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Abstract
Proteins can evolve by accumulating changes on amino acid sequences. These changes are mainly caused by missense muta-
tions on its DNA coding sequences. Mutations with neutral or positive effects on fitness can be maintained while deleterious 
mutations tend to be eliminated by natural selection. Amino acid changes are influenced by the biophysical, chemical, and 
biological properties of amino acids. There is a multiplicity of amino acid properties that can influence the function and 
expression of proteins. Amino acid properties can be expressed into numerical indexes, which can help to predict functional 
and structural aspects of proteins and allow statistical inferences of selection pressure on amino acid usage. The accuracy 
of these analyses may be compromised by the existence of several numerical indexes that measure the same amino acid 
property, and the lack of objective parameters to determine the most accurate and biologically relevant index. In the present 
study, the gradient consistency test was used in order to estimate the magnitude of directional selection imparted by amino 
acid biochemical and biophysical properties on protein evolution.
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Introduction

A protein can evolve by accumulating changes on its amino 
acid sequences. These changes are mainly caused by mis-
sense mutations on its DNA coding sequences, where a 
single nucleotide change may result in a codon that codes 
for a different amino acid. Amino acid gain and loss in pro-
tein evolution follow nearly neutral theoretical expectations 
(Hurst et al. 2006; Jordan et al. 2005; McDonald et al. 2006). 
Mutations with neutral or positive effect on fitness can be 
maintained while deleterious mutations tend to be elimi-
nated by natural selection. Protein evolution seems to be 
mainly constrained by selection against misfolding and mis-
interactions with other molecules (Echave and Wilke 2017). 
Although most missense mutations seem to have an effect 
on protein stability, mutations that affect function seem to 
be restricted to few sites within protein sequences (DePristo 

et al. 2005). An analysis of 4000 amino acid substitutions 
in the lac repressor XV showed that most replacements do 
not interfere with phenotype (Suckow et al. 1996). Likewise, 
it has been predicted that most amino acid polymorphisms 
in the human proteome are functionally neutral (Ng and 
Henikoff 2003; Choi et al. 2012). In fact, both adaptive and 
non-adaptive evolution are mainly caused by substitutions 
between similar amino acids (Bergman and Eyre-Walker 
2019).

The selection of variants in coding sequences may be 
influenced by the biophysical, chemical, and biological 
properties of amino acids (Rudnicki et al. 2014). Estimat-
ing the magnitude of directional selection imparted by 
a specific property of amino acids is not a simple task. 
There is a multiplicity of amino acid properties that can 
influence the function and expression of proteins. It is 
possible, however, that in some proteins the frequency 
of amino acids are mainly influenced by a single prop-
erty, while in other proteins the frequency of amino acids 
may be influenced by multiple and diverse characteristics 
(Suckow et al. 1996; Wei et al. 2010). Based on theo-
retical and experimental approaches, diverse amino acid 
characteristics and properties have been quantified into 
numerical indexes (Kawashima et al. 2008). Quantitative 
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indexes allow a more precise statistical inference on the 
estimation of selection forces acting on protein function 
and evolution.

The accuracy of these analyses, however, may be com-
promised by the fact that there are usually several numeri-
cal indexes that measure the same amino acid property, 
and the lack of objective parameters to determine the most 
accurate and biologically relevant index. In general terms, 
the magnitude of directional selection on a characteristic 
can be estimated by the coefficient of the regression of 
phenotypic values of traits and fitness (Lande and Arnold 
1983). Accordingly, the strength of natural selection forces 
acting on a specific intrinsic characteristic to influence 
the frequency of amino acids would be estimated by cal-
culating the correlation between quantitative scores that 
estimate the strength of the characteristic on each of the 20 
amino acids and their frequency on proteins. This approach 
will produce a different estimation for each amino acid. 
Swire (2007) has integrated this reductionist approach by 
developing the gradient consistency test, which can detect 
signatures of selection independently from the analysis 
of proteins expression levels or constraint data. It relies 
on the estimation of interprotein gradients in amino acid 
usage to detect the signature of selective evolution caused 
by a specific amino acid property. This method was origi-
nally developed to analyze selection on amino acid biosyn-
thetic cost. It was demonstrated that the frequency of spe-
cific low biosynthetic cost amino acids tends to increase as 
the frequency of other low-cost amino acids increase. The 
rate of increase for each amino acid is given by the slope 
of the regression line obtained between the frequency of 
the focal amino acid (i.e., amino acid used for frequency 
calculation, see y-axis of Figs. S1–S5 of Online Resource 
3) and the mean per residue of sites not occupied by the 
focal amino acid of a specific index. The gradient consist-
ency test score is obtained by the correlation between the 
absolute shift in usage (slope) for each amino acid and the 
respective index that measures the strength (ex: biosyn-
thetic cost) of the characteristic.

