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Abstract
Variation in GC content is assumed to correlate with various processes, including mutation biases, recombination, and 
environmental parameters. To date, most genomic studies exploring the evolution of GC content have focused on nuclear 
genomes, but relatively few have concentrated on organelle genomes. We explored the mechanisms maintaining the GC con-
tent in angiosperm plastomes, with a particular focus on the hypothesis of phylogenetic dependence and the correlation with 
deletion mutations. We measured three genetic traits, namely, GC content, A/T tracts, and G/C tracts, in the coding region 
of plastid genomes for 1382 angiosperm species representing 350 families and 64 orders, and tested the phylogenetic signal. 
Then, we performed correlation analyses and revealed the variation in evolutionary rate of selected traits using RRphylo. The 
plastid GC content in the coding region varied from 28.10% to 43.20% across angiosperms, with a few non-photosynthetic 
species showing highly reduced values, highlighting the significance of functional constraints. We found strong phylogenetic 
signal in A/T tracts, but weak ones in GC content and G/C tracts, indicating adaptive potential. GC content was positively 
and negatively correlated with G/C and A/T tracts, respectively, suggesting a trade-off between these two deletion events. 
GC content evolved at various rates across the phylogeny, with significant increases in monocots and Lamiids, and a decrease 
in Fabids, implying the effects of some other factors. We hypothesize that variation in plastid GC content might be a mixed 
strategy of species to optimize fitness in fluctuating climates, partly through influencing the trade-off between AT → GC 
and GC → AT mutations.

Keywords Base composition variation · AT-biased deletion mutation · Phylogenetic relatedness · Functional constraints · 
Energy/resource competition · Rrphylo

Introduction

DNA base composition (GC content), defined as the propor-
tion of cytosines and guanines relative to the total number 
of nucleotides in the genome, is a key feature of genome 
architecture and believed to play an important role in 
genome evolution and species biology (Nishio et al. 2003; 
Vinogradov 2003; Šmarda et al. 2014). Hence, exploring the 
dynamics of GC content evolution and drivers/causes could 
provide insight into genome adaptation in response to eco-
logical fluctuation. In recent genomic studies, variation in 
GC content has often been shown to correlate with various 
factors, including phylogenetic relatedness (Stackebrandt 
and Liesack 1993), GC-biased gene conversion (gBGC, a 
process associated with recombination, Holmquist 1992; 
Eyre-Walker 1993; Duret and Galtier 2009; Muyle et al. 
2011), mutational biases (Filipski 1987; Suoeka 1988), 
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chromosome/genome structure (e.g., isochore, Eyre-Walker 
and Hurst 2001; Duret and Arndt 2008; Glémin et al. 2014), 
and ecological selection (Bernardi and Bernardi 1986; 
Eyre-Walker 1999; Hildebrand et al. 2010). In addition, 
researchers have also found that DNA methylation (Smith 
et al. 2009; Mugal et al. 2015), life-history traits (e.g., plant 
growth form, Trávníček et al. 2019), and genome size (Ves-
elý et al. 2012; Lipnerová et al. 2013) have also influenced 
the GC content. To date, the dynamics of GC content evolu-
tion has been extensively studied in prokaryotes, vertebrates, 
and plants (Bentley and Parkhill 2004; Mann and Chen 
2010; Eyre-Walker and Hurst 2001; Šmarda et al. 2014). 
However, most of these studies focused on nuclear genomes, 
and relatively few have concentrated on organelle genomes 
(i.e., chloroplast and mitochondrial genomes), in which the 
GC content is believed to be maintained independently of 
nuclear genomes (Kusumi and Tachida 2005).

The plastid GC content varies greatly among species, 
with the lowest value of 22.67% found in a parasitic plant 
Pilostyles hamiltonii (Bellot and Renner 2015), and the high-
est 56.50% in spikemoss Selaginella remotifolia (Zhang 
et al. 2019). A few hypotheses to explain this variation 
have been proposed (Wicke et al. 2013, 2016; Mower et al. 
2019; Yu et al. 2020). Wicke et al (2013, 2016) noted that 
a reduced GC content accompanied by a lifestyle-specific 
shift to heterotrophy was caused by relaxed functional con-
straints on codon usage or nutrient economy. In addition, 
the highest plastid GC content in spikemoss is probably a 
consequence of a large number of RNA editing sites and 
reduced AT-mutation pressure (Smith 2009; Mower et al. 
2019), although there is still a lack of empirical data sup-
porting the latter hypothesis. In a recent phylogenomic study 
of liverworts, Yu et al (2020) pointed out that variation in 
plastid GC content not only reflected phylogenetic related-
ness but also correlated with the diversity of poly-(G)/(C) 
tracts (G/C tracts, deletions/replications caused by DNA 
polymerase slippage, Viguera et al. 2001). Nevertheless, 
little is known about whether such observations are lineage 
specific or a more widespread phenomenon across all plants. 
Here, we explored the dynamics of GC content evolution 
and putative mechanisms in plastid genomes of angiosperms 
using a robust phylogeny and broad taxon sampling, with a 
particular focus on the hypothesis of phylogenetic depend-
ence and the correlation with deletion mutations (both G/C 
tracts and A/T tracts).

