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Abstract
The sandfly midgut and the human macrophage phagolysosome provide antagonistic metabolic niches for the endopara-
site Leishmania to survive and populate. Although these environments fluctuate across developmental stages, the relative 
changes in both these environments across parasite generations might remain gradual. Such environmental restrictions might 
endow parasite metabolism with a choice of specific genotypic and phenotypic factors that can constrain enzyme evolution 
for successful adaptation to the host. With respect to the available cellular information for Leishmania species, for the first 
time, we measure the relative contribution of eight inter-correlated predictors related to codon usage, GC content, gene 
expression, gene length, multi-functionality, and flux-coupling potential of an enzyme on the evolutionary rates of singleton 
metabolic genes and further compare their effects across three Leishmania species. Our analysis reveals that codon adapta-
tion, multi-functionality, and flux-coupling potential of an enzyme are independent contributors of enzyme evolutionary 
rates, which can together explain a large variation in enzyme evolutionary rates across species. We also hypothesize that 
a species-specific occurrence of duplicated genes in novel subcellular locations can create new flux routes through certain 
singleton flux-coupled enzymes, thereby constraining their evolution. A cross-species comparison revealed both common 
and species-specific genes whose evolutionary divergence was constrained by multiple independent factors. Out of these, 
previously known pharmacological targets and virulence factors in Leishmania were identified, suggesting their evolution-
ary reasons for being important survival factors to the parasite. All these results provide a fundamental understanding of the 
factors underlying adaptive strategies of the parasite, which can be further targeted.

Keywords  Leishmania metabolism · Evolutionary rate variation · Codon usage · Multi-functionality · Physiological flux-
coupling · Principal component regression (PCR)

Introduction

Metabolism is one of the primary biological processes that 
underlie the survival of an organism within a given envi-
ronment, due to its fundamental role in synthesis of bio-
mass and energy generation. Even though the individual 

metabolic enzymes per se are highly conserved across spe-
cies, adaptation to diverse environments brings about novel 
innovations in metabolic pathway function (Szappanos 
et al. 2016). Numerous features like horizontal gene trans-
fer, gene expression, gene dispensability, gene duplications, 
and metabolic network structure are responsible for changes 
in metabolic function (Yamada and Bork 2009; Papp et al. 
2011). The dominance of one feature over another largely 
depends on the nature, variations in the environment, and the 
effective contribution of a factor towards successful adapta-
tion to that particular environment. In general, the change 
in metabolic function due to changes in a feature can either 
be selected in a population for its usefulness in adaptation or 
else it can be purged, if deleterious. This change in function 
is reflected within the coding sequence of a gene and is con-
ventionally measured by assessing the number of non-synon-
ymous substitutions per non-synonymous site relative to the 
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number of synonymous substitutions per synonymous site, 
commonly referred as the evolutionary rates (Yang 1998). 
However, the knowledge of potential determinants of evolu-
tionary rates of a metabolic enzyme within an organism still 
remains to be an open, unsolved problem.

Members of the Leishmania genus cause the wide-
spread neglected tropical disease leishmaniasis in humans. 
Biologically, the Leishmania parasite exhibits a digenetic 
lifecycle, where the promastigote stages thrive within the 
midgut of the sandfly vector, and the amastigotes persist 
in the macrophage phagolysosome of the human host; the 
environments being largely antagonistic with respect to pH, 
temperature, and availability of carbon sources (Zilberstein 
and Shapira 1994; McConville and Naderer 2011). To ensure 
maximal survival, the parasites need to selectively adapt to 
these dual environmental constraints. This controlled bio-
logical setup provides us with a unique platform for investi-
gating the contributory role of different genotypic and phe-
notypic factors in metabolic enzyme evolution.

Numerous genotype and phenotype factors are known to 
contribute to evolutionary rate variation in eukaryotes. The 
factors that are known to have a probable effect on protein 
evolution largely falls into two categories, namely, transla-
tion selection and functional constraint. Translation selec-
tion refers to the evolutionary selection of features that can 
increase efficiency of translation, whereas functional con-
straint of an enzyme refers to the degree at which random 
mutations are removed from the population by natural selec-
tion so as to avoid their deleterious effect on protein function 
(Zhang and Yang 2015). With respect to features explain-
ing translation selection, gene expression, mRNA transcript 
length (or length of a coding sequence), and codon usage 
were demonstrated as important factors that explain the 
evolution of protein-coding genes in yeast and Arabidopsis 
(Kawaguchi and Bailey-Serres 2005; Drummond et al. 2006; 
Zhang and Yang 2015). With respect to features explaining 
functional constraint, pleiotropy of a gene due to multiple 
functional domains, involvement of enzymes in multiple 
biological processes, and multiple gene duplications can 
contribute to enzyme evolution thereby providing a dyna-
mism to the metabolic network structure (Salathé et al. 2005; 
Warringer and Blomberg 2006; Chu et al. 2014; Chesmore 
et al. 2016). Another less studied functional constraint that 
affects the evolution of a metabolic enzyme is the role of 
an enzyme in the context of other enzymes within a meta-
bolic network. As metabolic function is a result of stepwise 
transformation and utilization of different environmental 
metabolites through multiple pathways, it is not the effect 
of a single enzyme. Hence, more central proteins within a 
metabolic network are also resistant to functional change 
(Vitkup et al. 2006). Previous studies in yeast and human 
erythrocytes have also demonstrated that enzymes bearing 
higher metabolic flux tend to evolve slowly (Vitkup et al. 

2006; Colombo et al. 2014). It was also demonstrated that 
co-regulation in metabolic genes is largely explained by 
flux-coupling within a metabolic network (Notebaart et al. 
2008) suggesting it to be an important factor constraining 
metabolic function, and hence enzyme evolution.

