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Abstract
In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the 
other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. 
There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been asso-
ciated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of 
antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current 
resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot 
yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In 
addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume 
that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimi-
crobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial 
strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors 
that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of 
such new therapeutic targets.
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Introduction

Antibiotic resistance occurs when bacteria have or develop 
the ability to circumvent the mechanisms, which drugs use 
against them. Infections caused by antibiotic-resistant patho-
gens are usually more difficult to treat, and can relapse and 
cause significant morbidity and mortality. Epidemiological 
surveillance networks in Europe and Asia [European Anti-
microbial Resistance Surveillance Network -EARS-Net, 
Central Asia and Eastern European Surveillance of Anti-
microbial Resistance-(CAESAR)] have documented that 

antibiotic-resistant bacteria have become much more prev-
alent during the last decade (European Centre for Disease 
Prevention and Control 2018; World Health Organization 
2017). Also, according to the Centers for Disease Control 
and Prevention (CDC), each year in the US, at least 2 million 
people get infected with antibiotic-resistant bacteria, and at 
least 23,000 people die as a result of these infections (CDC 
2013). It is estimated that globally approximately 700,000 
deaths are attributed annually to antimicrobial resistance and 
this could rise to 10 million deaths per year by 2050 (O’Neill 
2014). Additionally, infections due to antimicrobial-resistant 
bacteria like those caused by multidrug-resistant Acineto-
bacter baumannii, Klebsiella pneumoniae, and methicillin-
resistant Staphylococcus aureus (MRSA) result in longer 
duration of hospitalization and pose a significant economic 
burden on national healthcare systems.

Antimicrobial resistance, however, is associated with the 
widespread use and misuse of antibiotics, in humans, agri-
culture, animal farming, and industry (Harbarth et al. 2015) 
and thus needs to be viewed under a One-Health approach, 
as human health is inextricably linked to the health of 
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animals and the viability of ecosystems. This article aims to 
highlight the most important mechanisms of antimicrobial 
resistance as well as describe how these have emerged and 
evolved and what drives their persistence over time. A better 
understanding of the evolutionary drivers of antimicrobial 
resistance may offer novel perspectives on ways to tackle this 
critical public health threat.

Antimicrobials and Antimicrobial Resistance: 
A Brief History

Penicillin, discovered by Alexander Fleming in 1928, was 
the first antibiotic used successfully to control bacterial 
infections in soldiers during World War II. However, even 
before the use of penicillin, in 1940, the first penicillin-
resistant Staphylococcus strains had already been described. 
To counteract the first penicillinases, methicillin was intro-
duced in 1959 and one year later, in 1960, a methicillin-
resistant Staphylococcus strain was reported (Sengupta et al. 
2013). Vancomycin was introduced in 1958 for the treatment 
of methicillin-resistant staphylococci. A couple of decades 
later, in 1979, coagulase-negative staphylococci resistant to 
vancomycin were reported and ten years later resistance in 
enterococci was described (Courvalin 2006), followed by, 
in 1997, the report of less-susceptible S. aureus (vancomy-
cin-intermediate S. aureus, VISA) strains in Japan (Levine 
2005). Another historical example is tetracycline, which 
was introduced in 1950 followed by tetracycline-resistant 
Shigella strains being reported in 1959. Furthermore, levo-
floxacin was introduced into clinical practice in 1996 and 
in the same year levofloxacin-resistant pneumococcus was 
reported (Sengupta et al. 2013).

For two decades, between 1960 and 1980, there was a 
seemingly adequate production of new antimicrobials by 
the pharmaceutical industry. However, after the 1980s, the 
rate of discovery of new antibiotic classes had dramatically 
decreased, until recently, when a new interest has sparked 
(Parmar et al. 2018). As a consequence of increasing anti-
microbial resistance and a thin new antimicrobial pipeline, 
bacterial infections due to multidrug-resistant or extensively 
drug-resistant pathogens have become a major concern in 
clinical practice worldwide.

Antimicrobial Resistance: Intrinsic, Acquired, 
and Adaptive

Antibiotic resistance exhibited by bacteria can be intrinsic, 
acquired, or adaptive (Joon-Hee 2019).

Intrinsic resistance is defined as the resistance exhibited 
due to the inherent properties of the bacterium. Examples 
of intrinsic resistance include the glycopeptide resistance 

exhibited by Gram-negative bacteria due to the imperme-
ability of the outer membrane present in the Gram-negative 
bacterial cell envelope.

Acquired resistance is defined as the resistance exhibited 
when a previously sensitive bacterium acquires a resistance 
mechanism by either a mutation or the acquisition of new 
genetic material from an exogenous source (horizontal gene 
transfer). Horizontal gene transfer can occur through three 
main mechanisms (Holmes et al. 2016; Munita and Arias 
2016).

Transformation: This is a form of genetic recombination 
in which free DNA fragments from a dead bacterium enter 
a recipient bacterium and are incorporated into its chromo-
some. Only a few bacteria are naturally transformable.

Transduction: Transduction involves the transfer of 
genetic material between a donor and a recipient bacterium 
by a bacteriophage.

