https:// doi. org/ 10. 1371/ journ al. pgen. 10081 60

Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey 
SM, Churney KL, Nuttall RL (1982) The NBS tables of chemi-
cal thermodynamic properties. Selected values for inorganic and 
C
1
 and C

2
 organic substances in SI units. J Phys Chem Ref Data 

11(Suppl. 2):1–392. https:// srd. nist. gov/ JPCRD/ jpcrd S2Vol 11. pdf
Wedberg R, Abildskov J, Peters GH (2012) Protein dynamics in organic 

media at varying water activity studied by molecular dynamics 
simulation. J Phys Chem B 116(8):2575–2585. https:// doi. org/ 
10. 1021/ jp211 054u

Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-
Sathi S, Martin WF (2016) The physiology and habitat of the last 
universal common ancestor. Nat Microbiol 1:16116. https:// doi. 
org/ 10. 1038/ nmicr obiol. 2016. 116

Williams RJP, Fraústo Da Silva JJR (2003) Evolution was chemically 
constrained. J Theor Biol 220(3):323–343. https:// doi. org/ 10. 
1006/ jtbi. 2003. 3152

Wilson BA, Foy SG, Neme R, Masel J (2017) Young genes are highly 
disordered as predicted by the preadaptation hypothesis of de 
novo gene birth. Nat Ecol Evol 1(6):0146. https:// doi. org/ 10. 1038/ 
s41559- 017- 0146

Wimmer JLE, do Nascimento Vieira A, Xavier JC, Kleinermanns K, 
Martin WF, Preiner M, (2021) The autotrophic core: an ancient 
network of 404 reactions converts H

2
 , CO

2
 , and NH

3
 into amino 

acids, bases, and cofactors. Microorganisms 9(2):458. https:// doi. 
org/ 10. 3390/ micro organ isms9 020458

Winzler RJ (1959) The chemistry of cancer tissue. In: Homburger F 
(ed) The physiopathology of cancer, 2nd edn. Hoeber-Harper, 
New York, pp 686–706

Zhou JX, Cisneros L, Knijnenburg T, Trachana K, Davies P, Huang S 
(2018) Phylostratigraphic analysis of tumor and developmental 
transcriptomes reveals relationship between oncogenesis, phylo-
genesis and ontogenesis. Converg Sci Phys Oncol 4(2):025002. 
https:// doi. org/ 10. 1088/ 2057- 1739/ aab1b0

https://doi.org/10.1007/s00239-014-9616-1
https://doi.org/10.1007/s00239-014-9616-1
https://doi.org/10.1093/molbev/msx116
https://doi.org/10.1038/nature06587
https://doi.org/10.1038/ncomms16107
https://doi.org/10.1038/ncomms16107
https://doi.org/10.1016/j.gca.2011.11.041
https://doi.org/10.5281/zenodo.51708
https://doi.org/10.1093/gbe/evw113
https://doi.org/10.1093/gbe/evw113
https://doi.org/10.1186/1471-2148-2-20
https://doi.org/10.1186/1471-2148-2-20
https://doi.org/10.1038/nature13068
https://doi.org/10.1101/cshperspect.a018127
https://doi.org/10.1016/j.mehy.2005.09.022
https://doi.org/10.1016/j.mehy.2005.09.022
https://doi.org/10.1093/gbe/evx109
https://doi.org/10.1002/1873-3468.13815
https://doi.org/10.1002/1873-3468.13815
https://doi.org/10.1016/j.isci.2021.102110
https://doi.org/10.1016/j.mib.2014.01.006
https://doi.org/10.1016/0092-8674(91)90082-A
https://www.R-project.org
https://doi.org/10.1111/j.1365-2818.1982.tb00433.x
https://doi.org/10.1146/annurev.ea.10.050182.001253
https://doi.org/10.1146/annurev.ea.10.050182.001253
https://doi.org/10.1093/jnci/52.2.599
https://doi.org/10.1089/ars.2015.6266
https://doi.org/10.1039/C9CC00754G
https://doi.org/10.1039/C9CC00754G
https://doi.org/10.1038/ismej.2014.219
https://doi.org/10.1016/S0021-9673(00)01201-2
https://doi.org/10.1016/S0021-9673(00)01201-2
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1073/pnas.1617743114
https://doi.org/10.1073/pnas.1617743114
https://doi.org/10.1371/journal.pgen.1008160
https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf
https://doi.org/10.1021/jp211054u
https://doi.org/10.1021/jp211054u
https://doi.org/10.1038/nmicrobiol.2016.116
https://doi.org/10.1038/nmicrobiol.2016.116
https://doi.org/10.1006/jtbi.2003.3152
https://doi.org/10.1006/jtbi.2003.3152
https://doi.org/10.1038/s41559-017-0146
https://doi.org/10.1038/s41559-017-0146
https://doi.org/10.3390/microorganisms9020458
https://doi.org/10.3390/microorganisms9020458
https://doi.org/10.1088/2057-1739/aab1b0

	A Thermodynamic Model for Water Activity and Redox Potential in Evolution and Development
	Abstract
	Introduction
	Materials and Methods
	Chemical Metrics
	Data Sources
	Computer Code

	Results
	Scope and Limitations of Phylostratigraphic Datasets
	Chemical Analysis of Proteins in Phylostratigraphic Age Groups
	Thermodynamic Model for Maximum Activities of Proteins
	Maximizing Stabilities of Target Proteins on a Proteomic Background
	Virtual Redox Potential
	Sensitivity of Thermodynamic Parameters to Proteomic Background
	Chemical and Thermodynamic Analysis of Biofilm Development
	Hydration Dynamics in Development of Fruit Flies

	Discussion
	Carbon Oxidation State and Redox Potential
	Stoichiometric Hydration State and Water Activity

	References




