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Abstract
Over twenty years ago Galtier and Lobry published a manuscript entitled “Relationships between Genomic G + C Content, 
RNA Secondary Structure, and Optimal Growth Temperature” in the Journal of Molecular Evolution that showcased the lack 
of a relationship between genomic G + C content and optimal growth temperature (OGT) in a set of about 200 prokaryotes. 
Galtier and Lobry also assessed the relationship between RNA secondary structures (rRNA stems, tRNAs) and OGT, and 
in this case a clear relationship emerged. Increasing structured RNA G + C content (particularly in regions that are double-
stranded) correlates with increased OGT. Both of these fundamental relationships have withstood test of many additional 
sequences and spawned a variety of different applications that include prediction of OGT from rRNA sequence and compu-
tational ncRNA identification approaches. In this work, I present the motivation behind Galtier and Lobry’s original paper 
and the larger questions addressed by the work, how these questions have evolved over the last two decades, and the impact 
of Galtier and Lobry’s manuscript in fields beyond these questions.
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Motivation of the Original Work

DNA base composition is one of the most fundamental 
properties of a genome. Chargaff’s measurements of base 
composition in double-stranded DNA (Chargaff 1951) were 
important for the development and acceptance of Watson 
and Crick’s structural model of DNA (Watson and Crick 
1953) long before one could count individual guanine 
and cytosine residues on a sequencing trace. Organismal 
genomic G + C content can vary widely from less than 20% 
to over 75%, yet there is typically less variation between 
different locations within a given species genome (Bohlin 
et al. 2010). Over 50 years after the discovery of DNA’s 
structure, understanding what drives variation in genomic 
G + C content is still very much an open question, despite 
DNA sequence data from a multitude of biological entities. 
It is still unclear whether G + C content variation may be 

generated by neutral processes such as mutational bias or 
biased gene conversion, or is primarily the result of natural 
selection. Furthermore, even if such variation is the result 
of natural selection, is selection acting on the genomic DNA 
itself, or rather on the molecules (e.g. RNAs and proteins) 
encoded by the DNA? These questions were ultimately the 
subject of Galtier and Lobry’s paper published in J. Mol. 
Evol. in 1997 entitled ‘Relationships between Genomic 
G + C content, RNA Secondary Structures, and Optimal 
Growth Temperature’ (Galtier and Lobry 1997).

Despite the far-reaching nature of the questions outlined 
above, Galtier and Lobry sought to test a relatively specific 
hypothesis in their work. Chargaff is best known for describ-
ing the base-composition of double-stranded DNA, in par-
ticular that the quantities of adenosine (A) and thymine (T) 
are equal, and the quantities of guanine (G) and cytosine 
(C) are equal (Chargaff’s first parity rule) (Chargaff 1951). 
Somewhat surprisingly, this observation also appears to hold 
true for single-stranded DNA in many cases [termed Char-
gaff’s parity rule 2 or PR2 (Sueoka 1995)], although this 
rule is not as exact and there are frequently local variations 
that do not comply. Attributes consistent with PR2 were first 
described in Bacillus subtilis (Rudner et al. 1968a, b; Karkas 
et al. 1968), but subsequently proved true in a wide variety 
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of different genomic sequences (Mitchell and Bridge 2006). 
Two hypotheses to explain PR2 during the late 1990′s were: 
(1) this phenomenon is due to mutational bias in the replicat-
ing polymerase (Sueoka 1962, 1995); and (2) this property 
is due to natural selection favoring the formation of self-
complementary oligonucleotides within the DNA that might 
form hairpin structures (Forsdyke 1995). Galtier and Lobry 
proposed that the second hypothesis would predict that 
genomic G + C content should increase as organismal opti-
mal growth temperature (OGT or Topt) increases to ensure 
that DNA hairpin structures would remain stable. Thus, the 
goal of their study was to determine whether this prediction 
was supported by a large set of prokaryotic genomes.

