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Abstract
The standard genetic code is well known to be optimized for minimizing the phenotypic effects of single-nucleotide substitu-
tions, a property that was likely selected for during the emergence of a universal code. Given the fitness advantage afforded 
by high standing genetic diversity in a population in a dynamic environment, it is possible that selection to explore a large 
fraction of the space of functional proteins also occurred. To determine whether selection for such a property played a role 
during the emergence of the nearly universal standard genetic code, we investigated the number of functional variants of the 
Escherichia coli PhoQ protein explored at different time scales under translation using different genetic codes. We found 
that the standard genetic code is highly optimal for exploring a large fraction of the space of functional PhoQ variants at 
intermediate time scales as compared to random codes. Environmental changes, in response to which genetic diversity in a 
population provides a fitness advantage, are likely to have occurred at these intermediate time scales. Our results indicate that 
the ability of the standard code to explore a large fraction of the space of functional sequence variants arises from a balance 
between robustness and flexibility and is largely independent of the property of the standard code to minimize the phenotypic 
effects of mutations. We propose that selection to explore a large fraction of the functional sequence space while minimizing 
the phenotypic effects of mutations contributed toward the emergence of the standard code as the universal genetic code.

Keywords  Adaptive evolution · Standard genetic code · Functional protein landscape · Genetic heterogeneity

Introduction

The standard genetic code (SGC) is one of the universal 
features of life (Alberts et al. 2008), with only minor vari-
ations across the three domains (Knight et al. 2001). The 
assignment of amino acids to different codons is not random. 
Even as the genetic code was being deciphered in the 1960s 
(Nirenberg et al. 1963; Woese 1967), it was recognized 
that codons differing by a single base are either assigned 
the same amino acid or amino acids that are biochemically 

similar in the SGC, as compared to random genetic codes 
(Woese 1965; Epstein 1966; Goldberg and Wittes 1966; 
Alff-Steinberger 1969). Recent studies utilizing computer 
simulations have lent quantitative support to this notion 
(Haig and Hurst 1991; Freeland and Hurst 1998; Butler et al. 
2009). The organization of codon–amino acid assignments 
in the SGC may have evolved to minimize, on average, the 
phenotypic effect of genetic mutations, transcription errors, 
and mistranslations (Cullmann and Labouygues 1983). 
Some studies have suggested that the “error minimization” 
property of the SGC may simply be a by-product of code 
expansion mechanisms (Massey 2008, 2015). Others have 
suggested that the genetic code co-evolved with pathways 
for amino acid synthesis, with amino acids having closer 
precursor–product relationships in biosynthetic pathways 
being encoded by similar codons (Wong 1975; Taylor and 
Coates 1989; Freeland et al. 2000; Giulio 2016; Wong et al. 
2016). Another view is the stereochemical theory that pro-
poses the codon–amino acid assignments in the SGC are an 
outcome of the physiochemical affinity between amino acids 
and the cognate codons or the cognate anti-codons (Woese 
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1968; Yarus et al. 2009; Johnson and Wang 2010; Polyansky 
et al. 2013).

There are two prevalent theories of the mechanism via 
which a universal genetic code may have evolved (Koonin 
and Novozhilov 2017). The first theory suggests that the 
universality of the genetic code is an outcome of the fact 
that all present-day life forms evolved from a universal com-
mon ancestor. After the emergence of translation, the genetic 
code fixed in the population of a single niche and froze. 
It was only after the code froze that life forms diversified 
from the single niche initially occupied (Crick 1968; Wong 
1976; Harris et al. 2003). This frozen code was then inher-
ited unchanged during the subsequent spread and diversifica-
tion of life forms. Another possibility in this vertical descent 
model of evolution of a universal genetic code is that the 
genetic code froze after life had diversified. As life forms 
spread, organisms with distinctive characteristics emerged, 
some even lacking translation. Those organisms with transla-
tion machineries would have evolved different genetic codes. 
However, over an extended period of time, all codes except 
the SGC were lost, either due to neutral drift or due to selec-
tion for optimality properties of the SGC (Novozhilov et al. 
2007).

In contrast to the vertical descent model described above 
is the view that a universal and optimal genetic code emerged 
from communal evolution amidst extensive horizontal gene 
transfer during the early stages of life (Vetsigian et al. 2006; 
Goldenfeld and Woese 2007). With organisms utilizing dif-
ferent genetic codes in multiple communities competing for 
a single niche, the community wherein members utilize the 
same genetic code or compatible genetic codes is more likely 
to succeed. This is because a community-wide code or a set 
of compatible codes will allow for efficient sharing of newly 
evolved beneficial proteins among different individuals in 
the community via horizontal gene transfer, thereby allow-
ing the organisms in the community access to a larger inno-
vation pool. Further, robustness to mistranslations is likely 
to be selected for in such a community-wide code due to the 
likely inefficient translation machineries in these ancient life 
forms. Simulations have suggested that communal evolu-
tion amidst extensive horizontal gene transfer allows for the 
evolution of a code that is more optimized for minimizing 
the phenotypic effect of translation errors. In the absence of 
horizontal gene transfer, conversely, evolving genetic codes 
tend to get stuck in local minima, ending up less optimal 
for minimizing the phenotypic effect of translation errors 
(Vetsigian et al. 2006).

In both mechanisms of emergence of a universal code 
described above, selection acts on the phenotypic features of 
the organism, and not directly on the system of codon–amino 
acid assignments. Mutations in the genomic DNA sequence, 
or the RNA sequence in the case of some viruses, are inher-
ited by the progeny during replication. Since proteins are the 

molecules that carry out a majority of the cellular functions, 
it has been argued that they largely determine the phenotype 
of an organism (Griffiths et al. 2000). Given that the genetic 
code governs the translation of a transcript of the genetic 
material into a protein, it plays a fundamental role in steering 
molecular evolution (Gonnet et al. 1992). Here, we probe 
this dependence of molecular evolution on the genetic code.