As the most successful land plants and an important 
component of terrestrial ecosystems, angiosperms have 
been the focus of a large number of plastid genomic and 
phylogenomic studies (Qiu et al. 1999; Moore et al. 2007; 
Davis et al. 2014; Gitzendanner et al. 2018; Li et al. 2019). 
In these studies, a large number of plastid genomes were 
documented. As of the end of September 2020, a total of 
4116 angiosperm plastid genomes are available in GenBank 

(https ://www.ncbi.nlm.nih.gov/genom e/organ elle/). These 
reports provide not only a large number of genetic charac-
ters, enabling the investigation of the origin and diversi-
fication of angiosperms (Davis et al. 2014; Gitzendanner 
et al. 2018; Li et al. 2019), but also considerable informa-
tion on the plastome architecture and assembly (Smith 2009; 
Wicke et al. 2013; Li et al. 2016; Niu et al. 2017; Mower 
et al. 2019). To achieve the above aim, we measured three 
genetic traits, namely, GC content, G/C tracts, and A/T tracts 
(per kb), in the coding region of plastid genomes for 1382 
angiosperm species representing 350 families and 64 orders 
(APG IV 2016). Using a well-resolved phylogeny of angio-
sperms published recently (Li et al. 2019), we tested the 
phylogenetic signal of three selected traits and performed 
correlation analyses. Then, we reveal variation in the evolu-
tionary rate of the selected traits across the phylogeny using 
a modified phylogenetic comparative analysis-RRphylo, and 
discuss possible drivers or causes in biological and ecologi-
cal contexts.

Materials and Methods

Sampling, Phylogeny, and Data Collection

The chloroplast phylogenomic study of angiosperms per-
formed by Li et al (2019) provided not only the most likely 
family-level backbone of this group to date, but also a suit-
able genome-scale dataset-consisting of 80 plastid genes, 
allowing evolution of GC content to be explored without 
accounting for the noisy signals arising from frequent 
reshuffling in noncoding regions (Glémin et al. 2014). To 
reduce the biases caused by missing data, we pruned the 
maximum clade credibility (MCC) tree of Li et al. to include 
1382 species (Table S1) representing 350 families (84% of 
family diversity) and 64 orders (100% of order diversity, 
APG IV 2016) using the function “drop.tip” (package ape; 
Paradis et al. 2004; Paradis 2012). Only one species with the 
longest sequence length from each genus was sampled. The 
sampling represents not only the greatest order and family 
diversity of angiosperms to date, but also ecological, life-
style, and life-history diversity. Using the dataset of Li et al., 
we estimated three genetic traits, namely, GC content, G/C 
tracts, and A/T tracts [the number of poly-(dN) tracts per 
kb, only poly-(dN) tracts with a length ≥ 3b were calculated; 
Table S1], for all samples used in the phylogeny.

Test of Phylogenetic Signal, Correlations, 
and Evolutionary Rate Variation

We tested the phylogenetic signal (a tendency of related spe-
cies to resemble each other more than species drawn at ran-
dom from the phylogeny; the concept follows Münkemüller 

https://www.ncbi.nlm.nih.gov/genome/organelle/
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et  al. 2012) of three genetic traits using two statistics: 
Blomberg’s K (Blomberg et al. 2003) and Pagel’s λ (Pagel 
1999). The K-statistic provides a reliable effect size meas-
ure and performs well in all conditions (Münkemüller et al. 
2012). K is estimated as the ratio of the observed mean-
squared errors and the mean-squared errors using the vari-
ance–covariance matrix derived from a given phylogeny 
under the assumption of Brown motion model (BM, Blomb-
erg et al. 2003). K < 1 indicates that a trait has less phyloge-
netic signal than expected under BM. The λ-statistic is most 
suitable to capture the effect of changing evolutionary rates 
in simulation experiments (Münkemüller et al. 2012). λ is 
defined as the transformation of the phylogeny that fits trait 
data best to BM (Pagel 1999; Freckleton et al. 2002). λ < 1 
indicates that relatives show less similarity than expected, 
while λ > 1 suggests the opposite. To assess the effects of 
topological uncertainty on the estimated phylogenetic signal 
(Revell et al. 2008), we randomly selected 100 trees from 
the posterior sampling after excluding burn-in trees. Both 
statistics were performed in the MCC and 100 randomly 
selected trees using the function “phylosig” (package phy-
tools; Pagels 1999; Blomberg et al. 2003; Ives et al. 2007; 
Revell 2012). All trees are deposited in Figshare Digital 
Repository (https ://doi.org/10.6084/m9.figsh are.12901 517).