Similar to other organisms, a few studies in Leishma-
nia species also provide indirect hints towards the roles of 
translation selection and functional constraints on meta-
bolic enzyme evolution. Stage-specific transcriptomics and 
proteomics studies identify variations in transcriptome and 
proteome abundances of metabolic genes across stages and 
species in Leishmania (Lahav et al. 2011; Nirujogi et al. 
2014). Also, mutation pressure and translation selection are 
shown to preserve codons within genes which possess a high 
GC bias at the synonymous position and avoid the formation 
of mRNA secondary structures at the 5′ end of the mRNA; 
thereby indicating probable modes of translation regulation 
within genes (Subramanian and Sarkar 2015). Chromosomal 
aneuploidy is another well-known mechanism that causes 
variations in gene copy numbers across Leishmania species 
(Mannaert et al. 2012). Recent computational predictions of 
metabolic flux for different input metabolites and targeted 
13C-based metabolomics studies have identified that the 
Leishmania metabolome adapts to changing host environ-
ments through common metabolic routes, which are largely 
constrained by the inherent metabolic organization (Saun-
ders et al. 2014; Subramanian and Sarkar 2017). The inher-
ent metabolic organization also constrains enzyme evolution 
in L. major metabolism (Subramanian and Sarkar 2016).

The aforementioned studies in Leishmania have largely 
explored the genotype and phenotype complements of 
metabolism independently. The combined effects of these 
features on the disparate forces of conservation and diver-
gence in enzyme evolution are yet to be tested. To estab-
lish their effects on evolutionary rates among metabolic 
enzymes, a comprehensive comparative strategy that can 
examine the relative effects of the different genotype and 
phenotype features simultaneously is required. In this study, 
we estimate the rate of non-synonymous substitutions per 
non-synonymous site (dN), rate of synonymous substitutions 
per synonymous site (dS), and their ratio (ω = dN/dS) and 
for the first time, identify the potential determinants of dN, 
dS, and ω among orthologous singleton metabolic genes in 
three Leishmania species (Leishmania major, Leishmania 
donovani, and Leishmania infantum) using a principal com-
ponent regression (PCR)-based analysis (Drummond et al. 
2006; Jovelin and Phillips 2009; Alvarez-Ponce and Fares 
2012; Alvarez-Ponce et al. 2017). Although it is possible 
to use these features for assignment of genes to the three 
Leishmania species using Bayesian classifiers and other 
techniques (Wang et al. 2007), the above regression-based 
analysis appropriately suits our objective of discerning the 
relationships of the genotype and phenotype features to 
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evolutionary rates of metabolic genes and their comparisons 
across the three Leishmania species. We introduce the flux-
coupling potential of an enzyme within a metabolic network 
(Subramanian and Sarkar 2016), as a potential feature for 
regression along with other available features for Leishma-
nia metabolism. Despite the unavailability of broad range of 
confounding cellular factors that influence both codon usage 
and protein evolutionary rates (for example, UTR length, 
recombination rate, gene essentiality, protein–protein inter-
actions features) for Leishmania species, the results provided 
in this article highlight the significant contribution of codon 
usage, multi-functionality, gene duplications, and flux-cou-
pling constraints as novel mechanisms underlying evolution-
ary divergence and conservation in Leishmania metabolic 
genes. Comparisons of gene clusters across the three species 
demonstrate that the same gene can be constrained by dif-
ferent features and hence, a unique set of species-specific 
genes governed by multiple features can occur across spe-
cies. The targetable mechanisms and genes identified in this 
study can be further perused for designing novel strategies 
against parasite persistence.

Materials and Methods

Potential Determinants of Metabolic Enzyme 
Evolutionary Rates

In this study, a total of eight features representing the 
genotype and phenotype characteristics of the Leishmania 
parasite were computed. Leishmania species with known, 
curated metabolic reconstructions, namely, the L. major 
strain Friedlin reconstruction comprising of the 560 meta-
bolic genes, the L. donovani BPK282A1 reconstruction 
comprising 604 metabolic genes and the L. infantum JPCM5 
reconstruction with 556 genes were used for multivariate 
analysis (Chavali et al. 2008; Sharma et al. 2017; Subrama-
nian and Sarkar 2017).

Genomic Features

The coding nucleotide sequences (CDS) of the meta-
bolic genes curated within each metabolic reconstruction, 
obtained from the TriTrypDB database, v.8.1, release 32 
(Aslett et al. 2010) were used for calculation of codon adap-
tation index (CAI), GC content, and the gene length. CAI 
values for each gene were computed using the EMBOSS 
package (Rice et al. 2000), with respect to a reference set 
of ribosomal protein-coding genes in each species (Subra-
manian and Sarkar 2015). The length and GC content for 
each CDS were computed using an in-house PERL script 
(Sect. 8A of Supplementary Text S1).

Gene Expression

Pre-calculated Fragments per million kilobases (FPKM) val-
ues were obtained for L. major promastigotes from an inde-
pendent RNA sequencing study (Rastrojo et al. 2013). To 
maintain consistency, the total number of reads mapped onto 
each gene, reported in the Gene Expression Omnibus data-
base for L. donovani (GEO ID: GSE48475) and L. infantum 
(GSE48394) were used for calculation of Reads per million 
kilobases (RPKM) values of each gene (Martin et al. 2014; 
Zhang et al. 2014). FPKM and RPKM are considered to be 
synonymous within the article. Further details provided in 
Sect. 7A of Supplementary Text S1.

Functional Constraint

Number of Processes and Functions

As the curated annotation GO processes and function IDs 
still remain unavailable for all genes in the three Leishma-
nia species, computed Gene Ontology (GO) processes and 
functions associated with each gene was extracted from the 
TriTrypDB database (Aslett et al. 2010). The number of pre-
dicted processes (NumProcs) and functions (NumFuncs) was 
calculated from this information using an in-house PERL 
code (Sect. 8B of Supplementary Text S1). Further details 
provided in Sect. 7E of Supplementary Text S1.

Flux‑Coupling Potential of an Enzyme

In this study, we introduce the flux-coupling potential of an 
enzyme as a proxy for quantifying the flux-based functional 
constraint imposed on a metabolic enzyme. The flux-cou-
pling potential is calculated by the centrality of an enzyme 
(degree or number of flux-couplings, NCoup) and the ten-
dency of an enzyme to cluster together with other enzymes 
with similar number of flux-couplings (local clustering coef-
ficient, CCoFCA), within a flux-coupled subgraph of the 
metabolic network. Further details provided in Sect. 7B of 
Supplementary Text S1.