Like many bioinformaticians, Galtier and Lobry largely 
compiled existing data for their study (Staley et al. 1984; 
Dalgaard and Garret 1993; Van de Peer et al. 1994; Sprinzl 
et al. 1996), and the methods used to determine genomic 
G + C content (thermal melting curves or buoyant density 
centrifugation) would be considered quite crude compared 
to the precision that sequencing provides today. Using this 
data, Galtier and Lobry found that OGT and genomic G + C 
content do not display a clear relationship, thus casting doubt 
on the hypothesis that secondary structures in genomic DNA 
explain Chargaff’s PR2 (Galtier and Lobry 1997). Despite 
the specific nature of the hypothesis addressed, the two find-
ings for which this paper is most frequently cited are quite 
general. The first is the lack of relationship between OGT 
and genomic G + C content. The second is that G + C content 
in the stems of the 16S and 23S rRNAs, and generally in the 
5S rRNA and tRNAs, does correlate with organismal OGT. 
Both of these trends had previously been established in the 
context of hyperthermophilic archaea (Dalgaard and Garret 
1993). However, the work of Dalgaard and Garret included a 
small number of organisms (about twenty vs. over one-hun-
dred in Galtier and Lobry), which belonged to a limited phy-
logenetic distribution with narrow environmental diversity 
(thermophilic archaea with a few additional model species 
for comparison). Galtier and Lobry extended the findings of 
Dalgaard and Garrett across significantly more bacterial spe-
cies, and in so doing extended the story beyond thermophilic 
archaea to a much more general phenomenon that attracted 
significantly more interest.

In the years since the publication of Galtier and Lobry’s 
manuscript, work toward understanding forces at work in 
genome composition has continued. The debate regarding 
the relationship between genome composition and thermo-
stability was by no means settled by this work, and satisfying 
explanations for Chargaff’s PR2 and the diversity of G + C 
observed across diverse genomes remain elusive over 20 
years later. The two major findings of Galtier and Lobry 
have spurred significant further work that encompasses a 
range of different applications that take advantage of the 
relationships between OGT, structured RNA G + C content, 

and genomic G + C content. These include: prediction of 
organism OGT based on 16S rRNA sequence, separation or 
enrichment of DNA extracted from microbial communities 
for a particular sub-populations based on G + C content, and 
computational methods for structured RNA identification.

Resolving the Relationship 
Between Genomic G + C Content 
and Thermoadaptation

The work of Galtier and Lobry provided evidence against 
adaptation to growth at higher temperature directly impact-
ing genomic G + C content. However, this premise was 
further assessed using several different genomic subsets or 
better controlled sets of genomes by many additional stud-
ies from a range of authors over the years. Analysis of the 
three codon positions in coding sequences separately (under 
the assumption that the third codon position is less likely 
to be under selection for protein function), showed that 
GC content of the third codon closely mirrors that of the 
genome as a whole and does not correlate with OGT (Hurst 
and Merchant 2001). However, analysis of coding sequence 
dinucleotide frequencies indicated some OGT correlated 
changes, suggesting that thermoadaptation could directly 
impact genome dinucleotide frequencies (Nakashima et al. 
2003). Several additional studies have assessed whether bet-
ter phylogenetically informed sampling (comparing pairs of 
genomes from within the same class) enable better detection 
of a correlation between OGT and G + C content (Musto 
et al. 2004, 2006; Wang et al. 2006). However, findings 
from such works remain controversial and are not neces-
sarily robust across many bacterial genera. It is clear that 
many factors such as codon bias (Knight et al. 2001) and 
changes in protein composition associated with thermoadap-
tation (Singer and Hickey 2000), may impact genomic G + C 
content (Hickey and Singer 2004). However, none of these 
factors yield a clear relationship between genomic G + C 
content and OGT.

Alternative Explanations for Chargaff’s 
Second Parity Rule

Although Galtier and Lobry concluded that ssDNA hairpins 
are not likely a significant contributor to Chargaff’s second 
parity rule (PR2), during the decades since its original for-
mulation Chargaff’s PR2 has largely proven robust as addi-
tional sequence data is collected. It applies to most complete 
genomes (Mitchell and Bridge 2006), although genomes 
of organelles (Mitchell and Bridge 2006; Nikolaou and 
Almirantis 2006) and sDNA viruses (Mitchell and Bridge 
2006) are notably not compliant. Furthermore, although 
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most complete genomes do follow PR2, there are signifi-
cant local deviations. In bacterial genomes, the direction 
of replication and ori position significantly impact genome 
composition (McLean et al. 1998; Nikolaou and Almiran-
tis 2005), sequences that are actively transcribed also tend 
to display purine loading (Szybalski et al. 1966; Bell and 
Forsdyke 1999), and exons tend to conform to PR2 more 
than intronic sequence in eukaryotes (Touchon et al. 2004). 
Despite such local variations, the rule has been extended 
from symmetry of mononucleotide frequencies to include 
symmetry of oligonucleotide frequencies (Qi and Cuticchia 
2001; Baisnée et al. 2002; Shporer et al. 2016). The most 
satisfying explanations for the maintenance of Chargaff’s 
second rule invoke frequent duplication, inversion, and 
transposition events in the genome (Albrecht-Buehler 2006, 
2007; Okamura et al. 2007).