Since the gradient consistency test scores are depend-
ent on several analyses (mean per residue index, slope 
obtained with ordinary least square regression, and the 
final score is obtained with Pearson correlation coef-
ficient), we have analyzed and compared the effect of 
alternative procedures (median per residue index, slope 
obtained with robust regression, and final score obtained 
with Kendall correlation coefficient) on its performance. 
The gradient consistency test (Swire 2007) was applied 
on 555 indexes that measure amino acid properties. These 
analyses allowed identification of indexes significantly 
associated with the amino acid composition of proteins 
and detection of signatures of selective evolution caused 
by diverse amino acid properties.

Materials and Methods

Proteins

Amino acid sequences of Bos taurus (cow, class Mammalia), 
Caenorhabditis elegans (class Secernentea), Homo sapiens 
(human, class Mammalia), Loxodonta africana (elephant, 
class Mammalia), Mus musculus (mouse, class Mammalia), 
and Saccharomyces cerevisiae (class Saccharomycetes) were 
downloaded from the Ensembl/Biomart database ( https://​
www.​ensem​bl.​org/​bioma​rt/​martv​iew/). These taxa include 
4 vertebrate, 1 invertebrate multicellular, and 1 unicellu-
lar organisms. The four mammalian species included (Mus, 
Homo, Bos, Loxodonta) present a wide range of body mass. 
The reason for this was that metabolic rate has been shown 
to be related with body mass (White and Seymour 2003) and 
also protein evolution (Gillooly et al. 2007). In case there 
were more than one peptide for the same protein only the 
largest was used for further analysis.

Amino Acid Indexes

Numerical values of 544 indexes representing various phys-
icochemical and biochemical properties of amino acids and 
pairs of amino acids were downloaded from the AAindex 
database (Kawashima et al. 2008, https://​wwwge​nomejp/​
aaind​ex/); Eleven indexes related to amino acids biosynthetic 
cost and fitness were also included in the analysis, totaling 
555 indexes (Online Resource 1).

The Gradient Consistency Test (Adapted from Swire, 
2007)

This test assumes that if a specific amino acid characteris-
tic exerts selective pressure on amino acid choice then the 
low-score amino acids are expected to be found in proteins 
mostly composed of other low-score amino acids (Swire 
2007). The calculation of the gradient consistency test score 
can be divided in 3 steps:

Step 1. Raw shift in usage. The rate of increase for each 
amino acid is given by the slope of the regression line 
between the frequency of the focal amino acid and the mean 
per residue of the indexes of sites not occupied by the focal 
amino acid of each protein (unbiased mean). The exclusion 
of the focal amino acid would give a mean cost per residue 
that is independent of the occurrence of this amino acid.

Step 2. Slope standardization. It is obtained by the fol-
lowing calculation:

Standardized slope = slope * abs(y/x) where y is the 
mean per residue of the relevant 19 amino acid types of 
the indexes of all proteins and x is the mean percentage 
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usage of the focal amino acid in all proteins. The abs refers 
to the absolute value as many indexes have both positive 
and negative values.

Step 3. Obtaining the variation in gradients. The gradi-
ent consistency test score is obtained by the correlation 
between the absolute shift in usage (slope) for each amino 
acid and the respective index that measures the amino acid 
strength for the characteristic.

Since the gradient consistency test scores are depend-
ent on several analyses (mean per residue index, slope 
obtained with ordinary least square regression, and final 
score obtained with Pearson correlation coefficient), we 
have analyzed and compared the effect of alternative pro-
cedures on the gradient consistency test scores:

1.	 Comparing mean and median per residue index. The 
mean values used by Swire (2007) can be influenced by 
outliers, therefore, extremely low or high index values 
could potentially produce false positives or negative gra-
dient scores.