Sequence‑Based Evolutionary Rates

For the estimation of the evolutionary rates, multiple 
sequence alignment of each gene in all the three species 
was performed with its orthologous sequences across five 
genomes, namely, L. major, L. infantum, L. donovani, L. 
mexicana, and L. braziliensis species. This captures the 
degree of sequence divergence across closely related spe-
cies within the Leishmania lineage. These five Leishma-
nia species were chosen, as their genomes are completely 
sequenced and assembled. The orthology information was 
available within the TriTrypDB database, v.8.1, release 32 
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(Aslett et al. 2010). The alignment was processed to remove 
sequence positions with gaps using a standalone version of 
the PAL2NAL program (Subramanian and Sarkar 2016). 
dN, dS, and ω (dN/dS) were estimated using the one-ratio M0 
branch model implemented in the ‘codeml’ subroutine of the 
PAML package version 4.8a (Yang 1998, 2007).

Pre‑processing the Datasets for Multivariate 
Analysis

For each species, the dataset of metabolic genes was pre-
processed to remove—(a) genes with obsolete sequences, 
less than 200 codons, dS > 0.3, (b) duplicates and (c) genes 
for which either of the targeted genomic, expression, or met-
abolic network-based features was unavailable. Finally, only 
233 singletons common to the three species of Leishmania 
was considered for multivariate analyses. Details behind 
extraction of singleton genes are provided in Sect. 7C of 
Supplementary Text S1.

Multivariate Analysis and Clustering

Principal Component Regression

Principal Component Regression (PCR) analysis on meta-
bolic networks of the three Leishmania species was used 
to identify the potential contribution of the genomic, gene 
expression and function-based features to the total variance 
in evolutionary rates among metabolic genes. The ‘pls’ pack-
age version 2.6 implemented in R was used to perform PCR 
with dN and dS as the response and the aforementioned eight 
parameters as the predictor variables. A subset of predictor 
variables with loadings of 0.45 or more was considered for 
interpretation of a principal component with respect to that 
subset (Tabachnick and Fidell 2007). Further details pro-
vided in Sect. 7D of Supplementary Text S1.

Selection of Minimum Principal Components for Regression

A randomization test approach was used to check whether 
the squared prediction errors of regression models with 
fewer components are significantly (P < 0.01) larger than 
the reference model predicting absolute minimum prediction 
accuracy or not, by generating a distribution of prediction 
errors in each model for comparison using 1000 random 
permutations (van der Voet 1994). Out of these significant 
models, the model with least number of principal compo-
nents was chosen as the best model to predict dN and dS in 
all three species. The randomization test approach is imple-
mented within the ‘pls’ package.

K‑Means Clustering

K-means clustering of genes was performed in an n-dimen-
sional space, where n represents the selected number of 
principal components. Clustering was performed so as to 
identify the groups of genes, governed by a particular set of 
principal components and thereby a subset of predictors. The 
number of clusters represented in each dataset was deter-
mined by computing the Akaike’s Information Criterion 
(Manning et al. 2008) for every K clusters (AIC); where 
K = 1–100. The number of clusters corresponding to the 
model with least AIC was considered to be representative 
for each dataset.

Results

Features Associated with Evolutionary Rates are 
Also Inter‑correlated in Leishmania Species

Performing a pairwise correlation analysis for the ortholo-
gous metabolic genes in Leishmania major Friedlin, Leish-
mania donovani BPK282A1 and Leishmania infantum 
JPCM5, it was identified that there is no significant cor-
relation obtained between dN and dS, whereas ω is obvi-
ously correlated with both dN and dS (Fig. 1, Sect. 1 of Sup-
plementary Text S1). A significant correlation is observed 
between the codon adaptation index (CAI) and evolutionary 
rates in all species, suggesting an obvious association of 
translation selection and enzyme evolution (Fig. 1, Sect. 1 
of Supplementary Text S1). In comparison, features repre-
senting functional constraints demonstrate relatively weak 
species-specific associations with dN, dS and ω. In L. major 
(Fig. 1a), dN and ω are negatively correlated with num-
ber of processes in which a gene is involved (NumProcs), 
indicative of a weak functional constraint (dN:r = − 0.161; 
P = 0.014, ω:r = − 0.172, P = 0.008). Similarly, the num-
ber of flux-couplings per reaction associated with a gene 
(NCoup) is significantly associated with ω (r = − 0.152; 
P = 0.02). In L. donovani (Fig. 1b), dN seems to weakly cor-
relate with NumProcs (r = − 0.16592; P = 0.011). In L. infan-
tum (Fig. 1c), ω demonstrates a weak positive association 
with a gene’s tendency to occur in a flux-coupled module 
(CCoFCA) (r = 0.165; P = 0.011). It seems apparent from the 
pairwise correlation-based analysis that, with an exception 
of CAI and GC content, each of the aforementioned features 
was weakly correlated with evolutionary rates across the 
three Leishmania species.

Apart from associations of the predictors with evolutionary 
rates, inter-correlations between predictors were also observed. 
As observed in a previous study (Subramanian and Sarkar 
2015), CAI also correlates positively with GC content with 
varying strengths of associations in each species. GC content 
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of a gene increases with larger gene lengths as indicated by 
their significant association across species (Fig. 1, Sect. 1 of 
Supplementary Text S1). In L. major and L. donovani (Fig. 1a, 
b), CAI of a gene is positively associated with NumFuncs (L. 
major: r = 0.145, P = 0.026; L. donovani: r = 0.173, P = 0.008) 
suggestive of multifunctional genes to contain more frequent 
codons. As popularly known, CAI correlates with mRNA 
abundance (measured in reads per million kilobases, RPKM) 
in L. major and L. infantum (Fig. 1a, c). In L. donovani and 
L. infantum, gene length and RPKM are negatively corre-
lated suggesting expression of metabolic genes is probably 
limited by gene length in these species (Fig. 1b, c). Specifi-
cally in L. infantum, the number of functions associated with 
a gene (NumFuncs) demonstrates a weak negative association 
(r = − 0.20133; P = 2 × 10−3) with the tendency of a gene to 
cluster with genes demonstrating similar physiological fluxes 
(CCoFCA) hinting the role of multifunctional genes in routing 
fluxes within functional flux modules. The values of features 
for the selected genes in all three species are given in Supple-
mentary File S1. This analysis further demonstrates that it is 
inappropriate to directly use these features to predict evolution-
ary rates of genes in Leishmania as they are not independent 
of each other.