Conjugation: This is probably the most important mech-
anism of horizontal gene transfer. It involves the transfer 
of genetic material from one bacterial cell to another by 
direct physical contact between the cells. A sex pillus forms 
between the two bacterial cells through which a plasmid is 
transferred from the donor cell to the recipient cell. Multiple 
resistance genes are often present on a single plasmid ena-
bling the transfer of multidrug resistance in a single conju-
gation event. The assembly of multiple resistance genes on 
a single plasmid is mediated by mobile genetic elements 
(transposons, integrons, and Insertion Sequence Common 
Region- ISCR-elements).

Adaptive resistance is defined as the resistance to one or 
more antibiotics induced by a specific environmental sig-
nal (e.g., stress, growth state, pH, concentrations of ions, 
nutrient conditions, sub-inhibitory levels of antibiotics). In 
contrast to intrinsic and acquired resistance, adaptive resist-
ance is transient. Adaptive resistance, which allows bacte-
ria to respond more rapidly to antibiotic challenge, gener-
ally reverts to the original state once the inducing signal is 
removed (Fernández et al. 2011; Joon-Hee 2019; Motta et al. 
2015; Salimiyan Rizi et al. 2018).

Adaptive resistance seems to be the result of modulations 
in gene expression as a response to environmental changes. 
Rather than being caused by genetic alterations, which usu-
ally produce irreversible phenotypes, adaptive resistance 
is possibly the result of epigenetic changes. Specifically, 
it has been suggested that DNA methylation by the DAM 
methylase could be responsible for the presence of differ-
ent gene expression profiles in a bacterial population and 
could provide the heterogeneity and epigenetic heredity of 
gene expression essential for adaptive resistance to occur 
(Motta et al. 2015; Salimiyan Rizi et al. 2018). In particular, 
modulation of the expression of efflux pumps and porins 
have been implicated in the emergence of adaptive resistance 
(Motta et al. 2015).
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The phenomenon of adaptive resistance may be respon-
sible for the differences observed when comparing the 
in vitro and in vivo effectiveness of an antibiotic and could 
be involved in the clinical failure of antibiotic treatments. 
Moreover, the increase in resistance in response to envi-
ronmental stimuli may not completely revert upon removal 
of the stimulus leading to a gradual increase in MIC over 
time (Fernández et al. 2011). Finally, it has been proposed 
that the ability of bacterial populations to proliferate in the 
presence of sub-inhibitory levels of antibiotics through adap-
tive resistance may eventually allow for more effective and 
permanent mechanisms of resistance to develop (Fernández 
et al. 2011; Salimiyan Rizi et al. 2018).

Mechanisms of Antibiotic Resistance

Resistance to antibiotics is typically the result of antibiotic 
destruction or modification, target alterations (target replace-
ment, target site mutations, target site enzymatic alterations, 
target site protection, target overproduction or target bypass), 
and reduced antibiotic accumulation due to either decreased 
permeability and/or increased efflux. Alternatively, antibi-
otic resistance can be the result of a global adaptation of 
the bacterial cell (Table 1). We discuss the main antibiotic 
resistance mechanisms with their clinically relevant impact.

Antibiotic Destruction

β-Lactamases are the best example of antibiotic resistance 
mediated by the destruction of the antibiotic molecule. 
These enzymes destroy the amide bond of the β-lactam ring 
essentially rendering the antimicrobial ineffective. The first 
β-lactamases were described in 1940 (Abraham and Chain 
1940), 1 year before penicillin was introduced into clinical 
practice. More than 1000 β-lactamases have been reported 
up to date produced by diverse bacteria (www.lahey​.org/
studi​es) and are considered to be the most common resist-
ance mechanism leading to β-lactam resistance among 
Gram-negative bacteria. Genes encoding β-lactamases can 
be found in the chromosome or in mobile genetic elements 
(MGEs), which has facilitated their dissemination among 
bacteria. TEM-1, a plasmid-encoded β-lactamase, was 
described in Gram-negative bacteria in the 1960s. From 
then on, the introduction of new β-lactams was followed by 
the identification of new β-lactamases capable of destroy-
ing the novel compound. The introduction of third-gener-
ation cephalosporins, for example, in the early 1980s was 
quickly followed by the identification of plasmid-encoded 
β-lactamases capable of hydrolyzing third-generation ceph-
alosporins (Extended-Spectrum β-Lactamases-ESBLs) in 
1983 (Knothe et al. 1983). β-lactamase groups of great clini-
cal importance in Gram-negative bacteria include ESBLs 

(enzymes conferring resistance to penicillins, first-, sec-
ond-, third-generation cephalosporins, and aztreonam but 
not cephamycins or carbapenems and which are inhibited by 
β-lactamase inhibitors) (Paterson and Bonomo 2005), AmpC 
enzymes (enzymes conferring resistance to penicillins, first-, 
second-, third-generation cephalosporins, aztreonam, and 
cephamycins but not carbapenems and which are not inhib-
ited by β-lactamase inhibitors) (Jacoby 2009) and carbap-
enemases (a diverse group of enzymes conferring carbap-
enem resistance with many conferring resistance to almost 
all hydrolyzable β-lactams) (Queenan and Bush 2007).