DNA polymerase slippage could cause both G/C tracts 
and A/T tracts (Viguera et al. 2001). To determine whether 
GC content accelerates accumulation of G/C tracts or all 
deletion events, we tested the correlation between GC con-
tent and two deletions events separately and as a whole, 
using the IPC analysis. Furthermore, we performed the cor-
relation analyses in all angiosperms as well as three major 
subclades, namely, monocots, superrosids, and superasterids, 
using the PDAP plugin (Midford et al. 2005) for Mesquite 
(Maddison and Maddison 2018).

RRphylo is a modified phylogenetic comparative method 
recently developed by Castiglione et al (2018). This method 
has the advantage of assigning an evolutionary rate to 
each branch of a phylogeny, dealing with both extinct and 
extant phylogenies, and low Type I and Type II error rates 

(Castiglione et al. 2018). Recently, this method has been 
successfully applied in macroevolutionary studies of animals 
and humans (Piras et al. 2018; Raia et al. 2018; Sansalone 
et al. 2020). In this study, we used RRphylo to reveal the 
variation in evolutionary rate of three selected traits and to 
identify potential rate shifts. This analysis was performed 
using the functions “RRphylo” and “search.shift” (Castigli-
one et al. 2018; Piras et al. 2018).

Results

Three genetic traits have a wide variation range, includ-
ing 28.10%–43.20% in GC content, 8.27–23.37 per kb in 
G/C tracts, and 34.93–65.32 per kb in A/T tracts (Fig. 1, 
Table S1). Interestingly, the amount of A/T tracts was almost 
three times that of G/C tracts (the mean ratio of A/T tracts 
to G/C tracts was 2.7, Table S1). Using the K-statistic, only 
A/T tracts displayed a strong phylogenetic signal, with a 
K = 1.30 [1.25, 1.34] (p < 0.001), while the other two did 
not, as indicated by K < 0 (K = 0.64 [0.64, 0.68], p < 0.001 
in GC content, and 0.61 [0.59, 0.63], p < 0.001 in G/C tracts, 
Table S2). In contrast, using the λ-statistic, all three genetic 
traits showed a nearly BM pattern, with λ ≈ 1.0 (λ = 0.962 
[0.960, 0.966], p < 0.001 in GC content, 0.988 [0.987, 
0.990], p < 0.001 in G/C tracts, and 0.954 [0.951, 0.957], 
p < 0.001 in A/T tracts, Table S2).

The GC content was positively correlated with G/C tracts 
with a coefficient > 0.6 (p < 0.001) but negatively correlated 
with A/C tracts with a coefficient <  − 0.75 (p < 0.001) and 
the total deletion mutations with a coefficient <  − 0.50 
(p < 0.001, Table 1). These correlations were consistently 
supported in all angiosperms and three major subclades 
(Table 1). In addition, the negative correlation between G/C 
tracts and A/T tracts was only found in monocots.

Across the angiosperm phylogeny, we found significant 
increases in three traits on the internal branches of monocots 
especially Poales but decreases in superrosids (e.g., Fabids). 

Fig. 1  Variation of GC content, 
and A/T and G/C tracts per 
kb in the coding region of 
plastid genomes across 1382 
angiosperm species using the 
dataset of Li et al (2019). Box 
bars show the minimum-to-
maximum range (whiskers), 
interquartile range (blue boxes), 
median (black bars), and outli-
ers (empty circles)

15.00 25.00 35.00 45.00 55.00 65.00

GC content

G/C tracts

A/T tracts
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The additional increases in GC content and decreases in A/T 
tracts occurred in superasteridae (e.g., Lamiids, Fig. 2).