Life forms have evolved over time amidst changing 
environmental conditions. Different environmental condi-
tions require different phenotypic responses for an organ-
ism to survive. Considering the large, yet finite, space of 
possible amino acid sequences, a species that can access 
a greater portion of the sequence space is more likely to 
encounter a protein capable of forging a fitting response to a 
new environmental condition. However, only those proteins 
encountered during the exploration of the sequence space 
that are functional can contribute toward the survival of the 
organism. Thus, paths through the sequence space should 
be highly biased toward those containing functional protein 
variants. Given the evolutionary advantage of exploring a 
larger fraction of the space of functional protein sequences, 
and the role of the genetic code in guiding molecular evolu-
tion, the SGC may have evolved under a selection pressure 
to maximize the fraction of the functional sequence space 
explored. We test this hypothesis using the landscape of 
functional variants of the PhoQ protein.

Previous studies have suggested that the organization of 
the SGC constrains the exploration of the space of possi-
ble amino acid sequences (Maynard Smith 1970). This is 
because a single nucleotide change allows access to only 
6 of the 19 possible amino acid substitutions on average, 
and silent mutations are abundant within the SGC. Maeshiro 
and Kimura suggested that the SGC allows for a balance of 
robustness and changeability via a balance between the prob-
abilities of synonymous and nonsynonymous single-nucleo-
tide substitutions (Maeshiro and Kimura 1998). Judson and 
Haydon found that codes computationally evolved under 
selection for characteristics such as higher amino acid con-
nectedness and shorter path length between different amino 
acids were closer to the SGC (Judson and Haydon 1999). It 
has since been proposed that positive selection for increased 
diversity of proteins and improved protein functionality was 
a driving force during the evolution of the SGC (Higgs 2009; 
Francis 2013). Zhu and Freeland, using a population genetic 
code model and defining fitness as the linear summed dif-
ference from an optimal sequence, found that the SGC has 
properties that enhance the efficacy of adaptive sequence 
evolution (Zhu and Freeland 2006). Firnberg and Ostermeier 
confirmed Zhu and Freeland’s hypothesis on a subset of vari-
ants of the antibiotic resistance gene TEM-1 β-lactamase and 
found that the SGC enriches for adaptive mutations even 
when an experimental fitness function is used (Firnberg and 
Ostermeier 2013).
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For a definitive analysis of the influence of the organi-
zation of the genetic code on the exploration of the space 
of functional variants of a given protein, knowledge of the 
functional activity of all possible variants of the protein 
is essential. While recent deep mutational scanning stud-
ies have tested the functional activity of double and higher 
order mutants (Fowler and Fields 2014), lack of comprehen-
sive characterization of all possible variants has impeded 
the systematic analysis of the space of all functional vari-
ants. Podgornaia and Laub generated a library containing 
all 160000 variants of the Escherichia coli protein PhoQ 
with amino acid substitutions at four positions and used a 
two-step selection mechanism coupled to next-generation 
sequencing to identify 1659 functional variants (Podgor-
naia and Laub 2015). PhoQ is a sensor histidine kinase that 
phosphorylates the response regulator PhoP in response to 
low extracellular magnesium concentrations. In such two-
component signaling systems, mutating just three or four 
interfacial residues is enough to alter specificity. We used 
the space of variants of the PhoQ protein with amino acid 
substitutions at the PhoQ–PhoP interface and the informa-
tion regarding the functional activity of these variants to test 
the role of genetic code organization in the exploration of 
the space of functional amino acid sequences.

We considered the exploration of functional variants of 
the PhoQ protein under translation using the SGC and dif-
ferent randomly generated codes. The SGC explored a larger 
fraction of the functional protein sequence space at small 
and intermediate time scales, compared to random genetic 
codes with the same degeneracy as the standard code and to 
random genetic codes with degeneracies different from that 
of the standard code. Upon considering longer time scales, 
the fraction of random codes of both types that allowed for 
the exploration of more functional PhoQ variants than the 
standard code increased. However, less than 5% of the ran-
dom genetic codes with the same degeneracy as the standard 
code allowed for the exploration of more functional PhoQ 
variants than the standard code even at these extended time 
scales. We also investigated the dependence of the fraction 
of the functional sequence space explored on the starting 
nucleotide sequence. Finally, we calculated the correlations 
of the fraction of the sequence space explored under transla-
tion using different genetic codes with different quantitative 
characteristic measures of the genetic codes.

Materials and Methods

Generation of Random Genetic Codes 
that Preserved the Degeneracy of the SGC

The 64 codons were divided into 21 classes, 20 classes 
each consisting of codons coding for the same amino acid 

in the SGC and 1 class consisting of the 3 stop codons. 
To generate a random code, an amino acid was randomly 
assigned to one of the 20 classes of codons, not including 
the class consisting of stop codons. The set of stop codons 
was left unaltered. These random genetic codes are here-
after referred to as type TDP codes.

Generation of Random Genetic Codes 
with Degeneracies Different from that of the SGC

The set of stop codons was kept the same as in the SGC. 
Each amino acid was assigned to one codon chosen ran-
domly from among the 61 codons. Each of the remaining 
41 codons was then assigned to a randomly chosen amino 
acid. These random genetic codes are hereafter referred to 
as type TDNP codes.