Contribution of Features to the Variation Observed 
in Enzyme Evolutionary Rates

As indicated in Fig. 1, although many features are inde-
pendently correlated with the evolutionary rates, some of 

them are also inter-correlated with each other. Hence, it 
is difficult to identify the potential contribution of each 
individual features to evolutionary rates. For this pur-
pose, PCR was performed to identify independent prin-
cipal components, which represent a linear combination 
of features, the coefficients representing the weight of a 
particular feature in explaining the variation in dN, dS, 
or ω (Drummond et al. 2006). The distribution statistics 
of evolutionary rates for the selected datasets is given in 
Sect. 2 of Supplementary Text S1. The identified principal 
components for the response dN and dS rates in the three 
Leishmania species are given in Supplementary File S2. 
PCR analysis with dN and dS in all three species indicates 
that the amount of variation explained by the principal 
components in the response variables (dN and dS) need not 
always be in descending order of the principal components 
(Jolliffe 1982). Additionally, it can also be observed that 
in most of the cases, a 90% variation in dN and dS, cannot 
be explained by considering only the first few components 
suggesting that no single factor dominates enzyme evo-
lutionary rates. The pairwise correlation-based analysis 
fails to identify this observation, as only the effects of 
the strongest pairwise associations are highlighted. Fur-
thermore, as there are inter-correlations among predictors, 
a combination of other related predictors probably out-
weighs the contribution of the apparent strongly associ-
ated codon usage/GC content features. Another important 
observation suggests that though the flux topological fea-
tures explain a low variance in dN, their occurrence within 

Fig. 1   Correlation dot plot demonstrating inter-correlations between 
the eight predictors and evolutionary rates for a Leishmania major, b 
Leishmania donovani, and c Leishmania infantum. This plot displays 
correlated pairs of features having significant correlation at P < 0.05. 
Dots represent significant positive or negative correlations. Colors 

represent both the nature and degree of the association between any 
two features. The size of the dots represents the degree of the associa-
tion between any two features. Pairwise correlation values are given 
in Sect. 1 of Supplementary Text S1. (Color figure online)
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the 1st principal component suggest that these features 
explain a majority of variation observed for metabolic 
genes in all three species.

With respect to dN, it can be observed that the first two 
components (principal components 2, 3 of L. major, 2, 3 of 
L. donovani and 3, 7 of L. infantum), which cumulatively 
represent around 28.01% variance in L. major (Fig. 2a), 
21.18% variance in L. donovani (Fig. 2d) and 23.41% vari-
ance in L. infantum (Fig. 2g) are dominated by genomic and 
gene expression features like CAI, GC, RPKM and gene 
length. In all the cases (Fig. 2a, d, g), the components domi-
nated by flux-coupling potential and functional constraints 
explain a relatively small amount of variance in evolutionary 

rates. In L. infantum (Fig. 2g), a comparable amount of vari-
ation (7.92%) in dN is explained by the principal components 
(1 and 8), which is dominated by metabolic flux-coupling 
potential of an enzyme, where the total variance explained 
in dN by all the principal components is 38.21%.

With respect to dS, it can be observed that the first two 
components (principal components 1, 8 of L. major, 2, 3 of 
L. donovani and 3, 8 of L. infantum), which cumulatively 
represent around 13.96% variance in L. major (Fig. 2b), 
14.24% variance in L. donovani (Fig. 2e), and 21.37% vari-
ance in L. infantum (Fig. 2h) are dominated by genomic and 
gene expression features like CAI, GC, RPKM, and gene 
length. A relatively large amount of variance (7.2%) is also 

Fig. 2   Principal components regression on dN (a, d, g), dS (b, e, h), 
and ω (c, f, i) rates of 233 singleton orthologous metabolic genes in 
L. major, L. donovani, and L. infantum using eight different features. 
Each principal component represents a linear combination of the 

eight predictors, dominated by components that demonstrate a large 
variation in dN and dS. The colors correspond to the percentage vari-
ance explained by a particular feature, with respect to that principal 
component. (Color figure online)
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explained in dS rate of enzymes in L. major by two principal 
components governed by the flux-coupling potential, where 
the total variance explained in dS by all the principal com-
ponents is 25.6% (Fig. 2b).

As observed for the dN and dS rates, the largest percentage 
of the total variation in ω is explained by features related 
to translation selection (CAI, GC content), as indicated by 
the 6th or 7th principal components in all the three species 
(variations − 35.5% in L. major, 21.88% in L. donovani, and 
44.33% in L. infantum; Fig. 2c, f, i). But, as observed for L. 
major and L. donovani, multi-functionality and flux topol-
ogy features explain larger variations in ω as compared to 
their contributions to individual dN and dS rates (the heights 
of orange/black bars representing flux topology and pur-
ple/yellow representing multi-functionality are greater in ω 
as compared to dN and dS in all three species). An almost 
equal variation in ω is explained by flux-coupled features 
(NCoup and CCoFCA) in L. donovani (8th principal com-
ponent − 21.86%, Fig. 2f). The second largest percentage 

of variance is explained by the variable related to multi-
functionality in L. major (24.19%, Fig. 2c) and L. infantum 
(24.51%, Fig. 2i). Similar to the dN and dS rates, no single 
component is alone enough to explain more than 90% of the 
variation in ω.

