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Abstract
The Maillard reaction, a spontaneous 'one pot' reaction between amino acids and reducing sugars that occurs at low reactant 
concentrations and low temperatures, is a good candidate for having played a role in the origin of life on the Earth. In view 
of the probability that RNA and DNA were preceded by an evolutionary forerunner with a more straightforward prebiotic 
synthesis, it is a testament to the prescience of Oró and colleagues that, in 1975, they drew attention to the Maillard reac-
tion, in particular evidence that melanoidin polymers (the end-product of the reaction) contain ‘…heterocyclic nitrogen 
compounds similar to the nitrogenous bases’ (Nissenbaum in J Mol Evol 6:253–270, 1975). Indeed, reports of the Maillard 
reaction product, 2-Acetyl-6-(Hydroxymethyl)-5,6-Dihydro-4H-Pyridinone (AHDP), with a structure reminiscent of the 
pyrimidine nucleobase uracil, suggest the Maillard reaction might have played a key role in the synthesis of components of a 
proto-RNA polymer, with AHDP and two structurally related products predicted to be similar to uracil in the latter's ability to 
form non-standard base pair interactions. It is possible that the primary function of these interactions was to allow molecules 
such as AHDP to separate out of the prebiotic chemical clutter. If this were the case, catalysis, and coding—made possible 
by the polymerization of proto-nucleoside monomers into linear sequence strings—would have been evolving properties.
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The Maillard reaction, which occurs between amino acids 
and reducing sugars, comprises a ‘complex network of 
chemical reaction[s]’, with the reaction between glycine 
and ribose alone producing more than 300 products, the 
majority of which have not been structurally character-
ised (Hemmler et al. 2017). Oró and colleagues suggested 
a prebiotic role for this reaction(s), proposing that mela-
noidin polymers (the end-product of the Maillard reaction) 

exhibited coenzyme-like activity, due to their ability to 
concentrate redox-active metal ions, and their containing 
stable free radicals and ‘…heterocyclic nitrogen compounds 
similar to the nitrogenous bases’ (Nissenbaum et al. 1975). 
Further, they suggested that melanoidin polymers might con-
tain nucleoside- and nucleotide-like structures. While the 
authors acknowledged this was extremely speculative, their 
idea may prove remarkably prescient. Here, we draw atten-
tion to a small heterocyclic molecule discovered in a model 
Maillard reaction between glycine and xylose (Ames et al. 
1999), which has a similar structure to the RNA pyrimidine 
nucleobase uracil. It is proposed to have been a proto-nucle-
obase within an evolutionary forerunner to RNA and DNA.

The Maillard reaction appears plausibly prebiotic, being a 
spontaneous 'one-pot' reaction which occurs at temperatures 
as low as – 20 °C and even at very low reactant concen-
trations (Nissenbaum et al. 1975; and references therein). 
The reactants have likely prebiotic syntheses: amino acids 
through Miller-Urey atmospheric synthesis (Cleaves et al. 
2008) and reducing sugars through a permutation of the for-
mose reaction (Yadav et al. 2020) or possibly synthesis from 
glyoxylate (Sagi et al 2012). Eschenmoser has done exten-
sive research into the base pairing abilities of alternative 
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RNAs with backbones containing sugars other than ribose 
(Eschenmoser 2011). Kruse et al (2020) and Yadav et al 
(2020) have recently extensively reviewed potential prebi-
otic syntheses of nucleosides/nucleotides. Impressive recent 
successes have been reported in the chemical synthesis of 
RNA and DNA from a variety of small molecule precur-
sors (Powner et al. 2009; Islam and Powner 2017; Stairs 
et al. 2017; Kim et al. 2021; Kim and Benner 2017; Patel 
et al. 2015; Sutherland 2015; Xu et al. 2017, 2020; Becker 
et al. 2016, 2019; Okamura et al. 2019; Teichert et al. 2019). 
While in the laboratory they often have required stepwise 
addition of reagents these still have potential for taking place 
in the prebiotic environment.

The difficulty of finding a plausible prebiotic synthesis 
of RNA and DNA has given weight to the idea that they 
were preceded in early evolution by an alternative polymer 
with a more straightforward synthesis, with a recent review 
concluding that ‘many noncanonical nucleotides and related 
glycosides are formed more easily than the canonical nucle-
otides’ (Fialho et al. 2020). We have previously proposed 
that the purine nucleobases were preceded by simpler ver-
sions of these molecules (similar to the intermediates of the 
contemporary de novo purine biosynthetic pathway), which 
were able to form progressively stronger and more stable 
base-pairing interactions (Bernhardt and Sandwick 2014). 
This hypothesis did not, however, address the origin of the 
pyrimidines, or pyrimidine-like nucleobases. In this letter 
we propose that the pyrimidine nucleobase uracil might have 
been preceded in early evolution by a  molecule(s) produced 
in prebiotic Maillard reaction(s), amidst a potpourri of other 
small molecules in what is termed the prebiotic chemical 
‘clutter’ (Krishnamurthy 2017).