2.	 Comparing the slope regression method (least square 
versus robust regression). The ordinary least square 
method for linear regression (LSQ), where slope can be 
obtained using the lm(y ~ x)$coefficients[[2]] function of 
The R Project for Statistical Computing (R Core Team 
2013). This method is influenced by outliers, which can 
influence the slope values leading to non-representative 
slope values. The robust regression using the M method 
(ROB) is more robust to outliers. The slope was obtained 
using the rlm(y ~ x, method = "M")$coefficients[[2]] 
function of the MASS package of R (Venables and Rip-
ley 2002).

3.	 The gradient consistency test score (Step 3) for cost syn-
thesis was originally obtained with linear Pearson cor-
relation. However, it is possible that other indexes may 
produce a non-linear correlation pattern. In these cases, 
the final scores would be better estimated by a non-linear 
correlation test. Therefore, besides Pearson’s we have 
also calculated Kendall’s correlation coefficient.

Codes and Statistical Analysis

The statistical analysis and figures were done using R 
(version 4.0.2) and genome processing was done using 
Ruby programming language (version 2.5.1, Line et al. 
2014). Codes were run on Ubuntu version 18.04.5. The p 
values for each taxa were filtered by false discovery rate 
(FDR) using the qvalue package of the R statistical soft-
ware (Storey et al. 2020). The Ruby and R files used for 
obtaining the gradient consistency test score and figures 
are on Online Resource 2.

Results

Comparing the Use of Mean or Median Per Residue 
Index

In order to obtain slope values for each amino acid, Swire 
(2007) used the unbiased mean (excluding the focal amino 
acid) per residue synthesis cost. Since the mean can be influ-
enced by outliers we also tested the more robust median val-
ues. Therefore, the effect of unbiased median and mean per 
residue index (555 indexes) on the gradient consistency test 
scores were tested in three distinct species, representing ver-
tebrate (H. sapiens, Fig. 1), invertebrate (C. elegans, Fig. S8 
Online Resource 3), and unicellular (S. cerevisiae, Fig. S9 
Online Resource 3) organisms. Our analyses showed that the 
gradient consistent scores obtained with mean and median 
per residue indexes were highly correlated in the 3 taxa ana-
lyzed. Pearson’s r ranged from 0.85 to 0.91. Due to the high 
correlation scores, all further analyses were performed with 
the mean per residue index following the original protocol of 
Swire (2007).

Comparing Least Squares (LSQ) and Robust 
Regression (ROB) Line Fitting Slopes on the Gradient 
Consistency Test Scores

H. sapiens proteins were used to obtain the slopes of the best 
fit lines using the LSQ and ROB regression methods. Our 
analyses showed that the gradient consistent scores obtained 
with LSQ and ROB were fairly similar (Online Resource 4). 
When the gradient consistency test scores obtained with ROB 
and LSQ were used, respectively, as dependent and independ-
ent variables in least square linear regression, the coefficient of 
determination (R2) was 0.98 when the final score (Step 3) was 
obtained with Pearson and 0.97 when Step 3 was obtained with 
Kendall’s correlation (Fig. 2a, b). In both cases, the slope of 
lines was 1.03. The scatter plots between the frequency of each 
amino acid and the mean per residue of the indexes of sites 
not occupied by the focal amino acid of each protein (unbiased 
mean), as well as the slopes obtained with LSQ and ROB for a 
hydrophobicity index (NADH010103) is shown in Figs. S1–S5 
(Online Resource 3). It can be noted that slopes obtained with 
LSQ and ROB are fairly similar. The scatter plots between 
amino acid index (x-axis) and the standardized slope obtained 
with LSQ and ROB are shown, respectively, in figures S6 and 
S7 (Online Resource 3).
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Comparing the Use of Pearson and Kendall 
Correlation Methods to Obtain the Final Gradient 
Consistency Test Score

The gradient consistency test score for cost biosynthesis was 
originally obtained with linear Pearson correlation (Swire 
2007). However, it is possible that other indexes may pro-
duce a non-linear correlation which would produce low 
scores. It is also possible that linear Pearson’s correlation 
could be spuriously high due to the presence of high lever-
age data points. In these cases, the final scores would be 
better estimated by a non-linear correlation test. Therefore, 
besides Pearson’s we have also calculated Kendall’s corre-
lation coefficient. When scores obtained when Kendall and 
Pearson were, respectively, used as dependent and independ-
ent variables, the R2 of least square regressions were 0.67 
when slope was estimated with LSQ, and 0.71 when slope 
was estimated with ROB (Fig. 2c, d). These results show 
that the linear and non-linear correlation methods tend to 
produce similar gradient consistency test scores.

