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Abstract
The origin of biological homochirality on Earth has been an important unresolved issue in the field of molecular evolu-
tion and many hypotheses have been proposed to explain this. The most prevailing view may be that of astrobiologists, in 
that a slight enantiomeric excess of l-amino acids in meteorites can account for the origin. However, the view ignores two 
important factors: amino acid racemization, and the evolution and continuity of biological systems on Earth. Therefore, on 
the basis of these two standpoints, the plausibility of the hypothesis that chiral-selective tRNA aminoacylation could have 
led to crucial homochiral protein biosynthesis should be emphasized. Recent molecular dynamic simulations have clearly 
elucidated the mechanisms of enantiomer-specific aminoacylation. These studies strengthen the possibility that the hypoth-
esized chiral selection of amino acids in biological systems actually occurred at the molecular level. It is significant to raise 
the points because the topic so far has tended to be expressed unclearly and ambiguously and also handled as such owing 
to its very nature.
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The successful touch down of Japan’s Hayabusa2 space 
probe on the Ryugu asteroid located 340 million kilometers 
from Earth is expected to lead to the discovery of molecular 
components of life, e.g., amino acids (Castelvecchi 2019). 
However, as Stuart Kauffman pointed out using a metaphor 
with buttons and threads, the emergence of life is extremely 
hard to attain until a critical threshold toward phase tran-
sition is reached in the complex system (Kauffman 1996). 
Furthermore, life on Earth is intrinsically characterized by 
the existence of chiral features, and the origin of homochi-
rality of natural amino acids and sugars remains an espe-
cially intriguing mystery (Atencio 2012). Natural proteins 
comprise α-amino acids that are exclusively left-handed 
(l-amino acids), whereas DNA and RNA contain right-
handed sugars (d-deoxyribose and d-ribose, respectively). 

Here, the author would like to propose a perspective on the 
origin of homochirality, based on the molecular evolution 
of life on Earth.

The structural requirements of proteins and nucleic acids 
depend on their homochirality of their components: the 
α-helices and β-sheets of the secondary structures of pro-
teins are likely to be formed only if the constituent amino 
acids are homochiral (all-l or all-d) (Bonner 2000). These 
secondary structures become the basis for constructing the 
proper tertiary structures of proteins, which confer specific 
roles on each protein. Similarly, template-directed elonga-
tion of nucleotide chains occurs properly only when the 
ribose sugars of the template are homochiral, and when the 
ribose sugar of each added mononucleotide has the same 
chirality as that of the template: poly-C-directed polymeri-
zation of activated guanosine (G) mononucleotide (5′-phos-
phorimidazolide) occurred only when C and G shared the 
same chirality (Joyce et al. 1984). Clay mineral (montmoril-
lonite) catalyzes the oligomerization of 5′-phosphorimida-
zolides of nucleosides, yielding the corresponding oligo-
nucleotides (Ferris and Ertem 1992, 1993; Kawamura and 
Ferris 1994). Montmorillonite-catalyzed oligomerization of 
racemic 5′-phosphorimidazolide of adenosine proceeds in a 
homochiral selective manner to preferentially yield homo-
geneous l- and d-oligomers (Joshi et al. 2000; Urata et al. 
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2001). Although these observations illustrate the importance 
of “homo” chirality, it is not clear why natural proteins and 
natural nucleic acids are composed of l-amino acids and 
d-sugars, respectively.