Simulation

In a 12-nucleotide sequence encoding the 4 amino acids 
at positions 284, 285, 288, and 289 of the Escherichia 
coli protein kinase PhoQ or of the functional variants of 
this protein (Podgornaia and Laub 2015), one position was 
chosen randomly, and the nucleotide at that position was 
mutated to one of the other three possible nucleotides. 
Since multi-nucleotide substitutions are rare (Terekhanova 
et al. 2013), we do not consider them here. The mutated 
sequence was translated into a 4-amino acid sequence 
using the genetic code being considered, i.e., either the 
SGC or a randomly generated code. This mutation cor-
responded to one simulation step. If the new 4-amino acid 
sequence corresponded to a functional PhoQ variant as 
determined previously (Podgornaia and Laub 2015), the 
mutated nucleotide sequence became the start sequence 
in the next simulation step. Otherwise, the unmutated 
nucleotide sequence remained the start sequence in the 
subsequent simulation step. Simulations were run using 
the SGC, 10000 type TDP codes, or 10000 type TDNP codes 
for 100, 1000, 10000, 100000, or 1000000 steps. With 
the SGC, the starting 12-nucleotide sequence in the first 
simulation step was the wild-type nucleotide sequence 
coding for PhoQ in E. coli. With a randomly generated 
genetic code, the starting sequence in the first simulation 
step was such that it coded for the wild-type PhoQ amino 
acid sequence, hereafter referred to as the wild-type PhoQ 
variant, under the given code, with codons from degen-
erate sets chosen with probabilities proportional to their 
frequencies in the E. coli genome. For each code, for each 
number of simulation steps, the average number of func-
tional PhoQ variants explored in 100 different simulation 
runs was reported.
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Definition and Calculation of Different 
Characteristic Measures of Genetic Codes

Mean Squared Change in Physio‑Chemical Properties

Let w be the amino acid physio-chemical property being 
considered. Then, the mean squared change in w for a given 
genetic code G is defined as

where the sum is over all possible single-nucleotide muta-
tions, wold is the amino acid encoded by the unmutated 
codon, and wnew is the amino acid encoded by the mutated 
codon. The quantity was calculated for the following amino 
acid properties: polar requirement (Woese et al. 1966b), 
hydrophilicity (Weber and Lacey 1978), isoelectric point 
(Alff-Steinberger 1969), and volume (Zamyatnin 1972). Ref-
erences adjacent to each property indicate the study from 
which the values for the property were taken.

Code Fragility

Code fragility for a genetic code is defined as the number of 
codons in the given genetic code for which, out of the 9 pos-
sible single-nucleotide substitutions, 8 or more were nonsyn-
onymous (Judson and Haydon 1999). Note that all genetic 
codes with the same degeneracy have the same value of code 
fragility.

Code Mutability

Let xi be the number of nonsynonymous single-nucleotide 
substitutions for codon i under a given genetic code G . Code 
mutability M for that genetic code is then defined as (Judson 
and Haydon 1999)

Note that all genetic codes with the same degeneracy have 
the same value of code mutability.

Total Number of Synonymous Point Mutations

Under a genetic code G , let xi be the number of single-nucleo-
tide substitutions to codon i that do not change the amino acid 
encoded by the codon. Then, the total number of synonymous 
mutations is defined as

(1)wG =
1

549

∑
(

wnew − wold

)2
,

(2)MG =
1

64

64
∑

i=1

xi.

(3)NS,G =

64
∑

i=1

xi.

Note that all genetic codes with the same degeneracy have 
the same value for this measure.

Code Changeability

The definition of code changeability was taken from Maesh-
iro and Kimura (Maeshiro and Kimura 1998). If i and j are 
amino acids such that it is possible to transition from amino 
acid i to amino acid j under the genetic code G via a single-
nucleotide substitution, the probability of transition from i 
to j , �ij , is defined as

where mij is the number of ways of going from a codon that 
encodes amino acid i to a codon that encodes amino acid j 
in the genetic code G , and ni is the number of codons that 
encode amino acid i in the genetic code G . For amino acids 
i and j connected via 2 transitions, �ij is defined as

where k is the intermediate amino acid via which the transi-
tion from i to j must take place. The value of �ij for amino 
acids connected via more than 2 transitions is defined along 
similar lines. The transition probability between amino acid 
i and amino acid j is defined by the minimal number of 
transitions for which �ij is nonzero, i.e., the path between 
amino acids i and j involving a minimum number of transi-
tions is chosen for calculating �ij . The three stop codons are 
treated as if coding for a 21st amino acid. However, paths 
that passed through stop codons are excluded from the cal-
culation of �ij . Code changeability is finally defined as

Note that all genetic codes with the same degeneracy have 
the same value of code changeability.

Estimate of the Time Scale Corresponding to One 
Simulation Step

Each simulation step corresponds to the time taken for an 
individual in a population of effective size Ne to acquire one 
nucleotide substitution in the 12-nucleotide PhoQ sequence 
considered here. Considering a typical E. coli genome size 
of 5.44 × 106 base pairs and a mutation rate of 0.003 muta-
tions per genome per generation, one simulation step will 
be equivalent to

(4)�ij =

mij

9ni
,

(5)�ij =

∑

k

mik

9ni
×

mkj

9nk
,

(6)�
G
=

1

210

∑

i

∑

j

�ij, i ≠ j.

(7)
5.44 × 106

0.003 × 12 × Ne

=
1.5 × 108

Ne

generations.
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With an average generation time of 30 min, one simula-
tion step is equivalent to

Results

The Standard Genetic Code Allows 
for the Exploration of More Functional Variants 
of PhoQ as Compared to Random Codes

Figure  1 shows the distribution of the number of 
unique functional variants of the PhoQ protein explored 
under translation using different random genetic codes and 
using the SGC for different numbers of simulation steps. 
Under translation using the SGC, more unique functional 
variants of PhoQ were explored via single-nucleotide sub-
stitutions as compared to the average number visited under 
translation using randomly generated codes of both types, 
TDP and TDNP , for up to 100000 simulation steps. It is only 

(8)
1.5 × 108

Ne

×

(

30 × 1.9 × 10−6
)

=
8.6 × 103

Ne

years.