Discussion

Variation in Plastid GC Content, G/C Tracts, and A/T 
Tracts Across the Phylogeny

The chloroplast genome contains a subset of genes encoding 
proteins that are crucial for photosynthesis and some other 
metabolic processes, such as the cytochrome b6f complex 
and ATP synthase (Martin et al. 2002). Hence, understand-
ing its evolution is fundamental to comprehend the adap-
tation, diversification, and ecomorphospace evolution of 
modern plants. A comparative analysis of 1382 plastomes 
with focus on the coding region from species spanning the 
breadth of extant angiosperms revealed some important 
characteristics of the dynamic evolution of GC content and 

deletion mutations. The relatively low GC content occurring 
in a few non-photosynthetic species coincides with massive 
gene arrangements (e.g., partial or complete loss or transfer 
to other genomes, Wicke et al. 2013, 2016; Schneider et al. 
2018a, b; Wicke and Naumann 2018). These findings not 
only reconfirmed the hypothesis of functional constraints on 
photosynthesis as previously proposed (Wicke and Naumann 
2018) but also implied that some other processes that deter-
mined which genes or proteins were retained in plastids, 
such as inefficient protein import and regulatory coupling of 
genes, may be responsible for variation in plastid GC content 
across non-green plants (Daley and Whelan 2005; Barbrook 
et al. 2006; Wicke et al. 2016).

The accumulation of both G/C tracts and A/T tracts is 
regulated by the DNA polymerase/mismatch repair system 
(Akashi and Yoshikawa 2013), but these two events showed 
great variation in diversity: the amount of A/T tracts was 
nearly three times that of G/C tracts (Table 1). This observa-
tion suggested a bias toward accumulation of A/T tracts over 
accumulation of G/C tracts in the coding region of angio-
sperm plastomes. A similar conclusion was also reached in 
previous studies (Eyre-Walker 1999; Smith and Eyre-Walker 
2001; Massouh et al. 2016). This pattern was considered 
to be a consequence of the lower biochemical stability and 
higher energy cost of a G/C pair compared with an A/T pair, 
the limitation of available resources (Rocha and Danchin 
2002; Akashi and Yoshikawa 2013), and selections for pro-
tection against inactivation and high mutability, considering 
the relative mutation rates of mononucleotide repeats (Boyer 
et al. 2002; Gragg et al. 2002).

Phylogenetic Signal, Correlations, and Variation 
in the Evolutionary Rate

The taxonomic value of GC content has been widely rec-
ognized in taxonomic studies of micro-organisms (Stack-
ebrandt and Liesack 1993; Johnson and Whitman 2007; Tin-
dall et al 2010) and phylogenomic studies of plants (Šmarda 
et al. 2014; Yu et al. 2020). However, it was also argued 
recently that distinct species living in the same environmen-
tal conditions tend to show similar GC content (Foerstner 
et al. 2005; Mann and Chen 2010). In this study, we failed 
to detect strong phylogenetic signals in GC content and G/C 
tracts in plastid genomes of angiosperms using the K-statis-
tic (Table 1), indicating that close relatives are less similar 
than expected under a Brownian motion model of trait evo-
lution. This pattern could be resulted either from adaptive 
radiations in which close relatives rapidly differentiate to 
fill new niches or from convergent evolution (Kamilar and 
Cooper 2013). In contrast, evolution of A/T tracts (per kb) 
showed a strong phylogenetic signal, making it an informa-
tive feature that could be used in the taxonomy of flower-
ing plants. Nevertheless, we cannot completely rule out the 

Table 1  Correlations between GC content and two deletion events 
separately or as a whole

The analyses were performed in all angiosperms and three major sub-
clades using phylogenetic independent contrast
Coefficients > 0.5 or <  − 0.5 and p-values < 0.001 were considered 
significant and were shown in bold

Statistics Sampled / 
(species diver-
sity)

Coefficient p-value

Angiosperms 1381 (0.46%)
GC content vs. G/C tracts 0.74  < 0.001
GC content vs. A/T tracts  − 0.82  < 0.001
G/C tracts vs. A/T tracts  − 0.40  < 0.001
GC content vs. (A/T + G/T) 

tracts
 − 0.52  < 0.001

Monocots 374 (0.60%)
GC content vs. G/C tracts 0.76  < 0.001
GC content vs. A/T tracts  − 0.88  < 0.001
G/C tracts vs. A/T tracts  − 0.56  < 0.001
GC content vs. (A/T + G/T) 

tracts
 − 0.57  < 0.001

Superrosids 424 (0.5%)
GC content vs. G/C tracts 0.75  < 0.001
GC content vs. A/T tracts  − 0.85  < 0.001
G/C tracts vs. A/T tracts  − 0.50  < 0.001
GC content vs. (A/T + G/T) 

tracts
 − 0.55  < 0.001

Superasterids 468 (0.46%)
GC content vs. G/C tracts 0.65  < 0.001
GC content vs. A/T tracts  − 0.78  < 0.001
G/C tracts vs. A/T tracts  − 0.24  < 0.001
GC content vs. (A/T + G/T) 

tracts
 − 0.50  < 0.001
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possibility of “measurement errors” using the present dataset 
(Blomberg et al. 2003), in relation to disproportional sam-
pling, topological uncertainty, and errors in branch length.