Antibiotic Modification

Enzymatic modification of the antibiotic molecule is the 
commonest mechanism of clinically relevant aminoglycoside 
resistance. Aminoglycoside modifying enzymes (AMEs) 
mediate aminoglycoside acetylation, phosphorylation, or 
adenylation with the resulting modified antibiotic having a 
decreased avidity for its target. The genes encoding AMEs 
are usually located in MGEs enabling them to efficiently 
disseminate among bacteria. As a result, virtually all medi-
cally important bacteria can demonstrate aminoglycoside 
resistance through this mechanism (Ramirez and Tolmasky 
2010). Enzymatic acetylation of the antibiotic molecule is 
the commonest mechanism of chloramphenicol resistance. 
Many chloramphenicol acetyltransferases (CATs) have been 
described in a wide range of bacterial species (Schwarz et al. 
2004).

Modifications of Antibiotic‑Activating Enzymes

Activation of nitrofurantoin by bacterial reductases resulting 
in the formation of toxic intermediate compounds is required 
for nitrofurantoin antimicrobial activity. Mutations in the 
nitroreductase genes nfsA and nfsB comprise the principal 
mechanism of nitrofurantoin resistance (Osei Sekyere 2018; 
Whiteway et al. 1998). Mutations in the ribE gene have also 
been implicated in nitrofurantoin resistance. The ribE gene 
encodes a lumazine synthase, an enzyme required for the 
biosynthesis of riboflavin (an important co-factor of nfsA 
and nfsB) (Osei Sekyere 2018).

Target Replacement or Target Bypass

Replacement of the bacterial Penicillin-Binding Proteins 
(PBP) is the mechanism underlying β-lactam resistance 
in Streptococcus pneumoniae and methicillin resistance in 
Staphylococcus aureus.

β-lactam resistance among Streptococcus pneumo-
niae is the result of the production of mosaic PBP genes. 
These genes are produced by the recombination of native 
DNA and foreign DNA originating from β-lactam-resistant 

http://www.lahey.org/studies
http://www.lahey.org/studies
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streptococci (transformation). Methicillin resistance in 
Staphylococcus aureus is the result of the acquisition of the 
mecA gene and its incorporation into the bacterial chromo-
somal DNA. The mecA gene is located on a mobile genetic 
element known as staphylococcal chromosomal cassette 
mec (SCC mec). The mecA gene encodes Penicillin-Binding 
Protein 2a (PBP2a), a unique PBP with a very low affin-
ity for all β-lactams (penicillins, cephalosporins except for 
last-generation compounds and carbapenems). As a result, 
it allows effective cell wall synthesis to continue even in 
the presence of β-lactams (Chambers 1999; Hiramatsu et al. 
2013; Moellering 2012).

Glycopeptide resistance in enterococci involves the 
acquisition of a set of genes (van gene clusters) that lead 
to the replacement of the glycopeptide target (the terminal 
d-Alanine-d-Alanine moiety of peptidoglycan precursors) 
reducing the binding affinity of the antibiotic molecule. 
The change of the terminal d-Alanine-d-Alanine moiety to 
d-alanine-d-lactate leads to high-level resistance while the 
change to d-alanine-d-serine leads to low-level resistance 
(Miller et al. 2014). Development of high-level vancomy-
cin resistance in Staphylococcus aureus (VRSA) due to the 
acquisition of the vanA gene cluster form vancomycin-resist-
ant enterococci has been reported (Sievert et al. 2008) but 
fortunately continues to be a rare phenomenon.

Acquisition of dihydrofolate reductase (DHFR) and 
dihydropteroate synthase (DHPS) genes coding for trimeth-
oprim-resistant DHFR enzymes and sulfonamide-resistant 
DHPS enzymes, respectively, has been reported to result 
in transferable resistance to these antimicrobial agents (Eli-
opoulos and Huovinen 2001). The ability of enterococci 
to utilize exogenous folinic acid may increase the MIC to 
trimethoprim-sulfamethoxazole in vivo resulting in thera-
peutic failure when treating enterococcal infections with tri-
methoprim-sulfamethoxazole (Zervos and Schaberg 1985).

Target Site Alteration (By Mutation or Enzymatic 
Alteration)

Mutations in genes encoding the domain V of the 23SrRNA 
are the commonest mechanism of linezolid resistance. Since 
bacteria carry multiple copies of the 23SrRNA genes, the 
number of the mutated alleles correlates with the increase 
in MIC. Mutations in multiple alleles need to occur in order 
for clinically relevant resistance to manifest. Mutations in 
the ribosomal proteins L3 and L4 which border the linezolid 
binding site have also been associated with linezolid resist-
ance (Miller et al. 2014). 23SrRNA mutations have also been 
implicated in the development of macrolide, lincosamide, 
and streptogramin B resistance (Leclercq 2002).

Quinolone resistance is most often the result of chro-
mosomal mutations in the bacterial gyrase and/or topoi-
somerase IV genes (Aldred et al. 2014), while rifampicin 

resistance is usually the result of mutations in the RNA 
polymerase β subunit gene (Goldstein 2014). Mutational 
or recombinational changes in the dihydrofolate reductase 
(DHFR) gene or the dihydropteroate synthase (DHPS) gene 
have been associated with resistance to trimethoprim and 
sulfonamides, respectively, in a number of clinically impor-
tant bacteria (Eliopoulos and Huovinen 2001).

Methylation of the 23SrRNA by enzymes, encoded by a 
variety of erm (erythromycin ribosome methylase) genes, 
confers cross-resistance to macrolides, lincosamides, and 
streptogramin B (a phenomenon called the MLSB pheno-
type) (Leclercq 2002), while methylation of the 23SrRNA 
by an enzyme encoded by the cfr gene has been identified 
as a cause of resistance to linezolid, chloramphenicol, and 
clindamycin (Kehrenberg et al. 2005; Morales et al. 2010; 
Schwarz et al. 2004).