at 1 million simulation steps that the average number of 
functional PhoQ variants visited under translation using 
type TDNP codes surpassed the number explored under 
translation using the SGC. The mean number for type 
TDP codes, however, remained small as compared to the 
standard code even at 1 million simulation steps (Fig. 2a). 
Among codes of type TDP , less than 5% allowed for the 
exploration of more functional variants than the standard 
code for up to 1 million simulation steps. The fraction was 
lower at lower numbers of simulation steps as is shown 
in Fig. 2b. Among codes of type TDNP , less than 7% per-
mitted exploration of more functional PhoQ variants than 
the standard code with the number of simulation steps up 
to 10000. The fraction was larger for higher numbers of 
simulation steps, reaching 87% at 1 million simulation 
steps. The results in Fig. 2b indicate that the SGC is more 
optimized for exploring a large fraction of the space of 
functional PhoQ variants at intermediate time scales than 
at very short or long time scales. The fraction of random 
codes of both types that explored a larger fraction of the 
PhoQ functional sequence space as compared to the SGC 
was lower at 1000 and 100000 simulation steps than at 
100, 100000, or 1 million simulation steps (Fig. 2b).

Fig. 1   Distribution of the number of functional variants of the E. coli 
kinase PhoQ explored via single-nucleotide substitutions under trans-
lation using type TDP codes, type TDNP codes, and the SGC. All simu-

lations were carried out as described in the “Materials and Methods” 
section. Distributions are shown for N = 100, 1000, 10000, 100000, 
and 1000000 simulation steps
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Number of Functional PhoQ Variants Explored 
Varies only Slightly for Different Degenerate 
Starting Nucleotide Sequences

Since there are only 20 amino acids and 3 stop codons 
with 64 possible three-nucleotide codons, all genetic 
codes are degenerate, i.e., some amino acids will be 
encoded by more than one codon. Therefore, the same 
amino acid sequence can be encoded by multiple distinct 
nucleotide sequences. We investigated how the number 

of functional PhoQ variants explored depends on the 
nucleotide sequence coding for the wild-type PhoQ vari-
ant from which the simulation is started. The results are 
shown in Fig. 3. For the SGC, the standard deviation of the 
number of proteins explored over all 384 possible starting 
nucleotide sequences was only 3 and 2% of the mean for 
100 and 1000 simulation steps, respectively. The average 
standard deviation as a fraction of the mean was 4.6 and 
3.8% for type TDP codes, and 12.3 and 12.1% for type TDNP 
codes, for 100 and 1000 simulation steps, respectively. The 

Fig. 2   a The number of functional variants of the E. coli kinase PhoQ 
explored via single-nucleotide substitutions under translation using 
different genetic codes for different numbers of simulation steps. The 
bars indicate the number of functional PhoQ variants explored, aver-
aged over 10000 different type TDP or type TDNP codes. The error bars 
for randomly generated codes represent one standard deviation from 
the mean. b The fraction of type TDP codes and the fraction of type 
TDNP codes that allowed for the exploration of more functional PhoQ 
variants via single-nucleotide substitutions for different numbers of 
simulation steps as compared to the standard code. Inset shows the 
fraction of type TDP codes that allowed for the exploration of more 
functional PhoQ variants as compared to the standard code for 100, 
1000, and 10000 simulation steps

Fig. 3   Distribution of the standard deviation, as a fraction of the 
mean, of the number of functional PhoQ variants explored on start-
ing the simulation from different degenerate 12-nucleotide sequences 
that code for the wild-type PhoQ amino acid sequence under type TDP 
and type TDNP codes. The distributions are over 10000 randomly gen-
erated codes. a Distribution for simulations with N = 100 simulation 
steps. b Distribution for simulations with N = 1000 simulation steps. 
Insets show the standard deviation, as a fraction of the mean, of the 
number of functional PhoQ variants explored on starting the simula-
tion from different degenerate nucleotide sequences for the SGC, type 
TDP codes, and type TDNP codes. Inset of a shows the summary sta-
tistics for the case of N = 100 simulation steps. Inset of b shows the 
summary statistics for the case of N = 1000 simulation steps
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distribution of standard deviations as fractions of means 
was wider for type TDNP codes as compared to type TDP 
codes.

The Space of Functional Nucleotide Sequences 
is Modular for all Genetic Codes

We next investigated the structure of the space of func-
tional nucleotide sequences under different genetic codes. 
For each genetic code, we constructed a network with 
nodes as the nucleotide sequences functional under the 
given code, and edges between sequences differing by 
one nucleotide substitution. We calculated the Newman 
modularity (Newman 2004; Newman and Girvan 2004) of 
this network using the Louvain algorithm (Blondel et al. 
2008) for the standard code, for 100 type TDP codes, and 
for 100 type TDNP codes. For this calculation, we used the 
computer code available from http://www.ludow​altma​n.nl/
slm/. As shown in Fig. 4, the modularity of the space of 
functional nucleotide sequences is very high for the SGC 
and for the randomly generated codes (> 0.85 in all cases). 
Further, we observed a larger variation in modularity val-
ues for type TDNP codes as compared to type TDP codes.

Codes that Better Preserve the Chemical Properties 
of Amino Acids Under Point Mutations Explore More 
Functional PhoQ Variants

To determine the factors with which the numbers of func-
tional PhoQ variants explored are correlated, we calculated 
different characteristic measures for the SGC and for the 
random genetic codes. These measures can be classified 
into two categories, ones that characterize the effects of 
single-nucleotide substitutions on physio-chemical prop-
erties of the amino acids encoded, and ones that quantify 
different structural features of codon–amino acid assign-
ments in different genetic codes. We discuss measures of 
the first type here. For each genetic code, we calculated 
the average over all single-nucleotide substitutions in all 
codons, except the stop codons, of the squared change in 
different physical and chemical properties of the amino 
acids encoded: polar requirement (Woese et al. 1966a), 
hydrophilicity (Weber and Lacey 1978), isoelectric point 
(Alff-Steinberger 1969), and amino acid volume (Zamy-
atnin 1972).