The mutation biases are considered as being among the 
major causes for variation in GC content (Filipski 1987; 
Suoeka 1988), and high GC content in turn was assumed 
to accelerate the rate of all mutations, including single base 
substitutions and deletions/replications (Kiktev et al. 2018). 
These assumptions were partly supported in this study, as we 
found evidence supporting that GC content was positively 
correlated with G/C tracts. However, the negative correlation 
with A/T tracts simultaneously identified in this study raised 
the possibility of a trade-off between accumulation of the 
two deletion events, G/C and A/T tracts, a process that was 
probably associated with competition for limited energy/
resources (Rocha and Danchin 2002; Hellweger et al. 2018). 
Under this assumption, the accumulation of G/C tracts is 
directly affected by GC content, while the accumulation 

of A/T tracts depend heavily on the availability of energy/
resources. In addition, the heterogeneity of energy costs for 
different base pairs (i.e., higher energy cost for a G/C pair 
than for an A/T pair) may be responsible for the reduced 
number of all deletion events as GC content increases, as 
long as the above trade-off is taken into account. In this 
respect, variation in plastid GC content might be a mixed 
strategy for species to optimize fitness in fluctuating envi-
ronments, partly through influencing the trade-off between 
GC → AT and AT → GC mutations (both single base substi-
tution and deletions). Nevertheless, little is currently known 
about how GC content responds to ecological fluctuation.

The heterogeneity of the evolutionary rate of plastid 
GC content across angiosperms suggested that some other 
factors, rather than functional constraints on photosynthe-
sis, have shaped the evolution of this trait. One possibility 
is selection for a broader tolerance range. In monocots, 
Šmarda et al. (2014) proposed that increased GC content 
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in grasses (Poaceae) may facilitate complex gene regu-
lation, and consequently, favor these groups to grow in 
seasonally cold and dry climates. If so, an increase in 
plastid GC content of grass family may also be a response 
to such stressful environments, given the significant func-
tions of plastid genes in energy and material metabolism, 
as well as the connections between plastid and nuclear 
genomes in gene regulation and assembly (Martin et al. 
2002). Another possibility is plant size. This trait is often 
associated with mutation rate across angiosperms (Lanfer 
et al. 2013) and ferns (Barrera-Redondo et al. 2018): taller 
vascular plants tend to have slower substitution rates than 
smaller ones. One line of evidence consistent with this 
hypothesis is that taller palms showed both slower muta-
tion rate (Barret et al. 2016) and lower GC content than 
their herb relatives, e.g., Poales (Table S1). Coincidently, 
in this study, we found a significant increase of GC con-
tent in small-mean-sized angiosperm groups, for example, 
Poales and Lamiids, in which most members are herbs, and 
a decrease in a few large-mean-sized clades, for example, 
Rosids, in which most members are taller trees. Apart from 
these two factors, some others that have been proposed 
to explain the variation in plastid GC content in several 
lineages, should also be taken into account, such as the 
frequency of RNA editing (Smith 2009) and gBGC (Niu 
et al. 2017). In general, the above hypotheses still need to 
be verified across a broad range of species diversity.

This study explored the dynamic evolution of GC 
content in the coding region of plastid genomes across 
angiosperms using a comprehensive phylogeny and a large 
taxon-character dataset. Our results not only provide evi-
dence to support the hypothesis of adaptive evolution of 
GC content and G/C tracts but also revealed the complex 
correlations between GC content and diversity of mono-
nucleotide repeats. This work also implies that variation 
in plastid GC content of angiosperms may be attributed 
to a combination of various factors, such as functional 
constraints on photosynthesis, selection for a broad tol-
erance range, competition for available energy/resources, 
and plant size. Nevertheless, some crucial issues about 
the biological and ecological significance of plastid GC 
content remain unknown, such as whether variation in 
plastid GC content could reflect the ecological distribu-
tion range, or mutation rate; whether plastid GC content 
has evolved independently from floral/lifestyle traits, and 
to what extent the variation in GC content is heritable.
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