Physicochemical Indexes Associated with Selection 
for Amino Acid Usage

For selection purposes, an index was considered to have a 
highly significant influence on amino acid selection when 
q values for the 6 species were lower than 0.005 in both 
Pearson and Kendall correlation tests in the two methods 
used for slope determination (LSQ and ROB). This threshold 

provides a more strict and accurate selection of significant 
results (Johnson 2003). One hundred and ten significant 
indexes were selected. The most frequent indexes selected 
were water solubility (hydropathy, hydrophobicity, n = 35), 
solvent partition (n = 11), side chain characteristic (n = 9), 
biosynthetic cost (n = 5), and flexibility (n = 3) (Fig. 3 and 
Fig S10, Online Resource 3). An interesting aspect is that 
the score variation among species, measured by the stand-
ard deviation, was inversely correlated with the mean of 
the gradient consistency test score. Indexes with highest 
scores tended to have the smallest variations among species 
(Fig. 4). Therefore, indexes with highest influence on protein 
evolution exhibited similar gradient consistency test scores 
across species.

The Gradient Consistency Test is Capturing 
the Effect of Directional Selection of the Amino Acid 
Indexes

In order to show the strength of the gradient consistency 
test in capturing the effect of directional selection on amino 
acid properties, two simulation analyses were performed. 
For these analyses, 6 indexes that represent distinct and 
significant amino acid properties and were among the 
highest scores obtained were selected, hydrophobicity 
(NADH010103), long-range non-bonded energy per atom 
(OOBM770103), 8 A contact number (NISK800101), flex-
ibility (VINM940103), side chain orientational preference 
(RACS770103), and biosynthetic costs (SN15).
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Fig. 1   Comparison of the use of mean or median per residue index 
to obtain slope values for each amino acid and its influence on the 
gradient consistency test scores. a Gradient consistency test scores 
obtained with Pearson’s correlation. b Gradient consistency test 
scores obtained with Kendall’s correlation. Mean values are shown 

on x-axis and median values are shown on y-axis. Each point repre-
sents the gradient consistency test score of an amino acid property 
index. Analyses were performed in H. sapiens proteome. Note that 
the scores obtained with mean and median per residue indexes were 
highly correlated
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In the first simulation experiment, 2000 proteins with ran-
dom amino acid frequency and distribution were generated. 
Proteins were formed by 1001 amino acids. Random gener-
ated proteins were submitted to the gradient consistency test. 
Experiments were repeated 5 times. Wild-type protein gradi-
ent consistency test scores were always higher than random 
generated proteins when both Pearson (Fig. 5a) and Kendall 
(Fig. 5b) correlation methods were used to obtain the scores.

In the second simulation experiment, the strength of the 
gradient consistency test in capturing the effect of direc-
tional selection on amino acid properties was assessed by 
randomly reshuffling the amino acid indexes values previ-
ously to obtain the gradient consistency test scores. The 
reshuffling was repeated 500 times. Gradient consistency test 

scores with unshuffled index values were always higher than 
shuffled when both Pearson (Fig. 6) and Kendall correlation 
methods (Fig S11, Online Resource 3) were used in Step 3.

The Strength of Gradient Consistency Test Can Vary 
Among Protein Subgroups.

Proteins can be grouped according to the predominance of 
amino acids with similar properties. Accordingly, a protein 
may have a predominance of hydrophobic or hydrophilic 
amino acids, or present an equilibrium of its constituents. 
Although these characteristics can influence its chemical 
properties and function, little is known about its influence 
on protein evolution. In order to assess the influence of this 

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Pearson r (lsq)

Pe
ar

so
n 

r (
ro

b)

R2= 0.982
slope= 1.033

A

0.3 0.4 0.5 0.6 0.7 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Kendall tau (lsq)

Ke
nd

al
l t

au
 (r

ob
)

R2= 0.973
slope= 1.035

B

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Pearson r (lsq)

Ke
nd

al
l t

au
 (l

sq
)

R2= 0.671
slope= 0.744

C

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Pearson r (rob)

Ke
nd

al
l t

au
 (r

ob
)