We found weak, yet statistically significant (p 
value < 10−4) negative correlations between the num-
ber of functional PhoQ variants explored and the mean 
squared change in polar requirement, hydrophilicity, and 
isoelectric point for both type TDP and type TDNP codes, at 
all numbers of simulation steps (Figs. 5 and 6). However, 
none of the type TDP codes and none of the type TDNP codes 
exhibited a lower mean squared change in polarity require-
ment under point mutations than the SGC. The correlation 
between the number of functional PhoQ variants explored 
and the mean squared change in amino acid volume was 
further weak, with statistical insignificance at certain num-
bers of simulation steps (Figs. 5 and 6).

To further probe the relation between the mean squared 
change in polar requirement for genetic codes and the 
number of functional PhoQ variants explored, we com-
pared the mean squared changes in polar requirement for 
the 100 type TDP codes and the 100 type TDNP codes that 
allowed for the exploration of most PhoQ variants to the 
mean squared changes in polar requirement for all type 
TDP and type TDNP codes (Fig. 7a, b). We observed that the 
mean squared changes in polar requirement for the top-
performing type TDP and type TDNP codes did not differ 
significantly from other random codes. We also consid-
ered the 100 type TDP and the 100 type TDNP codes with 
least values of mean squared change in polar requirement 
and found that the numbers of functional PhoQ variants 
explored under translation using these codes did not differ 
significantly from the numbers explored under translation 
using all random codes of each type (Fig. 7c, d).

Fig. 4   Newman modularity of the network of functional 12-nucleo-
tide sequences coding for the PhoQ protein under the SGC, 100 
type TDP codes, and 100 type TDNP codes. For each genetic code, all 
12-nucleotide sequences that translated into a functional 4-amino 
acid sequence were identified. These sequences formed the nodes of 
the network. If it was possible to go from one nucleotide sequence to 
another sequence via a single-nucleotide substitution, the nodes cor-
responding to the two nucleotide sequences were connected via an 
edge

http://www.ludowaltman.nl/slm/
http://www.ludowaltman.nl/slm/
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Codes with a Larger Number of Nonsynonymous 
Point Mutations Explore More Functional PhoQ 
Variants

We evaluated quantitative measures of different structural 
features of codon–amino acid assignments in randomly 
generated genetic codes and investigated their correlation 
with the number of functional PhoQ variants explored under 
translation using the different codes. We used the measures 
defined previously by Judson and Haydon (Judson and Hay-
don 1999): code fragility, defined as the number of codons 
with eight or nine nonsynonymous point mutations out of 
the nine possible point mutations; code mutability, defined 
as the average number of nonsynonymous point mutations 
per codon; and the total number of synonymous point muta-
tions. Scatter plots of these measures versus the number of 
functional PhoQ variants explored under translation using 
type TDNP codes at different numbers of simulation steps are 
shown in Fig. 8. Note that all type TDP codes have the same 
value as the SGC for the measures considered in this section.

We observed that code fragility and code mutability were 
positively correlated with the number of functional PhoQ 
variants visited for different numbers of simulation steps, 
with p value < 10−4 in each case. The total number of syn-
onymous mutations, which encodes information opposite 

to that encoded by code fragility and code mutability, was 
negatively correlated, with p value < 10−4, with the number 
of functional PhoQ variants explored under translation using 
type TDNP codes for different numbers of simulation steps. 
None of the type TDNP codes allowed for more synonymous 
mutations than the SGC.

We also calculated the code changeability (Maeshiro and 
Kimura 1998) for different type TDNP codes. Changeability 
is defined as the sum, over all pairs, of the probabilities of 
transitions between different amino acids, excluding paths 
involving stop codons. The number of functional PhoQ 
variants explored under translation using type TDNP codes 
was negatively correlated with code changeability, with p 
value < 10−4, at numbers of simulation steps greater than 
100.

Preservation of Chemical Properties of Amino 
Acids Under Point Mutations Facilitates Exploration 
of the Functional PhoQ Sequence Space 
at Intermediate Time Scales

We calculated, for each number of simulation steps, the 
mean squared change in amino acid polar requirement, 
hydrophilicity, isoelectric point, and volume due to point 
mutations under translation using those type TDP and type 

Fig. 5   Scatter plots representing the dependence of the number of 
functional PhoQ variants explored under translation using type TDP 
codes (vertical axis) on the mean squared change in different physio-
chemical properties of amino acids due to single-nucleotide substitu-

tions: polar requirement, hydrophilicity, isoelectric point, and volume 
(horizontal axis). The Pearson’s correlation coefficient (r) and the p 
value of the estimate are indicated under each plot



333Journal of Molecular Evolution (2018) 86:325–339	

1 3

TDNP codes that explored more functional PhoQ variants as 
compared to the SGC at the given number of simulation 
steps. The results are shown in Fig. 9. The mean squared 
change in these physio-chemical properties of amino acids 
due to point mutations is lower for codes that explored more 
functional PhoQ variants than the SGC for 1000 and 10000 
simulation steps as compared to the codes that explored 
more functional PhoQ variants than the SGC for 100, 
100000, or 1000000 simulation steps. These results indi-
cate that preservation of chemical properties of amino acids 
under point mutations promotes the exploration of functional 
PhoQ variants at intermediate time scales while contributing 
little toward the exploration of functional PhoQ variants at 
very short time scales, i.e., 100 simulation steps, or at very 
long time scales, i.e., 100000 and 1000000 simulation steps.