Target Site Protection

Ribosomal protection proteins (RPPs) are an example of 
antimicrobial resistance through target site protection and 
they been described in both Gram-positive and Gram-
negative bacteria (Connell et al. 2003; Roberts 2005). Qnr 
proteins mediate quinolone resistance by acting as a DNA 
analogue and reducing the interaction of the bacterial gyrase 
and topoisomerase IV with DNA. In doing so, they reduce 
the available quinolone binding sites (Aldred et al. 2014). 
Qnr genes can be chromosomal or plasmid-mediated (Jacoby 
et al. 2014).

Target Overproduction

Massive overproduction of the antibiotic target can lead to 
resistance by essentially overwhelming the antibiotic. Over-
production of Dihydrofolate Reductase (DHFR), for exam-
ple, has been reported as a cause of resistance to trimetho-
prim in Eschericia Coli (Eliopoulos and Huovinen 2001; 
Flensburg and Sköld 1987).

Decreased Permeability of the Bacterial Outer 
Membrane

Gram-negative bacteria are surrounded by the outer mem-
brane, a permeability barrier for many substances includ-
ing antibiotics. The low permeability of the bacterial outer 
membrane to specific antibiotic agents is responsible for 
the intrinsic resistance of some Gram-negative bacteria to 
those antibiotics. Moreover, changes in the outer membrane 
permeability can contribute to the development of acquired 
resistance (Nikaido 1989).

Porins are the major route of entry of hydrophilic antibi-
otics (such as β-lactams, fluoroquinolones, tetracyclines, and 
chloramphenicol) through the bacterial outer membrane. The 
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number and type of porins expressed on the outer membrane 
will affect the entry of hydrophilic antibiotics and, therefore, 
the susceptibility of the bacterial cell to them (Fernández 
and Hancock 2012). Mutations affecting the expression or 
the function of porins can lead to acquired antibiotic resist-
ance. These mutations can have different effects such as 
porin loss, the modification of the size or conductance of the 
porins or the reduced expression of porins. Changes in porin 
expression generally lead to low-level antibiotic resistance. 
However, it is common to observe bacterial strains in which 
the effect of changes in porin expression is enhanced by 
the co-existence of other resistance mechanisms. In essence, 
the reduced uptake of the antibiotic due to changes in porin 
expression enhances the effect of co-existent resistance 
mechanisms such us efflux pumps or antibiotic degrading 
enzymes with the result being high-level resistance (Fernán-
dez and Hancock 2012).

Efflux Pumps

Efflux pumps are energy-dependent complex bacterial sys-
tems present on the cytoplasmic membrane which are capa-
ble of pumping toxic molecules out of the cell. The first 
efflux pump pumping tetracycline out of the bacterial cell 
was described in Eschericia Coli in 1980 and was plasmid-
encoded (Ball et al. 1980; McMurry et al. 2006). Since then 
numerous examples of efflux systems involved in antibiotic 
resistance have been identified in both Gram-positive and 
Gram-negative bacteria. Most efflux systems can transport 
multiple unrelated substances and can, therefore, result in 
multidrug resistance (Nikaido and Pagès 2012; Piddock 
2006a, b), although there are some examples of drug-specific 
efflux pumps (Piddock 2006a, b).

Multidrug efflux mechanisms are almost invariably 
chromosomally encoded and in some cases can explain the 
intrinsic resistance of bacteria to specific antibiotics. How-
ever, despite the fact that multidrug efflux mechanisms are 
broadly conserved in bacteria, only a few confer clinically 
relevant antibiotic resistance. Clinical resistance is usually 
the result of mutational events leading to increased pump 
expression or improved pump effectiveness (Piddock 2006a, 
b). Genes encoding substrate-specific efflux pumps, on the 
other hand, tend to be located on mobile genetic elements 
(Fernández and Hancock 2012; Keith 2005). Examples of 
substrate-specific efflux pumps include those specific for tet-
racyclines, macrolides, and chloramphenicol (Keith 2005).

Global Cell Adaptation (Changes in Cell Regulation)

Resistance to antibiotics can occur due to a global adap-
tive response in the bacterial cell (changes in cell regu-
lation) as opposed to single changes. The best clinically 
relevant examples of this type of resistance mechanism are 

daptomycin resistance in enterococci and Staphylococcus 
aureus and low-level vancomycin resistance in Staphylo-
coccus aureus.

Daptomycin kills the bacterial cell by altering cell 
membrane homeostasis. In enterococci, mutations in genes 
encoding regulatory systems controlling cell envelope 
homeostasis and genes involved in phospholipid metabo-
lism have been associated with the development of dapto-
mycin resistance (Miller et al. 2014). In Staphylococcus 
aureus, progressive accumulation of mutations in genes 
involved in key cell membrane events and modifications 
of the cell wall have been associated with the development 
of daptomycin resistance (Bayer et al. 2013).