Selection of Components for Predicting Enzyme 
Evolutionary Rates

A set of principal components were shortlisted for predict-
ing evolutionary rates using a randomization test approach 
(see “Materials and Methods”). The principal components 
selected for regression are given in Sect. 3 of Supplementary 
Text S1. Features with loadings greater than 0.45 were con-
sidered for interpreting a principal component (Table 1). Most 
of the principal components explaining any variation in dN or 
dS can be interpreted on the basis of three distinct classes of 
features—(a) codon usage (CAI) and GC content, (b) multi-
functionality (NumProcs, NumFuncs), and (c) flux phenotypic 

Table 1   Contribution of the eight predictors to the selected principal components (loading cut-off > 0.45) and hence, the log10(dN) and log10(dS) 
rates in L. major, L. donovani and L. infantum 

The positive and negative signs in brackets indicate the nature of their contributions to the principal component as demonstrated by the principal 
component loadings. The numbers below each combination of features indicates the regression coefficients associated with that principal compo-
nent. The regression coefficients corresponding to each principal component were obtained after regressing the chosen principal components to 
the response evolutionary rates. P values of regression coefficients: ***P < 0.001, **P < 0.01, *P < 0.05. Genes with positive or negative scores 
with respect to a principal component correspond to the positive or negative contribution of features of those genes as indicated by the loadings 
on that component. The dash (–) in the table indicates that the corresponding principal component was not selected for regression, as identified 
by the randomization test approach

Component log10(dN) log10(dS)

L. major L. donovani L. infantum L. major L. donovani L. infantum

1 NCoup (+), 
CCoFCA (+)

NCoup (+), 
CCoFCA (+)

NCoup (−), 
CCoFCA (−)

CAI (+), GC (+) NCoup (+), 
CCoFCA (+)

GC (+), GeneLength 
(+)

0.0059 0.0146 − 0.046*** 0.02*** 0.0013 0.0094*
2 CAI (−), GC (−) CAI (−), GC (−), 

GeneLength (−)
CAI (+), GC (+) NCoup (−), 

CCoFCA (−)
RPKM (−) NCoup (−), 

CCoFCA (−)
0.0641*** 0.065*** − 0.017 − 0.0097* − 0.0185*** − 0.0053

3 GeneLength (−), 
RPKM (+)

GeneLength (−), 
NumProcs (+)

CAI (−), GeneL-
ength (+), RPKM 
(−)

– CAI (+), GC (+), 
GeneLength (+)

CAI (+), RPKM (+)

− 0.088*** − 0.073*** 0.065*** 0.0223*** 0.029***
4 NumFuncs (+), 

NumProcs (+)
– NumFuncs (−), 

NumProcs (−)
– – –

− 0.0281* 0.04**
5 GeneLength (+), 

NumProcs (−)
– NumFuncs (+), 

NumProcs (−), 
RPKM (+)

– – –

− 0.0244 − 0.042**
6 – – GeneLength (−), 

NumFuncs (+)
– – –

− 0.025
7 – – CAI (−), GC (+) – – –

0.156***
8 – – – – – –
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features (NCoup, CCoFCA). Most importantly, in all species 
(except L. infantum), effect of CAI and GC content of a gene 
on evolutionary rates can be interpreted by the same principal 
component suggesting their combinatorial effect in constrain-
ing dN and dS. To explain dN rate of a gene, two principal com-
ponents (2 and 7) involving CAI and GC content as principle 
features can be observed in L. infantum, where GC content 
negatively contributes to dN in the 2nd principal component 
and positively contributes to dN in the 7th principal compo-
nent. Additionally, the 7th component has a relatively large 
role in explaining dN as compared to the 2nd component. In all 
species, CAI negatively relates to dN and positively relates to 
dS. In all species, number of processes associated with a gene 
(NumProcs) negatively contributes to dN. Further, no princi-
pal component can be interpreted solely on the basis of gene 
length, to explain both dN and dS.

Gene expression (RPKM) positively contributes to dS rate 
in L. donovani and L. infantum and negatively contributes to 
dN rate in L. major and L. infantum. In case of L. major, it 
can be seen that distinct principal components (2 and 3) can 
be interpreted using CAI and RPKM, respectively, suggest-
ing weak associations with each other and their independent 
associations with dN (Table 1). Most of these relationships 
corroborate with the pairwise correlation-based analysis per-
formed above (Fig. 1).

To explain dS in L. donovani, it can be seen that distinct 
principal components (3 and 2) can be interpreted using 
CAI and RPKM, respectively, suggesting their independ-
ent relationships with dS and no association with each other 
(Table 1). On the contrary, in L. infantum, principal com-
ponent 3 can be interpreted by both CAI and RPKM sug-
gesting their inter-relatedness. Interestingly, an important 
observation points out that synonymous substitution rates 
are not constrained by the multifunctional potential of a gene 
(NumFuncs, NumProcs). Flux topological features signifi-
cantly contribute to dN rates of genes in L. infantum and dS 
rates of genes in L. major. Patterns common to both dN and 
dS are observed with respect to the ω rate across the three 
Leishmania species (Sect. 4 of Supplementary Text S1). 
Features related to translation selection (CAI, GC, RPKM, 
gene length) demonstrate a significant association with ω 
in all the three species. In L. major, translation selection is 
the only factor affecting ω. Multi-functionality (NumFuncs, 
NumProcs) is significantly associated negatively with ω in 
L. donovani and L. infantum. Further, in L. infantum, the 
flux topological features (NCoup, CCoFCA) are also sig-
nificantly associated with the ω rate.

Relationship Between Physiological Flux Coupling 
and Enzyme Evolutionary Rates

The pairwise correlation analysis indicated a weak correla-
tion between flux-coupling features and evolutionary rates in 

L. major and L. infantum (Fig. 1). But, in the above analysis, 
it was found that across Leishmania species, physiological 
flux coupling potential seems to be a poor predictor of evolu-
tionary rates (Table 1). This relationship between evolution-
ary rates and flux-coupling potential can be affected because 
certain enzymes demonstrate no flux coupling with other 
reactions within the network. Apart from explaining varia-
tions, PCR analysis also allows us to classify genes into two 
clusters, with respect to the contribution of the predictor 
features of the genes (interpreted through a principal com-
ponent) to a response. It was observed that the potential of 
an enzyme to be physiologically coupled to other enzymes 
within metabolism or not can be classified only using scores 
of enzymes loaded on the first principal component (PC1) 
associated with the three evolutionary rates in all the species 
(Insets, Fig. 3a–i).