Reported by Ames and colleagues, 2-Acetyl-
6-(Hydroxymethyl)-5,6-Dihydro-4H-Pyridinone (AHDP) 
(Fig. 1A) is a yellow solid produced in small quantities 

from the Maillard reaction of xylose and glycine after 2 h at 
100 °C and pH 5 (Ames et al. 1999). Two other compounds 
with closely related structures to AHDP—most likely aze-
pinones with seven-membered rings—were isolated from 
the reaction of glycine and glucose under the same condi-
tions. In a later paper, the same authors report that AHDP 
is also produced from the Maillard reaction between xylose 
and lysine (Bailey et al. 2000). While the mechanism of 
formation of AHDP-like compounds is unclear (Ames et al. 
1999), the evidence that it proceeds from the reaction of 
different amino acids with a variety of sugars, supports the 
generality of this reaction-type. However, whether AHDP-
like compounds are produced from prebiotically reasonable 
mixtures of amino acids and sugars (including formose reac-
tion mixtures), remains to be shown. In addition, as noted 
by Ames et al. (1999), AHDP and the two related heterocy-
cles 'possess several reactive groups and may be expected to 
participate in further reactions in Maillard systems'. While 
some of these reactions might abolish their ability to func-
tion as proto-nucleobases, glycosylation with unreacted 
sugar(s), to produce AHDP (and related) nucleosides also 
appears possible. An alternative AHDP nucleoside forma-
tion is demonstrated by the interesting recent synthesis of 
the DNA nucleosides in Teichert et al (2019). The assembly 
of 2-deoxyribose here on a nucleobase scaffold suggests the 
potential for components of the formose reaction to partici-
pate in such reactions. Phosphate is strongly enhancing in 
the Maillard reaction either free in solution or when cova-
lently attached to the sugar (Sandwick et al. 2005), and the 
potential role of phosphate in AHDP formation also needs 
investigation.

Figure 1 compares the structure of (A) AHDP and (B) 
uracil. The two most important similarities are: (i) AHDP, 
like uracil, contains an unsubstituted ring nitrogen (N1-
H), potentially enabling glycosylation and formation of an 
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Fig. 1  Structural comparison of A AHDP and B uracil. C CH—X 
H-bonding interactions (right-hand side of image) in the asymmetric 
unit plus neighbouring unit cell of the 2',3'-didehydro-2',3'-dideoxyu-
ridine crystal structure (Van Roey et al. 1993). Here X=O. The geom-

etry of the two CH–O bonds is: 1. D…A length 3.46  Å, D–H…A 
angle 162°. 2. D…A length 3.58 Å, D–H…A angle 134° (D=H-bond 
donor; A=H-bond acceptor). Figure created with Microsoft Power-
Point and Mercury 2020.3.0 (Build 298224) (Macrae et al. 2020)
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AHDP nucleoside. (ii) The O4 and C3-H face of AHDP is 
identical to the O4 and C5-H face of uracil, and therefore 
AHDP should in theory be able to form base-pair interac-
tions similar to those formed by the Hoogsteen edge of 
uridine. Importantly, the O4 and C3-H groups of AHDP 
are planar, due to the conjugated pi-bonding system (and 
delocalized pi electrons) that extends from the O4 keto 
group to the acetyl carbonyl group, and also includes the 
ring nitrogen N1. The two closely related compounds dis-
covered by Ames et al. (1999) also possess these same 
features and should be capable of forming similar base 
pairing-type interactions.

The standard A–U base pair between adenosine and uri-
dine utililizes uridine's Watson–Crick edge (N3-H and O4). 
However, uridine is also able to utilize the opposite (Hoog-
steen) edge (O4 and C5-H) to form nonstandard base-pair 
interactions with adenosine, cytidine, guanosine and uridine, 
for example the U–U 'Calcutta' base pair (Wahl et al. 1996; 
Wahl and Sundaralingam 1997). Uridine Hoogsteen interac-
tions also occur as part of RNA base triples, which play a 
critical role in the tertiary structure and function of tRNA 
and rRNA (Almakarem et al. 2012; Leontis et al. 2002). 
Similarly, several uridine derivatives form base pair-type 
interactions in their crystal structures utilizing this same 
edge. As shown in Fig. 1C, 2',3'-didehydro-2',3'-dideoxy-
uridine forms a creased ribbon conformation in the crystal 
structure, in which reciprocal O4/C5-H H-bond interactions 
alternate with reciprocal N3-H/O4 H-bond interactions (Van 
Roey et al. 1993; Cabaj and Dominiak 2020).

Base pairing involving uridine's Hoogsteen edge 
includes a CH—X H-bond, in which carbon is the H-bond 
donor (Brandl et al. 1999; Taylor and Kennard 1982). C–H 
H-bonds are typically somewhat weaker than those involv-
ing N and O atoms exclusively (Desiraju 1991, 1996). 
However, as described above, it is likely strong enough 
to have enabled the first base pairing-type interactions. It 
is possible that the primary function of these interactions 
was in allowing molecules such as AHDP to separate out 
of the prebiotic chemical clutter. If this were the case, 
catalysis, and coding—made possible by the polymeriza-
tion of proto-nucleoside monomers into linear sequence 
strings—would have been evolving properties.
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