R2= 0.709
slope= 0.77

D

Fig. 2   Comparison of the use of Pearson and Kendall correlation 
methods to obtain the final gradient consistency test score. a Gradi-
ent consistency test scores obtained with Pearson’s correlation with 
the use of robust (rob) and least square (lsq) regression methods for 
slope determination. b Gradient consistency test scores obtained with 
Kendall’s correlation with the use of robust (rob) and least square 
(lsq) regression methods for slope determination. c Gradient con-
sistency test scores obtained with Pearson’s (x-axis) and Kendall’s 

(y-axis) correlation with the use least square (lsq) regression method 
for slope determination. d Gradient consistency test scores obtained 
with Pearson’s (x-axis) and Kendall’s (y-axis) correlation with the use 
robust (rob) regression method for slope determination. Each point 
represents the gradient consistency test score of an amino acid prop-
erty index. Note that the gradient consistent test scores obtained with 
Pearson’s and Kendall’s methods were highly correlated
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aspect, human proteins were divided into subgroups accord-
ing to the mean value of the amino acid property index of 
each protein. The gradient consistency tests were performed 
with the 6 indexes previously analyzed. Results show that 
directional selection estimated by the gradient consistency 
test can vary according to the subgroup characteristic. Sub-
groups with lowest and/or highest means tended to present 
the lowest absolute scores values (i.e., first and last col-
umns, Fig. 7 and Fig S12, Online Resource 3), while sub-
groups with intermediate means frequently exhibited abso-
lute scores higher than when the analysis was performed 
with all proteins (Fig.  7 and Fig S12, Online Resource 
3). For biosynthesis cost (SN15), 8 A Contact Number 
(NISK800101), and hydrophobicity (NADH010103), non-
significant score (p > 0.05) was observed only in the group of 
proteins with the highest mean synthesis cost. An opposite 
trend was observed with long-range non-bonded energy per 
atom (OOBM770103), side chain orientational preference 
(RACS770103), and flexibility (VINM940103) where selec-
tion on amino acid usage was weaker in proteins with low 
mean values (Fig. 7 and Fig S12, Online Resource 3).

Indexes That Estimate Distinct Amino Acid 
Properties May Be Correlated

Distinct amino acid properties may be related (Duan and 
Zhou 2005; Raiford et al. 2008). Therefore, we have ana-
lyzed possible correlations between the 6 properties selected. 

Significant correlations were found between biosynthetic 
costs (SN15) and 8 A Contact Number (NISK800101, 
Pearson = 0.53, p = 0.017); biosynthetic costs (SN15) and 
hydrophobicity (NADH010103, Pearson = 0.55, p = 0.012); 
flexibility (VINM940103) and side chain orientational 
preference (RACS770103, Pearson = 0.79, p = 3e − 05); 
hydrophobicity (NADH010103) and 8 A contact number 
(NISK800101, Pearson = 0.91, p = 3e − 08, Fig. 8). The 8 A 
Contact Number index (NISK800101) exhibited a significant 
correlation with the hydrophobicity scale NADH010103 that 
was based on solvent accessibility (Naderi-Manesh et al. 
2001). This correlation can be explained by the fact that the 
contact energy between amino acids is also related to their 
solvent accessibility nature (Ma and Wang 2015).

Discussion

Protein structure, function, and evolution are mainly deter-
mined by its amino acid sequence. The amount and distri-
bution of amino acids in a protein is ultimately determined 
by their physicochemical properties. Amino acid properties 
have been estimated through a large number of experiments 
and theoretical studies. These properties have been trans-
lated into numerical indexes, which have been used in a 
wide ranging of research areas such as protein subcellular 
localization, (Sarda et al. 2005), evolution (Abriata et al. 
2015), and protein structure prediction (Pokarowski et al. 