Intermediate susceptibility of Staphylococcus aureus to 
vancomycin (MIC 4–8 μg/ml) does not seem to result from 
the acquisition of a resistance gene (such as the acquisition 
of the vanA gene cluster seen in VRSA) but from changes 
that usually involve genes forming part of regulatory sys-
tems controlling cell envelope homeostasis. The specific 
mechanisms involved remain unclear but appear to result 
in reduced cell wall turnover and autolytic activity and in 
some cases increased cell wall synthesis, which prevents 
vancomycin from reaching its target site at the cell wall 
division septum (Howden et al. 2010).

Epistasis

A single bacterial cell may contain multiple resistance 
mutations. The resistance phenotype as well as the fitness 
cost of the resistance mutations are not the expected addi-
tive effect of the different mutations but depend on the 
interaction between the different mutations, a phenomenon 
known as epistasis (Borrell et al. 2013; Levin-Reisman 
et al. 2019; Trindade et al. 2009). It has been found that in 
an antibiotic-free environment, the cost of multiple resist-
ance is smaller than that expected due to positive epista-
sis between antibiotic resistance mutations (Borrell et al. 
2013; Trindade et al. 2009). This, obviously, facilitates 
the development of multidrug resistance. Moreover, it has 
been shown that low-level antibiotic exposure can lead to 
high-level resistance through the accumulation of several 
small-effect mutations. The resulting resistance level is 
significantly higher than the expected additive resistance, 
suggesting strong epistatic interactions between the dif-
ferent resistance mutations (Wistrand-Yuen et al. 2018).
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Evolution of Antimicrobial Resistance

The Ancient and Diverse Resistome: A Potential 
Source of Clinically Relevant Resistance Genes

In recent times, we have seen antimicrobial resistance rap-
idly emerge at a global scale and spread from one country 
to the other faster than previously thought. Superbugs and 
multidrug-resistant bacteria are endemic in many parts 
of the world. There is no question that the widespread 
use, overuse, and misuse of antimicrobials during the last 
80 years have been associated with the explosion of anti-
microbial resistance. On the other hand, the molecular 
pathways behind the emergence of antimicrobial resistance 
in bacteria have been present since ancient times (Dcosta 
et al. 2011). Commensals and soil bacteria have been capa-
ble of producing compounds and small molecules with 
antimicrobial potential throughout evolution. For example, 
the emergence of the biosynthetic pathway for erythromy-
cin may date as back as 800 million years (Baltz 2006). 
What is recently better understood is that these inhibi-
tors did not solely evolve to help bacteria survive but also 
served other functions like cell signaling or contributed in 
natural degradation processes, quorum sensing, and bio-
film formation (Davies et al. 2006; Sengupta et al. 2013).

Moreover, we know that bacterial penicillinases were 
present before the widespread use of penicillin, while 
genes encoding β-lactamases have been recovered from 
very remote environmental habitats (Allen et al. 2009; 
Bhullar et al. 2012) and from ancient bacteria (Dcosta 
et al. 2011; Wright 2007). Likewise, it has been found 
that antibiotic resistance genes exist in the gut of people 
who live in isolated areas and who have been minimally 
or never exposed to antimicrobials (Bartoloni et al. 2009; 
Pallecchi et al. 2007).

Thus, there is an increasing body of evidence show-
ing that resistance genes are naturally occurring and in 
abundance in microbial populations (Dantas et al. 2008; 
D’Costa et al. 2006). The antimicrobial resistance genes 
found in different bacterial species in nature comprise the 
environmental resistome (Wright 2007). Sequencing and 
genomic analysis of extensive bacterial libraries (D’Costa 
2006; Dantas et al. 2008) has led to the creation of large 
databases that list thousands of potential resistance genes 
(Lakin et al. 2017; McArthur et al. 2013).

The resistome consists of known and likely novel 
genetic resistance determinants, which carry the potential 
of causing clinically relevant resistance, if successfully 
transferred and/or expressed in pathogens causing human 
disease. Species like soil bacteria, which produce antimi-
crobial products, are obviously intrinsically resistant to 
those molecules. For example, most antibiotic-producing 

actinomycetes possess genes encoding resistance to the 
compounds that they produce (Ogawara et  al. 1999). 
Such resistance mechanisms include genes encoding for 
β-lactamase production or efflux pumps (Cantón 2009; 
Forsman et al. 2009; Piddock 2006a, b). Some of these 
resistance mechanisms have been the ancestors of those 
found in clinically relevant antibiotic-resistant pathogens, 
as evidenced by their similar biochemical and genetic pro-
files (Benveniste and Davies 1973; Cantón 2009).

In addition, old or novel β-lactamases and other resistance 
determinants can arise as new threats under conditions that 
will facilitate their transfer to pathogenic bacteria or their 
enhanced expression. As Kluyvera spp were found to be the 
source of CTX-M genes, species like Streptomyces known 
to produce β-lactamases could be the source of clinically 
important resistance genes (Livermore et al. 2007; Rossolini 
et al. 2008). Interestingly, Kluyvera spp do not exhibit intrin-
sic resistance to extended-spectrum β-lactams nor produce 
antimicrobial compounds (Cantón 2009). It seems that the 
blaCTX-M genes in Kluyvera spp have originated from a 
common ancestor, which was incorporated after horizon-
tal transfer into the Kluyvera chromosome, in ancient times 
(Rossolini et al. 2008). Other examples of such genetic trans-
fers have been documented for genes encoding ribosomal 
methylases affecting aminoglycosides (armA, rtmB), meth-
yltransferases affecting linezolid (cfr), or plasmid-mediated 
efflux pumps conferring low-level fluoroquinolone resistance 
(qepA), all of which were associated with antibiotic-produc-
ing bacteria (Cantón 2009). However, we need more phylo-
genetic studies and metagenomics data in order to define the 
exact role of the environmental resistome in the emergence 
of antimicrobial resistance in human and animal pathogens.