In elementary particle physics, parity violation during 
β-decay of nuclei may have led to a slight increase in the 
ratio of l- to d-enantiomers (< 10−11) (Hegstrom 1987). It 
is also suggested that polarized synchrotron radiation from 
neutron stars may have influenced the proportions of the 
2 enantiomers (Bonner 2000). Furthermore, a spatially 
extended high circular polarization region was discovered 
around the massive star-forming region, the BN/KL neb-
ula; subsequently, the possibility of meteorites delivering 
l-amino acids on the early Earth and leading to the initial 
bias in the ratio has been discussed (Fukue et al. 2010). In 
fact, l-amino acids have been found in only slightly greater 
proportions than d-amino acids in some real meteorites 
(Chyba et al. 1990). However, a slight enantiomeric excess 
of amino acids would be degraded by racemization. The 
half-lives of amino acid racemizations are expected to be 
105–106 years at temperatures characteristic of the Earth’s 
surface (Bada and Miller 1987). The estimated half-life for 
free aspartic acid in aqueous solution (100 °C, pH 7–8) is 
just 30 days (Bada and Miller 1987). As a model of the 
silicon cycle in the Precambrian era shows, seawater tem-
perature in the primitive Earth would have been much higher 
than today (Robert and Chaussidon 2006), although the 
temperature reconstruction has been debated in considering 
the various origins of cherts (Marin-Carbonne et al. 2014). 
Therefore, the racemization of amino acids should be pri-
marily considered. In addition, l-isoform predominance was 
found in α-methyl amino acids in meteorites, but not in α-H 
amino acids (natural components of proteins) that are more 
easily racemized (Cronin and Pizzarello 1997). In terms of 
chemical reactions, autocatalysis can lead to a small ini-
tial enantiomeric excess of a chiral molecule, as seen in the 
case of 5-pyrimidyl alkanol treated with diisopropylzinc and 
pyrimidine-5-carboxaldehyde (Soai et al. 1995), but it is not 
directly related with the biological enantiomeric excess of 
l-amino acids.

Therefore, the utilization of homochiral molecules must 
have occurred at the time of the origin of life or shortly 
thereafter, with positive involvement of related molecules 
constituting reaction systems. The discovery of ribozymes 
solved the classic “chicken-or-egg” conundrum in molecu-
lar biology, and the “RNA world” could have existed dur-
ing the initial stages of the formation of life (Gilbert 1986). 
Transition from the putative “RNA world” to the “pro-
tein world” was the key step in the establishment of life 
on Earth (Tamura 2015). In that sense, the interaction of 
RNA and amino acids could have determined the biologi-
cal homochirality. The chirality of RNA has actually been 
shown to correlate with recognition of chiral amino acids 

through tRNA aminoacylation. Aminoacyl-tRNAs are key 
substrates for peptide bond formation in protein synthesis. 
A simple, minimized non-enzymatic aminoacylation model 
that captures the essence of the interactions seen in mod-
ern biological translation systems discovered this impor-
tant feature: d-ribose RNA aminoacylates l-amino acids, 
whereas l-ribose RNA aminoacylates d-amino acids. The 
design was based on the rationale that an aminoacyl phos-
phate oligonucleotide hybridizes to the 3′-end of the RNA 
minihelix through a bridging oligonucleotide, thereby bring-
ing together the activated amino acid and the amino acid 
attachment site (Fig. 1a) (Tamura and Schimmel 2004). 
Significantly, recent molecular dynamics (MD) simulations 

Fig. 1   a Scheme for chiral-selective aminoacylation of an RNA mini-
helix (primordial tRNA) with an aminoacyl phosphate oligonucleo-
tide and a bridging oligonucleotide (Tamura and Schimmel 2004). b 
Details of the aminoacylation reaction. Angles and distances defining 
the geometry are shown (Ando et  al. 2018). These are (1) Distance 
between an R-O− nucleophile (Nu) of 3′-OH of the terminal adeno-
sine of the RNA and carbonyl carbon of aminoacyl phosphate; (2) 
Bürgi–Dunitz (BD) angle; (3) Flippin–Lodge (FL) angle; (4) Lobe 
angle; (5) Distance between Nu and non-bridging phosphate oxy-
gens. c Structures of the reaction site in l-amino acid (alanine) (left) 
and d-amino acid (alanine) (right) obtained by molecular dynamics 
simulation (Ando et al. 2018). The green arrows indicate the nucleo-
philic attack of the oxygen of the 3′-OH on the carbonyl carbon of 
aminoacyl phosphate. In the case of d-amino acid, the side chain of 
the amino acid was placed close to the 3′-OH, making it difficult for 
nucleophilic attack to occur sterically
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have clearly elucidated enantiomer-specific aminoacylation 
mechanisms after many years without success (Fig. 1b, c) 
(Ando et al. 2018). Atomic-scale geometric considerations 
for aminoacylation reactions include (1) Distance between 
an R-O− nucleophile (Nu) of 3′-OH of the terminal adeno-
sine of the RNA and carbonyl carbon of aminoacyl phos-
phate; (2) Bürgi–Dunitz (BD) angle; (3) Flippin–Lodge (FL) 
angle; (4) Lobe angle; (5) Distance between Nu and non-
bridging phosphate oxygens (Fig. 1b) (Ando et al. 2018). 
The MD trajectories showed that the structures surrounding 
the active site of the system were formed close to the ideal 
A-form RNA double helix, where the distance between the 
3′-O (nucleophile) and the carbonyl carbon (nucleophilic 
center) was shorter than that between the 2′-O and the car-
bon. Thus, the probability of forming a reactive geometry 
with 3′-O was much higher than that with 2′-O (Ando et al. 
2018). Similar to the inter-transfer of amino acids, a stere-
oselective intramolecular aminoacylation process has also 
been demonstrated previously (Wickramasinghe et al. 1991; 
Liu et al. 2019). These studies strengthened the plausibility 
of the hypothesis that chiral-selective tRNA aminoacylation 
could have led to crucial homochiral protein biosynthesis.