Fig. 3   Indexes with highest gradient consistency test scores. Boxplot 
showing the median and interquartile range of absolute values of gra-
dient consistency test scores obtained with Pearson’s correlation for 
the 6 taxa analyzed. Only indexes with q values lower than 0.005 for 

the six species were listed. Slopes were obtained with least square 
regression method. The index code and the property are shown above 
and below the boxplot, respectively. The mean scores are represented 
by black dots
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2005). The results of the gradient consistency test rely upon 
the slope determination of bivariate regression analysis. 
There are several methods for line-fitting, which can pro-
duce lines with different slopes. Additionally, there are no 
precise parameters to evaluate which line-fitting method will 
reflect the most realistic and accurate biological associa-
tion. In general, regression methods will produce lines with 
fairly similar slopes in the absence of outliers and lever-
age points. In order to overcome the influence of these fac-
tors, two different regression methods for line-fitting were 
used in our analysis. Gradient consistency test scores were 
considered significant only if both methods produce q val-
ues < 0.005. This procedure selected only amino acid prop-
erties whose slopes follow a concordant pattern among the 
methods used, increasing the reliability of our analysis. Our 
results showed that the use of least squared (LSQ) or robust 

regression (ROB) methods for slope determination did not 
significantly change the final score. These results indicate 
that outliers do not significantly influence the slopes of the 
regression lines, and both LSQ and ROB are equally suitable 
for the analyses. Likewise, the unbiased median and mean 
per residue index did not affect significantly the gradient 
consistency test scores.

In the gradient consistency test described by Swire 
(2007), the final score was given by the Pearson’s corre-
lation between the slope values and the indexes of the 20 
amino acids. In the present work, both Pearson and Kendall 
correlations were used. The inclusion of the non-linear Ken-
dall’s correlation occurred due to the large-scale processing 
and statistical analyses performed, where 555 amino acid 
indexes, 2 slope methods, and 6 species were analyzed, with 
a total of 6660 tests. Spuriously high Pearson correlation 
coefficients may occur due to the presence of leverage and 
extreme data values. These abnormal cases do not signifi-
cantly interfere with Kendall’s Tau. In these analyses, Ken-
dall’s correlation was chosen over the more popular non-
linear Spearman’s correlation as it has a smaller gross error 
sensitivity and a smaller asymptotic variance (Croux and 
Dehon 2010).

In a broad sense, the indexes selected are related to two 
major aspects: protein topology (hydropathicity, contact 
number, flexibility, long-range non-bond energy per atom, 
side chain orientation) and biosynthesis cost. Hydropathicity 
is a physicochemical property that is relevant for the initial 
folding of polypeptides (Dyson et al. 2006), this parameter 
permits distinguishing between peptides with transmem-
brane α-helices and β-sheets (Simm et al. 2016). Hydro-
pathicity indexes SWER830101 and NADH010103 pre-
sented the highest scores among all selected indexes when 
Pearson’s r and Kendall’s tau were used in Step 3, respec-
tively. These results show that this property is of prime rel-
evance for amino acid selection. The SWER830101 index 
was based on the observed statistical frequency of amino 
acid replacements among related structures (Sweet and 
Eisenberg, 1983). Its values were normalized with a mean 
of 0 and a standard deviation of 1. The NADH010103 index 
is based on prediction of solvent accessibility of amino acid 
residues in various states (Naderi-Manesh et al. 2001). It was 
obtained by the application of information theory from a sin-
gle amino acid position and pair-information for a window 
of seventeen amino acids around the desired residue. In both 
indexes, the more hydrophobic amino acids have positive 
values while more hydrophilic are negative.

The 8 A contact number (NISK800101, Nishikawa and 
Ooi 1980) is a local packing density parameter, which 
refers to the number of C atoms around the distance range 
of 8 Angstroms of C-alpha atoms of the focal amino 
acid. The C-alpha is the first C bonded to the carbonyl C 
atom. The contact number is a measure of the exposition 
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Fig. 4   Indexes with highest gradient consistency test scores tend to 
have the lowest standard deviations among taxa. a Dot plot show-
ing the log of standard deviation (x-axis) versus the mean (y-axis) of 
gradient consistency test scores obtained with Pearson’s correlation 
among the 6 species analyzed. b Dot plot showing the log of standard 
deviation (x-axis) versus the mean (y-axis) of gradient consistency 
test scores obtained with Kendall’s correlation among the 6 species 
analyzed. The negative correlation between the two variables shows 
that higher scores were associated with smaller interspecies variations
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of amino acids to the local environment. The 8A contact 
number is correlated to the amino acid solvent accessible 
area (Pollastri et al. 2002). Contact number is an impor-
tant parameter used for prediction of secondary structure 
of proteins (Heffernan et al. 2017), and was associated 
with protein evolution (Yeh et al. 2014; Shahmoradi and 
Wilke 2016).