With respect to this coupled set of enzymes (cluster 1 
in insets, Fig. 3a–i), a negative relationship is observed 
between dN or ω and the number of couplings associated 
with an enzyme with varying strengths (Fig. 3). In all three 
species, no association was observed between dS and num-
ber of couplings (Fig. 3b, e, h). With respect to the number 
of couplings, the association between dN or ω and NCoup 
decreases as L. major < L. donovani < L. infantum. In L. 
major (Fig. 3a, c), the association, although weak, is sta-
tistically significant at P < 0.01 (dN:r = − 0.252, P = 0.007; 
ω:r = − 0.291, P = 0.002). In L. donovani (Fig.  3d, f), 
the association is weaker than L. major (dN:r = − 0.159, 
P = 0.094, ω:r = − 0.198, P = 0.036). In L. infantum 
(Fig. 3g, i), the association is the weakest and seems to 
be a purely chance phenomenon (dN:r = − 0.019, P = 0.83; 
ω:r = − 0.094; P = 0.29). The associations become weaker 
from L. major to L. infantum due to the gain or loss of flux-
couplings by enzymes across species. This gain or loss is 
affected by the coupling between duplicated and singleton 
genes in unique subcellular locations across species (Sup-
plementary File S3). Furthermore, the number of flux-
couplings observed for duplicated genes is much higher as 
compared to singletons (Supplementary File S3).

Hence, we asked the question whether gene duplications 
affect the relationship between dN or ω and number of 
couplings associated with an enzyme or not? Comparing 
the distributions of number of couplings associated with 
duplicated enzymes in the three species revealed that most 
of the duplicated enzymes are coupled to a less number of 
other enzymes within the metabolic network of Leishma-
nia species (Fig. 3j). But, the variance in the number of 
couplings of duplicated enzymes is notably higher in L. 
major with some duplicated enzymes displaying a large 
number of couplings. On the contrary, the variance drasti-
cally reduces in L. donovani and L. infantum as compared 
to L. major. Similar to duplicated enzymes, comparing 
the distributions of number of couplings associated with 
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coupled set of singleton enzymes in the three species also 
revealed that most of the singleton enzymes are coupled 
to a less number of other enzymes within the metabolic 
network of Leishmania species (Fig. 3k), with decreasing 
variance from L. major to L. infantum. This decreasing 
variance relates to the decreasing association of flux cou-
pling potential with evolutionary rates of metabolic genes 
from L. major to L. donovani to L. infantum (Fig. 3a–i).

Comparing the variance in the number of flux-couplings 
across species in both the duplicated and singleton cases 
using Levene’s test of homogeneity of variances (Martin 
and Bridgmon 2012) indicated that the variance in num-
ber of couplings significantly differs between species at 
P < 0.001 (duplicated: F = 10.968, P = 3.25 × 10−5, single-
tons: F = 8.54, P = 2.6 × 10−4). The similarity in distributions 
of number of couplings between duplicated enzymes and 

Fig. 3   Association between rates of protein evolution and number 
of couplings (NCoup) is affected by gene duplications. Relation-
ship between dN rates and NCoup of flux-coupled set of enzymes 
is given for a L. major; d L. donovani; and g L. infantum. Relation-
ship between dS rates and NCoup of flux-coupled set of enzymes is 
given for b L. major; e L. donovani; and h L. infantum. Relationship 
between ω and NCoup is given for c L. major; f L. donovani; and i L. 
infantum. j Violin plot demonstrating the differences in the variance 

of number of couplings associated with duplicated genes between 
L. major (median = 3), L. donovani (median = 1.03), and L. infantum 
(median = 2); k Violin plot demonstrating the differences in vari-
ance of singleton genes between L. major (median = 9), L. donovani 
(median = 7.55), and L. infantum (median = 6.64). Insets represent 
the two clusters of metabolic enzymes that are flux-coupled (1) and 
uncoupled (2)
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singletons indicates that more gene duplications might indi-
rectly create new flux coupling associations with singletons, 
under stoichiometry, reversibility, and environmental con-
straints, thereby promoting the association of the evolution-
ary rate with number of couplings associated with singleton 
genes. Furthermore, variance in number of couplings from 
L. major to L. infantum decreases at a slower rate in sin-
gletons as compared to duplicated enzymes indicating that 
the association between evolutionary rates and number of 
couplings in singletons is not promoted equally by all gene 
duplication events across species.

Identification of Metabolic Genes Constrained 
by Translation Selection, Multi‑functionality, 
and Flux Topology

From Table 1, it is possible to identify principal compo-
nents that can be interpreted by the independent features 
namely, CAI, Number of processes (NumProcs) and number 
of flux-couplings (NCoup) associated with a gene and the 
nature of their contributions to the evolutionary rates. Each 
of these features explains the role of translation selection, 
multi-functionality, and flux topology respectively on evo-
lutionary rates of metabolic genes. Observing the centroids 
of the clusters (Sect. 5 of Supplementary Text S1, Supple-
mentary File S4), the gene clusters that are associated with 
contributions of such principal components can be identi-
fied. Likewise, the dN rate of genes in cluster numbers 4 and 
14 in L. major, 9, 12, 13, 17 in L. donovani and 8, 18 in L. 
infantum are dominated by non-zero values of NCoup (posi-
tive scores on respective principal component in L. major, L. 
donovani and negative scores on respective principal com-
ponent in L. infantum) and low values of NProcs (positive 
scores on principal component in L. major, L. donovani and 
negative scores on principal component in L. infantum) and 

CAI (negative scores on respective principal component in 
L. major, L. donovani and positive scores on respective prin-
cipal component in L. infantum). Multi-functionality, which 
is represented by NumProcs or NumFuncs does not appear to 
be a dominant predictor in explaining the dS rate and hence, 
does not occur as a major contributor in any of the selected 
components (Table 1). Hence, those gene clusters whose 
evolutionary rates can be interpreted by CAI and flux topol-
ogy alone were identified. Likewise, the dS rate of genes in 
cluster numbers 2, 3, 4, 7, 8, 11 in L. major, 1, 2, 3 10, 15, 
18 in L. donovani and 2, 3, 10, 18 in L. infantum are associ-
ated with high values of CAI (positive scores on respective 
principal component in all three species) and NCoup (posi-
tive scores on respective principal component in L. major 
and L. infantum and negative scores on respective principal 
component in L. donovani). Comparison of chosen genes 
between the species indicates five genes in all species, whose 
evolutionary rates are dominated by all the three factors—
translation selection, multi-functionality and flux topology, 
whereas 13 genes whose evolutionary rates are governed by 
translation selection and flux topology (Fig. 4).