Emergence of Antimicrobial Resistance: Random 
Events, Genetic Exchange, and Selection Pressure

Resistance in bacteria or bacterial communities arises via 
two major mechanisms, either pick-up/transfer of resistance 
genes from other bacteria or gene mutation of pre-existing 
or acquired genes. Strong selection of these genetic events 
is believed to be enhanced in the presence of antimicrobials 
(Cantón 2009; Gillings et al. 2017). Under inhibitory and 
sub-inhibitory concentrations of antimicrobials, bacteria that 
can survive will be selected (Davies and Davies 2010; Gill-
ings et al. 2017). Nonetheless, some antibiotics can modu-
late the expression of virulence factors or upregulate genes 
involved in the SOS response and potentially contribute to 
increased mutation frequency, via the latter (Sengupta et al. 
2013). It has been hypothesized that in the antibiotic era, 
naturally occurring selection occurred and spread more rap-
idly compared to the pre-antibiotic era (Cantón 2009; Davies 
and Davies 2010; Gillings et al. 2017). This can occur either 
in the environment or within the host.
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The emergence of a multitude of antimicrobial-resistant 
microbes and their now established presence not only in the 
clinical setting but also in the environment has been facili-
tated by the widespread use of antibiotics in human health, 
agriculture, aquaculture, animal farming, veterinary medi-
cine, pest control, and pharmaceutical industry. Nonethe-
less, it is well documented that increased antibiotic use is 
correlated with higher resistance rates, as countries with low 
rates of antimicrobial resistance also report lower rates of 
antimicrobial consumption (Costelloe et al. 2010).

Pathogens can exchange pathogenic, virulence, and resist-
ance elements. Transmission by conjugation occurs exten-
sively both in nature and within the host, most abundantly 
in the intestinal tract (Sommer et al. 2010). Horizontal gene 
transfer is most commonly mediated through plasmids, 
which have a key role in the spread of resistance between 
bacterial strains (Davies and Davies 2010; Norman et al. 
2009). For example, resistance genes, which encode modi-
fied β-lactamases, can be transferred rapidly and efficiently 
horizontally. One of the original types of β-lactamases 
known to confer resistance to gram-negative bacteria is 
TEM. However, nowadays, plenty of plasmid-encoded TEM 
enzymes, stemming from random mutations (rapid radia-
tion), have occurred and circulate globally (Gniadkowski 
2008). Also, extended-spectrum β-lactamases (ESBL) now 
encoded by more than 100 CTX-M variant genes have shown 
an enormous ability to transmit and spread all over the 
world (Rossolini et al. 2008). Interestingly, however, plas-
mid sequencing of pre-antibiotic era bacterial pathogens has 
shown that resistance determinants on plasmids were not 
common (Datta and Hughes 1983).

Resistance acquisition through genetic exchange via 
plasmids, transposons, and integrons, is favored in dense 
communities like sewage treatment plants, considered as 
“hotspots” for bacterial genetic exchange. Plasmids carrying 
multiple resistant genes have been recovered from samples 
taken from sewage (Schlüter et al. 2007), where indigenous 
bacteria and those derived from humans and animals co-
exist. For example, Aeromonas cultured from aquaculture 
environments has been shown to carry multiple resistance 
genes on plasmids and integrons (Penders and Stobberingh 
2008). The human gut is considered another hotspot for 
such genetic exchanges between pathogens and commensals 
(Sommer et al. 2010).

In recent years, there has been an increasing interest on 
the contribution of integrons in bacterial genome evolu-
tion, due to their role in promoting genetic diversity in 
bacteria (Boucher et al. 2007; Mazel 2006). Integrons were 
first described in 1987 (Stokes and Hall 1989) and are 
found on the chromosomes of approximately 15% of bacte-
rial species (Boucher et al. 2007; Mazel 2006). However, 
it was later demonstrated that they were linked to plasmid-
mediated resistance encountered in Shigella in the 1950s 

in Japan (Liebert et al. 1999). The main role of integrons 
is gene cassette capture followed by recombination into an 
attachment site (a process catalyzed by integrase) and gene 
expression via activation of the SOS system. Integrons 
are a major source of transferable resistance determinants, 
both in Gram-negative and Gram-positive bacteria (Gill-
ings 2014). Especially class 1 integrons are widely present 
in pathogens and gut commensals and overall, they have 
accumulated over 130 gene cassettes conferring resistance 
to most antibiotic classes (Partridge et al. 2009).

Another important evolutionary mechanism exhibited 
by bacteria is direct DNA acquisition from the environ-
ment, like, for example, in Acinetobacter spp, an organism 
that has evolved rapidly accumulating, in some cases, more 
than 20 genomic islands encoding antibiotic resistance 
determinants and virulence functions (Barbe et al. 2004). 
In addition, development of resistance may be facilitated 
in mixed bacterial communities, like polymicrobial infec-
tions or biofilms, due to cell–cell fusion, larger popula-
tions with lower rates of turnover, and elevated mutation 
rates (Brockhurst et al. 2019; Driffield et al. 2008). Lastly, 
physiological tolerance to antibiotics can allow or precede 
the emergence of resistant phenotypes (Levin-Reisman 
et al. 2017).