Such interaction specificity between RNA and amino 
acids may alternatively lead us to the hypothesis that 
l-amino acids selected d-ribose RNAs. However, ribose 
has 4 asymmetric centers (C1′, C2′, C3′, and C4′), and Wat-
son–Crick helices can be formed properly if any 2 of the 3 
asymmetric carbons (C1′, C3′, and C4′) are correctly posi-
tioned relative to each other (Bada and Miller 1987). If we 
assume the existence of RNA in its present day form (chain 
of d-riboses with proper configurations linked through 5′–3′ 
phosphodiester bond) a priori, chiral selection for l-amino 
acids by RNA would be strongly supported, while the prob-
ability that l-amino acids could have selected d-ribose RNAs 
with proper configurations would be quite low, consider-
ing the complex set of asymmetric centers in ribose. These 
scenarios would strongly support the RNA-directed selec-
tion of homochiral amino acids, and disfavor the alternative 
hypothesis that amino acid homochirality determined RNA 
homochirality (Tamura 2009). Once the d-ribose-based 
RNA world was established, l-amino acids could have been 
selected through the process of tRNA aminoacylation.

Template-directed auto-oligomerization was performed 
using all possible combinations of homochiral and het-
erochiral diastereomers of pyranosyl-RNA tetramer with 
2′,3′-cyclophosphates (Bolli et al. 1997). As the chains 
elongated, the oligomerization proceeded by chiral selec-
tively and produced homochiral products (Bolli et  al. 
1997). In principle, the chiral specific l- and d-libraries 
consist of equal amounts of homochiral all-l and all-d oli-
gomers. However, the number of possible sequences is 
beyond the number of sequences actually formed, i.e., any 
given sequence in both libraries would actually occur only 

once. Thus, the sequence composition of these two librar-
ies is not identical. If one specific RNA in the d-library 
exhibits a chemical property that is favorable for the evo-
lution of the biological system, the d-ribose-based RNA 
world would be selected (Tamura 2008).

How did the original selection for d-ribose occur? Was 
it merely a coincidence or was it driven by necessity? Chi-
ral amino acids may have served as potential asymmetric 
catalysts for the formation of sugars. The influences of 
non-racemic alanine and isovaline, which are also con-
tained in meteorites, on the formation of sugars (tetroses) 
have been examined, and their chiral configurations have 
been found to be affected by the chirality of the amino 
acid catalysts (Pizzarello and Weber 2004). Such a pro-
cess may have induced a chiral selection of d-ribose as a 
component of the RNA backbone. Furthermore, circular 
dichroism spectra of achiral diprotonated porphyrins in 
aqueous solution showed that the supramolecular asso-
ciation of the porphyrins is dependent on the rotation of 
the vortex direction (Ribó et al. 2001). The observation is 
interpreted in terms of hydrodynamic and steric effects, 
and the folding of the neighboring modified porphyrin 
chains in the same direction is thought to result in bet-
ter stacking of the homoassociates (Rubires et al. 2001). 
It is also speculated that vortex-induced similar interac-
tions may be caused in the case of nucleotides in unknown 
experimental conditions. If this theory is proved, the role 
of different hemispherical vorticities related to the origin 
of biological chirality can be speculated (Mason 1984).

Thus, possible selective forces may include Earth’s rota-
tion around its own axis, light from the sun, geothermal 
energy, and pressure in thermal vents. A slight enantiomeric 
excess of amino acid could not account for the origin of 
biological homochirality. Rather, this riddle of biological 
homochirality may be solved only when we consider causa-
tive factors within the context of the entire Earth.
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