There is a larger overlap of genes between the L. major 
and L. donovani species with respect to dN as compared to 
dS. Further, the overlap between L. donovani and L. infantum 
is restricted with respect to dN as compared to dS. In all spe-
cies, there are also a unique set of genes whose evolutionary 
rates are specifically explained by the identified independent 
features (Fig. 4, Sect. 6 of Supplementary Text S1).

Discussion

Owing to its parasitic nature and the long-standing evolu-
tionary association with hosts, Leishmania species expe-
rience a largely constrained metabolic environment. For 

Fig. 4   Comparison of genes 
demonstrating high values of 
independent dominant factors 
namely, codon adaptation, 
number of biological processes, 
and number of flux-coupling 
associations between species 
with respect to a dN and b dS
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efficient adaptation within the host, both translation selec-
tion and functional constraint might constrain evolution of 
enzymes within Leishmania metabolism. To our knowledge, 
there is no study available till date in Leishmania parasites 
that compares these heterogeneous potential determinants 
in predicting non-synonymous (dN) and synonymous (dS) 
substitution rates in metabolic enzymes simultaneously, 
on a single platform. Also, the inter-relationship between 
these factors and their differences across species is seldom 
explored. As used in other eukaryotes (Drummond et al. 
2006; Yang and Gaut 2011; Alvarez-Ponce et al. 2017), the 
present study integrates the available, potential features of 
metabolic enzymes into a principal component-based regres-
sion model to identify the unknown confounding factors that 
explain observed variation in the evolutionary rates and 
compares them across three Leishmania species.

As observed in other eukaryotes (Drummond et al. 2006), 
codon usage negatively correlates with dN, ω, and positively 
correlates with dS in all species, signifying translation selec-
tion to be an important constraint in Leishmania metabolic 
enzyme evolution. This can also be observed from the 
highest percentage of variation explained by the principal 
component dominated by CAI. Furthermore, GC content 
also occurs as a dominating factor of the same principal 
component as CAI, indicating their relatedness, supporting 
previous observations (Subramanian and Sarkar 2015). But, 
as observed in all the three Leishmania species, neither a 
single principal component is enough to explain a significant 
proportion of variation among evolutionary rates nor does 
a single set of similar features explain sufficient variation 
across principal components, indicating that multiple fea-
tures potentially contribute to enzyme evolution in Leishma-
nia species. Hence, more than one principal component was 
observed to be selected for regression (van der Voet 1994). 
Although with an exception in L. infantum, results indicate 
that gene expression (RPKM) does not always occur in the 
same principal component as CAI, suggesting their inde-
pendent roles in governing evolutionary rates of enzymes. 
This is contrary to the observations in yeast and E. coli, 
where gene expression complements CAI as a dominant fac-
tor governing evolutionary rates (Drummond et al. 2006). 
This also contrasts observations in Trypanosoma brucei, an 
evolutionary-related Trypanosomatid, where codon usage is 
demonstrated to affect global mRNA levels (Jeacock et al. 
2018). This might be due to the weak association observed 
between mRNA and protein abundances in Leishmania spe-
cies (Lahav et al. 2011); CAI being an important predic-
tor of protein abundance (Subramanian and Sarkar 2015). 
Similarly, the occurrence of CAI, multi-functionality and 
flux-coupling features as dominant features on distinct prin-
cipal components suggests that these features affect evolu-
tionary rates independently. Further, the multi-functionality 
of a gene (NumProcs, NumFuncs) contributes only to the 

non-synonymous substitution rate (dN) and is negatively 
associated with dN. Hence, as observed in yeast (Salathé 
et al. 2005), genes (enzymes) with multiple processes or 
functions evolve slowly as compared to genes associated 
with low number of functions in the Leishmania species 
as well.

As the parasite stages live in fixed host environments, 
the pathways used to metabolize resources across stages 
remain strikingly similar (Subramanian and Sarkar 2017). 
Thus, enzymes (reactions) that are more coupled to other 
enzymes within the metabolic network might be constrained 
evolutionarily as opposed to enzymes that are less or not 
coupled to other enzymes. Hence, for the first time, we intro-
duce the notion of the flux-coupling potential of an enzyme 
within its metabolic network and investigate whether it is 
an important determinant of evolutionary rate in Leishma-
nia species or not. Although the associations of the flux-
coupling features with evolutionary rates are weak, unlike 
multi-functionality, the occurrence of flux topological fea-
tures in the first principal component and the selection of 
their associated principal component for regression against 
evolutionary rates explains their important contribution to 
variation in both dN and dS rates. Supporting this factor, a 
significant amount of variation in the dS rate of enzymes 
in L. major and dN rate of enzymes in L. infantum is also 
sufficiently explained by these features. Considering only 
the flux-coupled set of enzymes in all three species, a weak 
negative association can be observed between dN, ω and 
number of couplings associated with an enzyme (NCoup). 
Flux-coupling reaction subsets capture the total number of 
paths of metabolite distribution under defined uptake con-
straints, as they can explain co-regulation between metabolic 
genes (Notebaart et al. 2008). A negative association was 
observed between ω and metabolic flux through an enzyme 
in yeast, human RBCs and L. major (Vitkup et al. 2006; 
Colombo et al. 2014; Subramanian and Sarkar 2016). This 
suggests that an enzyme is slow-evolving if it is coupled to 
large number of other enzymes by flux (hubs) within the 
flux-coupled network when compared to enzymes with low 
number of couplings. Further, few numbers of enzymes with 
high number of flux-couplings are observed as compared to 
enzymes with low number of flux-couplings. This indicates 
that a hierarchical organization of fluxes within Leishmania 
metabolism is largely constrained during evolution.