Whole genome sequencing can help tremendously in 
reconstructing the evolutionary history of resistance in 
bacterial species. For example, using WGS and phyloge-
netic analysis of the first MRSA isolates, scientists were 
able to discover that the early MRSA lineage arose in 
the mid-1940s (long before the use of methicillin) after 
the acquisition of an ancestral type I SCCmec element. 
Therefore, contrary to what was previously thought, the 
driver for MRSA evolution was not methicillin but the 
widespread use of first-generation β-lactams. Such data 
could inform the assessment of evolutionary risk and the 
design of novel antimicrobial therapies (Brockhurst et al. 
2019; Harkins et al. 2017).

Resistance genes can cross species and similar resist-
ance genes have been found in humans and animals. 
Whole genome sequencing of certain strain lineages like 
S. aureus CC398 has provided evidence of many livestock-
to-human jumps and less frequently, human-to-livestock 
jumps during its evolutionary history (Ward et al. 2014). 
In another landmark study and contrary to what was pre-
viously believed, in 2015, Liu et al. (Liu et al. 2016) first 
described transferable colistin resistance in E. coli and K. 
pneumoniae isolates from animals and humans, mediated 
by the mcr-1 gene (mobile colistin resistance), located in a 
plasmid. Since then, more mcr variants have been discov-
ered, in several bacteria in different countries (Dalmolin 
et al. 2018). These examples highlight the importance of a 
one-health approach in trying to address the antimicrobial 
resistance crisis.
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Drivers of Antimicrobial Resistance 
Persistence

Although it is indisputable that the use of antibiotics in 
clinical and veterinary practices as well as animal hus-
bandry is strongly correlated with the development and 
spread of antibiotic resistance, it is less evident that reduc-
ing the use of antibiotics will result in significant reduc-
tions in antibiotic resistance.

There are, of course, several reports of antibiotic resist-
ance decreases as a result of a reduction in antibiotic use 
such as the decrease in penicillin resistance in Streptococ-
cus pneumoniae in Hungary following a drastic reduction 
in the prescription of penicillin (Nowak 1994). However, 
there are also reports of antibiotic resistance persistence 
despite drastic reductions in antibiotic use. No significant 
reduction of resistance was observed following drastic 
reductions in the use of trimethoprim and sulphonamides 
in Sweden and the United Kingdom, respectively (Anders-
son et al. 2009; Enne et al. 2001). A possible explanation 
could be that antibiotic exposure extends beyond therapeu-
tic use in humans, which accounts for less than half of the 
total antibiotic consumption (Davies and Davies 2010). It 
does, therefore, seem that antibiotic selection pressure may 
not be the only driver of resistance.

The acquisition of antibiotic resistance mechanisms is 
usually associated with a fitness cost for the bacterial cell. 
Resistance due to chromosomal mutations often involves 
modification of essential bacterial genes while resistance 
due to the acquisition of plasmids imposes a burden on the 
host cell due to the metabolic load of plasmid replication 
and the expression of plasmid genes, disruptions in the 
expression of host genes, and other metabolic effects. As 
a result, antibiotic-resistant bacteria tend to have a reduced 
growth rate and competitive ability compared to their sus-
ceptible counterparts (Carroll and Wong 2018; Vogwill 
and Maclean 2015).

One would, therefore, expect that the absence of anti-
biotic selection pressure would lead to a reduction in anti-
biotic resistance with sensitive bacteria displacing their 
less fit resistant counterparts. However, antibiotic resist-
ance genes seem to persist for long periods of time in the 
absence of antibiotic selection pressure. Antibiotic resist-
ance stabilization in bacterial populations and persistence 
in environments with reduced antibiotic use can occur via 
the following mechanisms.

Fitness Restoring Compensatory Mutations

Compensatory mutations in other loci, which restore 
the fitness of antibiotic-resistant bacteria, can allow the 

maintenance of antibiotic-resistant bacteria even in the 
absence of antibiotic selection. In vitro and in vivo experi-
ments with antibiotic-resistant bacteria have shown that 
bacterial evolution in the absence of antibiotics is more 
likely to result in compensatory mutations improving 
the fitness of antibiotic-resistant bacteria rather than in 
reversion to highly fit antibiotic-sensitive bacteria (Levin 
et al. 2000; Schrag et al. 1997). In the case of conjugative 
plasmids, these compensatory adaptive mutations have 
been described to occur on the bacterial chromosome, the 
plasmid or both (Dahlberg and Chao 2003; Harrison et al. 
2016).

The Occurrence of Fitness Cost‑Free or Fitness 
Increasing Resistance Mechanisms

Although resistance mechanisms are usually associated with 
a fitness cost, this is by no means always the case. There are 
reports of antibiotic resistance plasmid acquisitions which 
are either fitness cost-free (Carroll and Wong 2018; Enne 
et al. 2005) or are associated with an increase in the fit-
ness of the bacterium (Carroll and Wong 2018; Enne et al. 
2004). The fitness effect of a plasmid does not seem to be 
constant but instead is influenced by the host genetic back-
ground (Carroll and Wong 2018; Di Luca et al. 2017). Fit-
ness enhancing chromosomally encoded antibiotic resistance 
mutations has also been described (Luo et al. 2005).