Causes for G + C Content Variability: Neutral 
Processes or Natural Selection?

The potential causes of diverse genomic G + C content 
essentially reduce to whether the observed variation is due to 
neutral processes (Sueoka 1962, 1999) or natural selection. 
It is easy to imagine how neutral processes may contribute 
to nucleotide content and several studies have assessed the 
viability of this option across different species (Zhao et al. 
2007; Wu et al. 2012). However, most bacterial polymerases, 
even those from high G + C content organisms, display a 
bias toward conversion of G–C pairs into A–T pairs (Lind 
and Andersson 2008; Hershberg and Petrov 2010; Hilde-
brand et al. 2010; Wielgoss et al. 2011), although this may 
not be universally true (Dillon et al. 2015). Increasingly it 
appears that G + C content in genomes may be the result of 
a combination of neutral and selection processes that are 
quite subtle (Reichenberger et al. 2015). In prokaryotes cod-
ing sequences tend to be more G + C rich than non-coding 
regions (Bohlin et al. 2008), coding regions part of the core 
genome are higher G + C than those of the periphery genome 
(Bohlin et al. 2017), but modeling studies of substitution 
rates in the core genome still suggest a universal G–C to 
A–T mutational bias(Bohlin et al. 2018). Symbiotic bacteria 
whose genes are under less selective pressure, have both 
highly reduced and very A + T rich genomes (McCutcheon 
and Moran 2011) suggesting that lack of selection leads to 
A + T richness.

An alternative neutral process that has been invoked 
to explain variation in G + C content is biased gene-
conversion. In eukaryotes G–C alleles are more likely to 
be maintained than A–T alleles during gene conversion 
events (Mugal et al. 2015). Such events are also proposed 
to impact bacterial genomes, and a positive correla-
tion is observed between G + C content and evidence of 

recombination for genes in the core genome (Lassalle et al. 
2015). Furthermore, the presence of machinery necessary 
for non-homologous end joining (NHEJ) is also correlated 
with increased G–C content (Weissman et al. 2019). The 
combination of these studies with the observation that 
increased genomic G + C content may correlate with envi-
ronmental conditions such as aerobiosis (Naya et al. 2002; 
Romero et al. 2009), suggests that DNA damage may play 
a role in prokaryotic genomic G + C content. Thus, the 
essential question, what causes the strikingly large range 
of G + C content over diverse prokaryotic genomes, likely 
has a quite nuanced answer, and remains open even as 
more, and greater diversity, genomes are available.

rRNA G + C Content and Optimal Growth 
Temperature

The observation of Galtier and Lobry, that structured 
non-coding RNAs, and in particular their double-stranded 
regions, displayed a strong correlation between G + C con-
tent and OGT has been widely verified. Additional work 
shows that the G + C content in rRNAs occurs most notice-
ably in the regions expected to be base-paired, but also 
extends to loop regions (although with a small effect size) 
(Wang et al. 2006). The effect occurs among sequences 
chosen to control for differences in G + C content due to 
taxonomy (from the same genera), and cold-adapted organ-
isms (in contrast to just mesophiles and thermophiles) 
display similar trends in their rRNA (Wang et al. 2006) 
and tRNA (Dutta and Chaudhuri 2010). Furthermore, the 
same observation can also be made for other structured 
RNAs such as the signal recognition particle (SRP) RNA 
(Miralles 2010). Additionally it has been found that the 
expression of different copies of the rRNAs with differing 
G + C composition in the same organism may be tuned to 
temperature, with higher G + C content rRNAs enabling 
increased fitness at higher temperatures (Sato et al. 2017; 
Sato and Kimura 2019).

The robustness of G + C composition correlation with 
OGT, has also spurred efforts to more broadly understand 
what other factors contribute to RNA thermostability. OGT 
also correlates with a decrease in the prevalence of uracil 
(U) specifically, although this does not seem to correspond 
with a replacement of G·U base-pairs with more G–C base-
pairs, but rather a decrease in U prevalence across the mol-
ecule, including loop regions (Khachane et al. 2005). The 
structure of a thermophilic ribosome also appears to be more 
tightly packed than that of a mesophile (Mallik and Kundu 
2013), and tRNAs in thermophiles may also display better 
folding characteristics than those in psychrophiles using in 
silico models of RNA folding (Dutta and Chaudhuri 2010).
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Using rRNA G + C to Predict Optimal Growth 
Temperature