Chromosomal aneuploidy in Leishmania gives rise to sig-
nificant variations in copy numbers of genes across species 
that might increase genomic plasticity, gene dosage, and res-
cue of essential functions from deleterious mutations (Man-
naert et al. 2012). In addition to the aforementioned roles, for 
the first time, we document an observation indicating a pos-
sible species-specific involvement of duplicated metabolic 
enzymes in increasing the evolutionary constraints on other 
metabolic enzymes within a network, through re-wiring of 
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physiological flux dependencies within the metabolism. 
This is typically indicated by a higher variance in the num-
ber of couplings associated with singleton and duplicated 
enzymes and relatively stronger associations between num-
ber of couplings associated with singletons and evolutionary 
rates. With decrease in the variance of number of couplings 
of duplicated enzymes from L. major → L. donovani → L. 
infantum, the strength of associations between number of 
couplings and evolutionary rates also reduces. A similar re-
wiring of fluxes due to cross-compartmentalized metabolism 
was also hypothesized for glycolysis and isoprenoid biosyn-
thesis in other Trypanosomatids (close evolutionary rela-
tives of Leishmania) and other protists (Ginger et al. 2010). 
Interestingly, not all gene duplications are highly flux-cou-
pled with other enzymes in the network, suggesting that the 
species-specific metabolic network structure dynamically 
constrains the choice of unique gene duplications occurring 
at multiple subcellular locations for flux re-wiring, thereby 
imposing evolutionary constraints on other singletons asso-
ciated with them.

Previously, codon bias, pleiotropy, and centrality within a 
biomolecular network were implicated to impose relatively 
strong evolutionary constraints on enzymes that are impor-
tant pharmacological targets for a disease (Searls 2003; Pál 
et al. 2006; Gladki et al. 2013; Lv et al. 2016). As mentioned 
above, codon adaptation, multi-functionality, and flux topo-
logical constraints independently affect evolutionary rates; 
each of these features being negatively associated with dN. 
Comparison of genes with the dN rate dominated by these 
factors leads to the identification of both common and spe-
cies-specific enzymes, which are evolutionarily constrained 
by multiple genotype–phenotype factors, reckoning them 
to be important enzymes. Likewise, this analysis was able 
to identify enzymes like trypanothione reductase, aspartate 
carbamoyltransferase, orotidine-5-phosphate decarboxylase, 
and dihydrolipoamide dehydrogenase common to all three 
species. Among the enzymes common to the three Leish-
mania species, trypanothione reductase, the sole enzyme in 
the Leishmania parasite to combat oxidative stress (Tovar 
et al. 1998), aspartate carbamoyltransferase and orotidine-
5-phosphate decarboxylase, involved in production of pyri-
midines, like ump and cmp, (Mukherjee et al. 1988; Bello 
et al. 2007) are previously speculated pharmacological tar-
gets in Leishmania and other eukaryotes. On the other hand, 
unique enzymes majorly belonging to energy metabolism 
and conservation (C), Carbohydrate transport and metabo-
lism (G), Amino acid transport and metabolism (E), and 
Nucleotide transport and metabolism (F) were also identi-
fied for each species (Sect. 6 of Supplementary Text S1). 
Among these unique enzymes, known virulence factors like 
trypanothione synthetase, phosphomannose isomerase and 
GDP-mannose pyrophosphorylase were specifically iden-
tified for L. major; dihydrofolate-reductase/thymidylate 

synthase, pyrroline-5-carboxylate reductase and phospho-
mannomutase were identified for L. infantum and tyrosine 
aminotransferase for L. donovani (Mukherjee et al. 1988; 
Titus et al. 1995; Tovar et al. 1998; Garami and Ilg 2001b, a; 
Scott et al. 2008; Moreno et al. 2014; Mantilla et al. 2015). 
Their role in virulence probably makes them more resist-
ant to change. From this analysis, few more novel species-
specific enzymes were also predicted (Tables G, H, Sect. 6 
of Supplementary Text S1). These can be used as potential 
drug targets because they are governed by unique evolution-
ary constraints. Their biological role in virulence, survival 
or visceralization of the parasite needs to be experimentally 
investigated.

Although the results provided here are limited by the una-
vailability of genome-scale metabolic networks for multiple 
known species, strains, and isolates of Leishmania (Canta-
cessi et al. 2015), the use of such comprehensive multivari-
ate analyses in teasing apart the known confounding factors 
of enzyme evolution provides a broad insight into the organi-
zation of Leishmania metabolism and the underlying factors 
governing its change. Additionally, this work also provides a 
multitude of hypotheses that can be tested experimentally in 
Leishmania. Furthermore, identification of the role of mul-
tiple factors in constraining evolutionary divergence within 
metabolic enzymes suggests that the survival and adapta-
tion of the parasite within the host are a complex problem. 
This emphasizes the need for systems-level experiments to 
identify other features, like UTR length, recombination rate, 
gene essentiality, protein–protein interactions features, etc. 
unavailable at an organismal level for Leishmania species 
and to analyze their integrated effect. The integration of 
these diverse features can thus provide the complete knowl-
edge of the strategies employed by the parasite for survival 
and virulence, which can help the community to combat this 
largely neglected tropical parasitic infection.

Conclusion

For the first time, we measure the relative contribution of 
eight inter-correlated genotype, phenotype predictors on 
the evolutionary rates of singleton metabolic genes and fur-
ther compare them across three Leishmania species. Codon 
usage, multi-functionality, and flux-coupling potential of 
an enzyme independently constrain evolution of metabolic 
genes in Leishmania. This seems to be a unique feature of 
Leishmania metabolic evolution which was previously not 
reported. Our observations suggest that occurrence of dupli-
cated genes in novel subcellular locations can create new 
species-specific flux routes through certain singleton flux-
coupled enzymes, thereby constraining their evolution. This 
observation asserts the role of gene duplications in contrib-
uting to evolutionary innovations of Leishmania metabolism. 
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Our results reveal that although Leishmania metabolic genes 
are very similar with respect to their sequence information, 
the systems-level function of metabolic genes can affect met-
abolic enzyme evolution. The unique and common enzymes 
identified for all the three species from our analysis were 
previously reported to govern important biological roles for 
Leishmania metabolism and virulence. Moreover, some of 
these were pharmacological targets experimentally reported 
for related Leishmania species. Unique enzymes whose evo-
lutionary rates are affected by a high contribution of domi-
nating factors can explain species-specificity and the reasons 
for within-host adaptation. Most importantly, these might be 
perused as mechanisms to be targeted for in vivo control or 
as important causes of parasite visceralization.
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