Genetic Linkage and Co‑selection with Other Genes

Genetic linkage of multiple antibiotic resistance genes 
allows for their co-selection. Consequently, reducing the 
use of one antibiotic may not result in the expected reduc-
tion in resistance to this agent if the use of other antibiotics 
continues to be high (Andersson and Hughes 2011). This is 
particularly important for plasmid-encoded antibiotic resist-
ance since, as mentioned previously, multiple resistance 
genes often accumulate on a single plasmid. Alternatively, 
an antibiotic resistance gene can be co-selected with other 
genes such those encoding virulence factors (Andersson and 
Hughes 2011; Salyers and Amábile-Cuevas 1997) or genes 
encoding resistance to biocides and metals (Pal et al. 2015).

Plasmid Persistence Mechanisms

Apart from the mechanisms mentioned above which can 
result in the persistence of both chromosomally encoded and 
plasmid-encoded antibiotic resistance mechanisms, addi-
tional mechanisms specifically ensuring plasmid persistence 
exist. Plasmid stabilization systems include the multimer 
resolution system, active partitioning, and various types of 
post-segregational killing systems (which kill individual 
cells lacking the plasmid) (Andersson and Hughes 2011; 
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Bahl et al. 2009). Infectious growth (meaning that the plas-
mid transfer rate is sufficiently high to ensure plasmid main-
tenance during host replication despite fitness cost and seg-
regational loss) may also contribute to plasmid persistence 
(Andersson and Hughes 2011; Carroll and Wong 2018; Lili 
et al. 2007). Moreover, Wein et al. have showed that plasmid 
stability can evolve under non-selective conditions, given 
that plasmid gene transcription may hinder plasmid replica-
tion and inheritance and can be affected by environmental 
conditions. These findings could offer an explanation, for the 
ubiquity of plasmids in nature (Wein et al. 2019).

Novel Ways to Tackle Antimicrobial 
Resistance

Antimicrobial resistance is not only one of the most impor-
tant global health threats but also one with no easy solution. 
To date, efforts to combat antimicrobial resistance focus on 
concerted attempts to improve diagnosis, antibiotic-pre-
scribing practices, and infection prevention strategies. Few 
new antimicrobial compounds are in the process of clinical 
development, however, most of them do not represent new 
antibiotic classes. Moreover, new antimicrobials harbor the 
risk of a short life due to the microorganisms’ significant 
capacity for fast adaptation. Therefore, novel treatment strat-
egies are undoubtedly needed in the fight against established 
and emerging antimicrobial resistance.

Some novel strategies under investigation include either 
sophisticated forms of antimicrobial delivery, like nanocar-
riers, which can increase drug bioavailability and decrease 
treatment duration (Giau et al. 2019), or involve new ways 
to increase effective antimicrobial concentration within the 
bacterial cell. One way to accomplish this is via potentiation, 
which involves manipulating a typically non-essential part of 
the bacteria (i.e., efflux pump inhibitors) or via active uptake 
by employing membrane transporters, like iron transport-
ers, to facilitate antibiotic entry into the cell when the for-
mer is bound to an iron-binding siderophore mimetic group 
(i.e., catechol). Recently, a catechol-linked cephalosporin 
(cefiderocol) has shown to be effective in complicated uri-
nary tract infections (Portsmouth et al. 2018). On the other 
hand, using fast changes between currently available anti-
biotics, scientists have managed to reduce selective pres-
sure on bacteria and to limit the emergence of resistance 
via a mechanism called cellular hysteresis, which entails a 
persistent change in bacterial cellular physiology induced 
by one antibiotic, which then sensitizes bacteria to another 
subsequently administered antibiotic (Roemhild et al. 2018). 
Though challenging, it would be interesting to see if such an 
approach could be validated in a clinical setting.

Other non-antibiotic approaches are the development of 
monoclonal antibodies against bacterial strains and phage 

therapy. Also, vaccines apart from decreasing antimicrobial 
use and preventing infections, they can also help limit the 
antimicrobial resistance potential of bacteria (Rappuoli et al. 
2017) with the help of new technologies (Baker et al. 2018). 
Targeted immunomodulation of host responses against spe-
cific pathogens is an area of increasing research interest. 
Also, attempts to modulate the human microbiome aiming 
to decolonize the gut of susceptible patients from multidrug-
resistant pathogens or to identify a combination of bacte-
rial strains that will prevent colonization and/or infection 
with antibiotic-resistant pathogens or Clostridium difficile 
have already shown some promising results (Aroniadis and 
Brandt 2013; Austin et al. 2014; Biliński et al. 2016; Jouhten 
et al. 2016).

Conclusion

Antimicrobial resistance emergence may be inevitable in 
the evolutionary process, whereas the mechanisms that 
safeguard its persistence, even in the absence of antibiotic 
selection pressure, are not fully elucidated. We still have a 
lot to learn regarding the dynamics of antimicrobial-resistant 
determinants within microbial communities. Together with 
limiting unnecessary antibiotic use under a “one-health 
approach,” achieving earlier microbiologic diagnosis and 
strengthening infection prevention interventions, novel host- 
or pathogen-targeted therapies are urgently needed in order 
to combat the multifaceted resistance potential of bacteria.
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