The long-range non-bond energy per atom 
(OOBM770103, Oobatake and Ooi 1977) refers to non-
covalent interactions between atoms. These interactions 
can be mediated by forces produced by electrostatic interac-
tions, salt bridges, hydrogen bonds, van der Waals, and other 
weaker interactions among amino acids. The OOBM770103 
index was calculated using the atomic coordinates obtained 
by X-ray crystallography of 16 proteins. The non-covalent 
interactions are critical in maintaining the tertiary and qua-
ternary structures of proteins (Prasad et al. 2019). Long-
range contact energy has been positively correlated with 
evolvability (Yan et al. 2014).

The normalized flexibility parameters (B-values) for each 
residue surrounded by none rigid neighbors (VINM940102, 
Vihinen et al. 1994) are related to protein structural stability. 
Protein structures are highly dynamic (Teilum et al. 2009). 
Many biological processes such as antigen–antibody recep-
tor-ligand binding and enzyme catalysis are dependent on 
the capacity of proteins to permit conformational structural 
changes. Although flexible proteins or protein domains tend 
to evolve at a faster rate (Brown et al. 2011), the conserva-
tion of their flexibility indicates that this property is of key 

importance in proteins function (Forcelloni and Giansanti 
2020) and evolution (Martin and Vila 2020).

The RACS770103 index was obtained by the analysis of 
the distribution of distances of each type of amino acid from 
the center of mass in a sample of 13 proteins (Rackovsky and 
Scheraga 1977). It was based on the orientational preference 
given by the ratio of occurrence in two orientations of the 
amino acids side chain.

Indexes with the highest scores tended to have the small-
est variations among species. This result indicates that the 
gradient consistency test can select and rank the most rel-
evant indexes related to amino acid selection (i.e., the higher 
the relevance the lower the interspecies variation). The fact 
that several amino acid properties were highly significant is 
supported by previous experimental analysis on beta-lacta-
mase enzymes showing that substitutions in over one-third 
of the residues can be quantitatively modeled by monotonic 
dependencies on amino acid descriptors and predictions of 
changes in folding stability. Amino acid volume and steric 
hindrance are major constraints of evolution on the protein 
core; hydrophobicity and solubility are more relevant under-
neath the surface, while salt bridges and polar networks act 
on the protein surface. Amino acid flexibility also provides 
additional constraints at many locations. (Abriata et al. 
2015).

The low score and non-significant p value (p value > 0.05) 
observed in the subgroup of proteins with the highest mean 
synthesis cost (SN15) is consistent with the selection towards 
lower cost proteins. It is likely that evolution of high-cost 
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Fig. 5   The strength of the gradient consistency test in capturing the 
effect of directional selection on amino acid properties was assessed 
by generating 2000 proteins containing 1001 amino acids with ran-
dom frequency and distribution. The boxes show the median and 

interquartile ranges of 5 distinct assays. The gradient consistency test 
scores performed with wild-type human proteins (dashed lines) were 
always higher than random generated proteins when both Pearson (a) 
and Kendall (b) correlation methods were used to obtain the scores
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proteins might be constrained by other properties. The 
SN15 index values showed no significant correlation with 
long-range non-bonded energy per atom (OOBM770103), 
normalized flexibility parameters (B values) for each resi-
due surrounded by none rigid neighbors (VINM940102), 
and side chain orientational preference (RACS770103), 
and only moderate correlations with the hydrophobicity 
(NADH010103) and 8 A contact number (NISK800101) 
indexes. The indexes NADH010103 and NISK800101 val-
ues were highly correlated (Pearson r = 0.91). Similar to the 
SN15 in the NADH010103 and NISK800101 indexes, the 
subgroups with highest means presented the lowest gradient 

consistency test scores with non-significant p values (Fig. 7 
and Fig S11, Online Resource 3). These two indexes showed 
a significant and positive correlation (see Fig. 8). This high 
linear correlation can be explained by the fact that the hydro-
phobicity NADH010103 index was estimated based on pre-
diction of solvent accessibility (Naderi-Manesh et al. 2001) 
and 8A contact number is correlated to the amino acid sol-
vent accessible area (Pollastri et al. 2002). In fact, in globu-
lar proteins the densely packed sites (i.e., high contact areas) 
are frequently highly hydrophobic (Rose and Roy 1980). 
Hydrophobic regions tend to be buried in the dense core of 
globular proteins (Perunov and England 2014).