The Deviant Genetic Codes in Different Species 
Explore More Functional PhoQ Variants 
as Compared to the SGC

Maeshiro and Kimura (1998) proposed that the reassign-
ment of certain codons in the deviant genetic codes of 
some species such as Candida spp., Mycoplasma spp., 
Euplotes spp., and Blepharisma spp. could ease the tran-
sitions between amino acids with different polarities, and 

increase chances of recovery from nonsense mutations by 
decreasing the number of stop codons, thereby allowing 
for greater alterability of the phenotypes. Postulating that 
these properties will facilitate the exploration of the space 
of functional PhoQ variants, we calculated the number of 
functional PhoQ variants explored under translation using 
these deviant genetic codes at different numbers of simu-
lation steps and compared the results to the number of 
functional PhoQ variants explored under translation using 
the SGC. The results are shown in Fig. 10 and Table 1. For 
numbers of simulation steps greater than 1000, transla-
tion using deviant genetic codes in Candida spp., Euplotes 
spp., and Blepharisma spp. allowed for the exploration of a 
significantly higher (two-sample t test p value < 0.01) frac-
tion of the space of functional PhoQ variants as compared 
to translation using the SGC. Differences from the SGC 
are not significant at 100 and 1000 simulation steps for the 
deviant codes in these species. Under translation using the 
deviant genetic code in Mycoplasma spp., a significantly 
larger fraction of the PhoQ functional sequence space as 
compared to translation using the standard code (two-sam-
ple t test p value < 0.05) was explored only at 100000 and 
1000000 simulation steps. For each code and each number 
of simulation steps, 100 simulations were carried out and 
the results were used to calculate the p values.

Fig. 6   Scatter plots representing the dependence of the number of 
functional PhoQ variants explored under translation using type TDNP 
codes (vertical axis) on the mean squared change in different physio-
chemical properties of amino acids due to single-nucleotide substitu-

tions: polar requirement, hydrophilicity, isoelectric point, and volume 
(horizontal axis). The Pearson’s correlation coefficient (r) and the p 
value of the estimate are indicated under each plot



334	 Journal of Molecular Evolution (2018) 86:325–339

1 3

Discussion

Our results indicate that the organization of codon–amino 
acid assignments in the SGC allows for the exploration of 
a greater fraction of the space of functional variants of the 
Escherichia coli protein kinase PhoQ via single-nucleotide 
substitutions, as compared to most randomly generated 
codes, particularly at intermediate time scales (Fig. 2b). A 
role of selection for flexibility in the evolution of the SGC 
was first proposed by Maeshiro and Kimura (1998) and 
backed up soon thereafter by Judson and Haydon (1999). 
Later studies argued in favor of selection for increased pro-
tein diversity during the evolution of the SGC (Higgs 2009; 
Francis 2013). Firnberg and Ostermeier showed for a subset 
of the functional variants of the antibiotic resistance gene 
TEM-1 β-lactamase that there is enrichment for adaptive 
mutations under translation using the SGC (Firnberg and 
Ostermeier 2013; Firnberg et al. 2014). Our results repre-
sent the first direct confirmation of Maeshiro and Kimura’s 
hypothesis for the space of all possible variants of an amino 
acid sequence.

Both with randomly generated codes and the stand-
ard code, the space of functional nucleotide sequences is 
partitioned into clusters of sequences with dense connec-
tions between nucleotide sequences in the same cluster 
and sparse connections between sequences in different 
clusters (Fig. 4). This modular structure of the functional 
nucleotide sequence space for all genetic codes arises 
since all genetic codes map 61 codons to 20 amino acids 
and must therefore be degenerate. Given the small separa-
tion between degenerate codons in the standard code and 
in type TDP codes, the probability that a single-nucleo-
tide substitution will change the encoded amino acid is 
low. Further, amino acid sequences that are closer to a 
functional sequence are more likely to be functional as 
compared to the sequences that are far away from it. This 
is since protein functionality derives from the physio-
chemical properties of amino acids. Thus, substitution 
of an amino acid with another amino acid having similar 
properties is less likely to alter the functionality of the 
amino acid sequence. This characteristic results in a modu-
lar structure of the functional nucleotide sequence space, 

Fig. 7   a Mean squared change in polar requirement for the 100 type 
TDP codes that allowed for the exploration of the highest numbers of 
functional PhoQ variants for different numbers of simulation steps 
(best 100 codes), for all 10000 type TDP codes (all codes), and for the 
SGC. b Mean squared change in polar requirement for the 100 type 
TDNP codes that allowed for the exploration of the  highest numbers 
of functional PhoQ variants for different numbers of simulation steps 
(best 100 codes), for all 10000 type TDNP codes (all codes), and for 
the SGC. c Number of functional PhoQ variants explored under trans-

lation for different numbers of simulation steps using the 100 type 
TDP codes with the lowest mean squared changes in polar requirement 
(best 100 codes), all 10000 type TDP codes (all codes), and the SGC. 
d Number of functional PhoQ variants explored under translation for 
different numbers of simulation steps using the 100 type TDNP codes 
with the lowest mean squared changes in polar requirement (best 100 
codes), 10000 type TDNP codes (all codes), and the SGC. The error 
bars represent one standard deviation from the mean
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even for type TDNP codes where degenerate codons may be 
separated by a larger distance.

The modular structure of the functional nucleotide 
sequence space is responsible for the comparatively small 
variation in the number of functional PhoQ variants vis-
ited on starting the simulation from different nucleotide 
sequences coding for the wild-type PhoQ amino acid 
sequence (Fig. 3). For the standard code and for type TDP 
codes, all nucleotide sequences coding for the wild-type 
PhoQ are likely to lie within the same cluster, given the 
small distances between degenerate codons in these codes. 
Degenerate codons in these codes differ by 1.3 nucleotides 
on average. Since our simulation is a random walk on the 
network of functional nucleotide sequences, given the highly 
modular nature of the network, simulations starting at nodes 
within the same cluster are likely to explore similar numbers 
of nodes. For type TDNP codes, degenerate codons differ by 
2.25 ± 0.07 nucleotides (mean ± standard deviation). Thus, 
different nucleotide sequences coding for the wild-type 
PhoQ are less likely to be located within the same cluster, 
resulting in a larger variation and a wider distribution of 
variations in the number of functional PhoQ sequences vis-
ited as compared to type TDP codes on starting the simulation 
from different degenerate nucleotide sequences.