There are several applications of the observed correlation 
between OGT and G + C content in functional RNAs. One 
of these is enrichment of a sampled microbial community 
for organisms from a specific environment (Kimura et al. 
2006). A second application of this correlation is the esti-
mation of OGT, typically based on rRNA sequence (or its 
composition determined from melt-curves) (Kimura et al. 
2010). This approach may be applied to single organ-
isms, or increasingly to confirm the native environment 
of sequences isolated from metagenomic sequencing 
(Ragon et al. 2013; Kimura et al. 2013). As the amount of 
sequence in derived from whole genome shotgun sequenc-
ing (WGS) compared with 16S rRNA has shifted in such 
studies, methods have expanded to include additional 
features from genomic sequence such as ORF composi-
tion, but the composition of the tRNA and rRNA has a 
significant impact on accuracy even in the context of this 
addition data (Sauer and Wang 2019), although prediction 
based on proteomic data alone can also be effective (Li 
et al. 2019).

Even prior to the development of quantitative regres-
sions to predict OGT based on genomic features, the rela-
tionship between rRNA G + C content and OGT was used 
to speculate about the environment of the last universal 
common ancestor (LUCA). In an early work Galtier et al. 
used a Markov model of sequence evolution coupled with 
maximum likelihood analysis to suggest that the ances-
tral rRNA contained sequence features consistent with 
a mesophilic origin (Galtier et al. 1999). However, this 
finding was rapidly disputed by others using alternative 
reconstruction techniques (e.g. maximum parsimony), as 
well as including additional molecules for analysis such as 
tRNA (Di Giulio 2000), or protein sequences (Di Giulio 
2001, 2003). More realistic models based on both protein 
and rRNA reconstructed sequences indicated the potential 
for a mesophilic origin followed by divergence and parallel 
adaptation to higher temperatures followed by subsequent 
adaptation to more temperature environments (Boussau 
et al. 2008; Groussin and Gouy 2011). While this question 
is increasingly tackled by approaches that utilize far more 
information than what was available 20 years ago to recon-
struct entire ancestral gene sets, a clear consensus still has 
not been reached (Weiss et al. 2016; Akanuma 2017).

Using G + C Content to Identify ncRNA

Another application of the relationship between structured 
RNA G + C content and organismal OGT coupled with the 
lack of relationship between G + C content and OGT, is the 
computational discovery of novel structured RNAs. It is 
established that stable structures may be formed by many 
sequences that do not encode functional RNA structures 
(Rivas and Eddy 2000). However, the premise that in a 
high A + T genome, structured RNAs should be encoded 
by regions with higher G + C content so that such mole-
cules retain their stability, is valid. Several different meth-
ods for ncRNA identification across a range of different 
species use some variation of this premise. Deviation from 
genomic G + C content alone was used to identify ncR-
NAs within extreme hyperthermophiles Methanococcus 
jannaschii and Pyrococcus furiosus (which have modest 
genomic G + C contents of ~ 30% and ~ 40%, respectively) 
(Klein et al. 2002), in combination with dinucleotide fre-
quencies to find similar results in M. jannaschii (Schattner 
2002), or to screen intergenic regions in A + T rich prokar-
yotic genomes that are further processed by other ncRNA 
comparative genomic approaches (Meyer et al. 2009; Stav 
et al. 2019). Other approaches used genome composition 
as one of many features to identify putative ncRNAs in 
genomes of mesophiles with less genome composition bias 
such as E. coli (Carter et al. 2001). Finally, several A + T 
rich eukaryotic genomes have also been screened in a simi-
lar manner including Plasmodium falciparum (Upadhyay 
et al. 2005) and Dictyostelium discoideum (Larsson et al. 
2008). Thus, although any given mRNA may fold into a 
stable structure, when combined with other information 
G + C content has proven to be a good screening tool for 
ncRNA identification in specific situations where the 
G + C content due to structured RNA stability may rise 
above the genomic background.

Conclusions

The major findings of Galtier and Lobry have proven 
robust nearly 20 years and many additional genomes later. 
They were not the first to observe the relationship between 
G + C content of structured RNA and OGT and contrast 
it with that between genomic G + C and OGT, but they 
placed this observation into a much larger context than 
Dalgaard and Garrett (Dalgaard and Garret 1993), and 
in doing so made the finding accessible to a larger audi-
ence and ultimately seeded several other fruitful areas of 
research. The specific hypothesis that motivated this work 
has long since been superseded by other explanations, but 
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the root questions remain largely unresolved. Thus, this 
work remains highly cited today, and will likely continue 
to be in the future.
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