Fig. 6   The strength of the 
gradient consistency test in 
capturing the effect of direc-
tional selection on amino acid 
properties was assessed by ran-
domly reshuffling the indexes 
values previously to obtain the 
gradient consistency test scores. 
Reshuffling was repeated 500 
times. For these analyses, 6 
indexes that represent distinct 
and significant amino acid 
properties were selected, hydro-
phobicity (NADH010103), 
long-range non-bonded energy 
per atom (OOBM770103), 8 A 
contact number (NISK800101), 
flexibility (VINM940103), side 
chain orientational preference 
(RACS770103), and biosyn-
thetic costs (SN15). Pearson’s 
correlation scores are shown on 
x-axis and the number of occur-
rences are shown on y-axis. 
Vertical dashed lines represent 
the scores obtained with unshuf-
fled data. Note that unshuffled 
scores were always higher than 
shuffled
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Fig. 7   The strength of gradient consistency test can vary among 
protein subgroups. For these analyses, 6 indexes that represent dis-
tinct and significant amino acid properties were selected, hydropho-
bicity (NADH010103), long-range non-bonded energy per atom 
(OOBM770103), 8 A contact number (NISK800101), flexibility 
(VINM940103), side chain orientational preference (RACS770103), 
and biosynthetic costs (SN15). Human proteins were divided into 
subgroups according to the mean value of the index of each protein. 
Subgroups with lowest and/or highest means presented the lowest 
absolute score values, while subgroups with intermediate means fre-
quently exhibited absolute scores higher than when the analysis was 
performed with all proteins. In biosynthesis cost (SN15), the low-

est absolute score was observed in the group of proteins with the 
highest mean synthesis cost. An opposite trend was observed with 
long-range non-bonded energy per atom (OOBM770103), 8 A con-
tact number (NISK800101), and side chain orientational preference 
(RACS770103), where selection on amino acid usage was weaker 
in proteins with low mean values. The lowest absolute scores for 
hydrophobicity (NADH010103) and flexibility (VINM940103) were 
observed in both extremes. Horizontal dashed lines mark the value of 
the absolute scores of the whole (undivided) protein set. The num-
ber of proteins and index range in each subgroup is shown above and 
below the bars, respectively. The gradient consistency test scores 
obtained with Pearson’s correlation are shown on the y-axis. *p > 0.05
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Fig. 8   Indexes that estimate distinct amino acid properties 
may be correlated. Scatterplot showing Pearson’s correlations 
between indexes estimating different amino acid properties. Sig-
nificant correlations (p < 0.05) were found between hydrophobic-
ity (NADH010103) and 8 A contact number (NISK800101); bio-

synthetic costs (SN15) and 8 A contact number (NISK800101); 
biosynthetic costs (SN15) and hydrophobicity (NADH010103); 
flexibility (VINM940103) and side chain orientational preference 
(RACS770103)
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The gradient consistency test gives an estimate of the 
strength of directional selection on a specific amino acid 
property (Swire 2007). This test assumes that if a specific 
amino acid property affects protein evolution then amino 
acids with high/low property index scores are expected to 
be found in proteins mostly composed of other high/low 
index score amino acids significantly more often than they 
are found in proteins mostly composed of low/high amino 
acids. This method was devised to detect synthesis cost 
selection. In order to check if the gradient consistency test 
would also perform with other amino acid properties, we 
have performed simulation analysis in 6 indexes with highly 
significant gradient consistency test scores that estimate dis-
tinct properties analyses. These analyses showed that for 
all properties the wild-type data always performed better 
than random amino acid-generated proteins or shuffled index 
values. The gradient consistency test does not depend on 
data of protein expression levels or phylogenetic compari-
son of sequences among species. Since there may be several 
indexes for a same amino acid property, the identification 
and ranking of indexes may allow a more precise estimation 
of amino acids property indexes that drive protein evolution. 
This aspect may be particularly interesting in the analysis 
of amino acid properties that constrains protein evolution 
in processes characterized by rapid proliferation and muta-
tional rates such as bacterial (Bosshard et al 2019), viral 
proliferation (Korber et al. 2020), and cancer (Zhang et al. 
2018). Besides evolutionary studies, the selection and use of 
indexes with high scores may allow a more accurate analyses 
of the effects of amino acid properties in protein structure 
and function.
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