The property of the SGC to allow for the exploration of a 
large fraction of the space of functional nucleotide sequence 
variants is not a direct consequence of the property of the 
code to minimize changes in different physio-chemical prop-
erties of the encoded amino acids under point mutations, 
a property that has been demonstrated in previous studies 
(Alff-Steinberger 1969; Zamyatnin 1972; Wolfenden et al. 
1979; Haig and Hurst 1991; Freeland and Hurst 1998). That 
the latter property does not directly lead to the former is 
evident from the weaker optimization of the SGC for explo-
ration of the space of functional PhoQ variants as compared 
to its optimization for minimizing the changes in physio-
chemical properties of amino acids under point mutations. 
None of the 10000 type TDP or type TDNP codes exhibited a 
smaller mean squared change in amino acid polar require-
ment under single-nucleotide substitutions than the stand-
ard code. The 100 type TDP codes and the 100 type TDNP 
codes that allowed for the exploration of highest numbers of 
functional PhoQ variants did not exhibit significantly lower 
values of the mean squared change in polar requirement as 
compared to all random codes (Fig. 7a and b). The 100 type 
TDP codes and the 100 type TDNP codes with least values of 
mean squared changes in polar requirement did not allow for 
the exploration of significantly higher numbers of functional 

Fig. 8   Scatter plots representing the dependence of the number of 
functional PhoQ variants explored under translation using type TDNP 
codes (vertical axis) on quantitative measures characterizing the 
organization in codon–amino acid assignments: code fragility, code 
mutability, total number of synonymous point mutations, and code 

changeability (horizontal axis). Detailed definitions of these proper-
ties are given in the “Materials and Methods” section. The Pearson’s 
correlation coefficient (r) and the p value of the estimate are indicated 
under each plot
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PhoQ variants as compared to all random codes (Fig. 7c and 
d). Collectively, these results imply that the property of a 
genetic code to allow for minimal changes in physio-chem-
ical properties of amino acids under point mutations is nei-
ther necessary nor sufficient for exploring a large fraction of 
the space of functional nucleotide sequences under the given 
code. Further, while all type TDP codes allowed for the same 
number of synonymous mutations as the standard code, only 
a few of these codes allowed for the exploration of a larger 
fraction of the space of functional PhoQ variants than the 
standard code. None of the type TDNP codes allowed for more 
synonymous mutations than the standard code, but a number 
of such codes allowed for the exploration of a greater frac-
tion of the space of functional PhoQ variants as compared to 
the standard code. Taken together, these observations indi-
cate that selection for exploring a large fraction of the space 
of functional nucleotide sequences is largely independent 
of the different selection pressures postulated before. In 
fact, selection for a code that allows for the exploration of 
a larger fraction of the space of functional protein variants 
as compared to the SGC may have contributed toward the 
emergence of codon re-assignments in deviant genetic codes 
seen in Candida spp., Mycoplasma spp., Euplotes spp., and 
Blepharisma spp.

Fig. 9   Mean squared changes in different physio-chemical properties 
of amino acids due to single-nucleotide substitutions for those type 
TDP codes (top row; solid lines) and type TDNP codes (bottom row; 
solid lines) that explored more functional PhoQ variants as compared 

to the standard code (dashed lines) for 100, 1000, 10000, 100000, and 
1000000 simulation steps. Results are shown for amino acid polar 
requirement, hydrophilicity, isoelectric point, and amino acid volume. 
The error bars represent one standard error of the mean

Fig. 10   Fraction change in the number of functional PhoQ variants 
explored under translation using deviant genetic codes from differ-
ent species as compared to the SGC for numbers of simulation steps 
N = 10000, N = 100000 , and N = 1000000. The change is calculated 
as Δf = (fcode − fSGC)∕fSGC . Here, fSGC is the mean of the number of 
functional PhoQ variants explored using the SGC over 100 different 
simulations and fcode is the mean of the number of functional PhoQ 
variants explored using the deviant genetic code over 100 different 
simulations
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The correlations of the number of functional PhoQ vari-
ants explored with different characteristic measures of the 
genetic codes indicate that a balance between physio-chem-
ically conservative amino acid changes under point muta-
tions, i.e., robustness, and alterability of the amino acid 
sequence under point mutations, i.e., flexibility, is needed 
for better exploration of the space of functional nucleotide 
sequences (Maeshiro and Kimura 1998). While conserva-
tion, under point mutations, of polar requirement, hydro-
philicity, and isoelectric point of amino acids encoded did 
correlate with the number of functional PhoQ variants 
explored (Figs. 5 and 6), the number of functional PhoQ 
variants explored was greater for genetic codes allowing for 
smaller numbers of synonymous mutations and for codes 
with higher fragility and mutability (Fig. 8). This result 
indicates that frequent transitions between different amino 
acids, unless constrained, are not sufficient for exploring a 
larger fraction of the functional nucleotide sequence space. 
High code fragility and mutability allow for visiting, via 
point mutations, a greater number of nucleotide sequences, 
while conservation of physio-chemical properties of amino 
acids under point mutations helps restrict the sequence of 
PhoQ mutants visited to functional PhoQ mutants, thereby 
allowing for the exploration of a larger fraction of the space 
of functional PhoQ variants. We have shown that the SGC 
embodies an evolutionary advantageous balance of robust-
ness and flexibility, leading to the exploration of a large 
fraction of the space of functional PhoQ variants. A similar 
postulate was previously put forward by Firnberg and Oster-
meier in the context of TEM-1 β-lactamase (Firnberg and 
Ostermeier 2013).

While code mutability, defined as the average number 
of nonsynonymous single-nucleotide substitutions, was 
positively correlated with the number of functional PhoQ 
variants explored for type TDNP codes, code changeability, 
defined as the sum of probabilities of transitions between 
all pairs of amino acids, was negatively correlated (Fig. 8). 
The difference in trends for metrics that allude to the same 

property of a genetic code is due to the distribution of func-
tional sequences in the space of all possible amino acid 
sequences. Code mutability describes the likelihood that the 
amino acid sequence will change due to a single-nucleotide 
substitution. Thus, starting from a functional sequence, 
codes with high mutability will allow for visiting a large 
number of neighboring sequences differing by one amino 
acid from the functional sequence. Since sequences differing 
only slightly from a functional sequence are more likely to 
be functional, high mutability will facilitate the exploration 
of functional sequences. Code changeability, on the other 
hand, describes the probability of an amino acid changing 
into another amino acid, including changes that must occur 
via multiple nucleotide substitutions. Transitions involv-
ing multiple nucleotide substitutions, however, generally 
involve multiple intermediate amino acid sequences. Given 
the sparsity of functional sequences in the space of all pos-
sible amino acid sequences, the intermediate sequences in 
a transition involving multiple nucleotide substitutions are 
unlikely to be all functional. Thus, while high changeability 
may promote the exploration of space of all possible amino 
acid sequences, such a property is more likely to hinder 
exploration of the space of functional amino acid sequences 
by promoting transitions to nonfunctional sequences. Due to 
the rugged nature of the space of functional proteins, search-
ing for functional sequences via single-nucleotide substitu-
tions is likely to be a more successful strategy as compared 
to taking multiple steps at once, and the organization of 
codon–amino acid assignments in the SGC is optimized to 
take advantage of such a strategy.

An organization of codon–amino acid assignments in 
the genetic code that allows for the exploration of a larger 
fraction of the space of functional nucleotide sequences 
via point mutations can provide an evolutionary advan-
tage. Selection for such a property need not invoke a tele-
ological view of evolution. In the vertical descent model of 
emergence of a universal genetic code (Crick 1968; Wong 
1976; Harris et al. 2003), exploration of a larger fraction 

Table 1   The p values for the number of functional PhoQ variants 
explored under translation using deviant genetic codes from differ-
ent species compared to the number explored under translation using 
the SGC. Here, the null hypothesis is that the number of functional 

PhoQ variants explored under translation using the SGC is equal to or 
greater than the number of variants explored under translation using a 
deviant genetic code

Species Codon re-assignment N = 102 N = 103 N = 104 N = 105 N = 106

Candida spp. CTG​
Leu → Ser

0.0158 0.0466 < 0.01 < 0.01 < 0.01

Mycoplasma spp. TGA​
Stp → Trp

0.3822 0.9664 0.9533 < 0.01 < 0.01

Euplotes spp. TGA​
Stp → Cys

0.3664 0.1510 < 0.01 < 0.01 < 0.01

Blepharisma spp. TAG​
Stp → Gln

0.5101 0.0267 < 0.01 < 0.01 < 0.01
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of the functional nucleotide sequence space will allow the 
population descended from an individual to access a much 
larger innovation pool of functional sequences. Thus, such a 
genetic code will provide a fitness advantage to the popula-
tion of individuals, particularly amidst changing environ-
mental conditions, and can therefore be selected for. Along 
similar lines, in the competition between innovation pools 
model of emergence of a universal genetic code (Vetsigian 
et al. 2006; Goldenfeld and Woese 2007), a community with 
a genetic code that allows for the exploration of a larger 
fraction of the space of functional nucleotide sequences will 
have access to a larger innovation pool. This property will 
provide a fitness advantage to the individuals in the commu-
nity, and such a community is more likely to drive out other 
communities from a niche, allowing for positive selection 
for the property to explore a larger fraction of the space of 
functional nucleotide sequences during the emergence of a 
universal genetic code.

As described above, the property of a genetic code to 
allow for the exploration of a greater number of functional 
nucleotide sequences via single-nucleotide substitutions 
affords greater standing diversity in the population. Diver-
sity in the population will result in a fitness advantage under 
changing environmental conditions. Environmental changes 
are more likely to occur at intermediate time scales as com-
pared to very short or very long time scales. As shown in the 
“Materials and Methods” section, each step in our simula-
tions roughly corresponds to 8.6 × 103/Ne years, where Ne is 
the effective population size. For Ne = 106, 10000 simula-
tion steps will correspond to a period of around 100 years, 
an approximate time scale for environmental changes. Our 
results indicate that the SGC is more optimized for explor-
ing a larger fraction of the functional nucleotide sequence 
space at these intermediate time scales than at very short or 
very long time scales (Fig. 2b). Further, the preservation of 
chemical properties of amino acids under single-nucleotide 
substitutions for which the SGC is well known to be opti-
mized seems to aid exploration of more functional nucle-
otide sequences at such intermediate time scales (Fig. 9). 
Thus, the organization of codon–amino acid assignments in 
the SGC not only helps minimize the phenotypic effects of 
mutations and translation errors, but also allows for greater 
standing genetic diversity in the population at the interme-
diate time scales of typical environment changes. Together, 
these benefits afforded by the SGC may have contributed 
toward its emergence as the universal genetic code.

The present study only considers the space of functional 
variants of the PhoQ protein with amino acid substitutions at 
four positions. Thus, the ideas described above are universal 
to the extent to which our results for the PhoQ protein can 
be generalized. Given the dependence of protein function 
on protein structure and chemistry (Berg et al. 2002), both 
of which derive from the amino acid composition of the 

protein, we expect the SGC to exhibit a similar character-
istic for the functional sequence spaces of other proteins. 
Comprehensive studies of functionalities of variants of other 
proteins are needed for strengthening evidence in support of 
the ideas presented here.
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