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Abstract
Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key 
mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unam-
biguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase 
of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that 
cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a con-
stant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in 
response to changes in the computed environment. We test this concept in a population of predators and predated cells with 
chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We 
finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only 
successful with small elasticity modulus.

Keywords  Systems biology · Elastic mechanisms · Computational theory · Turing machines · Evolution · Open-ended 
evolution

Introduction

The combination of both data science and network theory 
has become prominent to model and predict outcomes in 
many complex systems, from biology and medicine to 
society. Data produce the necessary knowledge to deduce 
mechanisms responsible for interactions between different 
elements, and allow us to conclude if these interactions rep-
resent a physical or at least a causal relation between them. 
These mechanisms are helpful to identify basic principles 
of biological functions, helping to better approach the Car-
tesian vision of Biology: “I should like you to consider that 
these (biological) functions follow from the mere arrange-
ment of the machine’s organs every bit as naturally as the 
movements of a clock or other automaton follow from the 
arrangement of its counter-weights and wheels” (Descartes, 
Treatise on Man, p. 108).

Despite this, there is still not a well-established and 
unified mathematical formalism providing an essential 

description of complex biological systems. Only network 
theory has become the best candidate to derive the funda-
mental basis of this formalism, in part because it allows the 
mathematical implementation of mechanistic explanations.

The obvious relevance of this methodology is the pos-
sibility to write predictive models, allowing the extrapola-
tion from one to other system (translation) as well as the 
extrapolation in the future (prediction). For instance, molec-
ular biology is essentially reductionist, since it assumes that 
“explanations that come from lower levels are better than 
explanations that come from higher levels” (see Tabery et al. 
2005). Therefore, “biological theories need to be grounded 
on molecular biology and on physical sciences, for it is only 
by doing so that they can be improved, corrected, strength-
ened, and made more accurate and more adequate and com-
plete” (Rosenberg 1997). Biological theories are then repre-
sented by models, which are usually constructed on the base 
of network theory. Ideally these networks can be experimen-
tally validated, and then be used for extrapolation (in time 
to predict future events or between different target systems, 
for instance in drug tests from animal models to humans).

But it is impossible not to feel some discomfort in this 
development. An extrapolation based on a model requires 
a perfect and complete mathematical description. This 
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goal can be reached in physical sciences, when perturba-
tion sources are controlled or well characterized, allowing 
the discovery of fundamental interaction mechanisms. But 
in complex systems we continuously experience the limits 
of this methodology, since we are continuously exposed to 
open and evolving systems.

It is usually granted that the context of an organism 
and its evolution takes place after long time periods, but 
in practice it is difficult to know how fast this evolution is. 
For instance, in medicine: “disease cannot always be pre-
dicted with certainty, and health professionals must iden-
tify and modify risk factors. The common unidimensional 
“one-risk factor to one-disease” approach used in medical 
epidemiology, however, has certain limitations” (Ahn et al. 
2006). This concept is the origin of epidemic paradoxes, i.e., 
spread of apparent diseases in healthy populations simply by 
adjusting the threshold values of characteristic physiologi-
cal measurements—like levels of biomarkers—(Ahn et al. 
2006). Not only in risk assessment, but also in the identi-
fication of evolution this concept is blind. In pharmacol-
ogy we observe an intermittent adaptation of organisms to 
substances after long administration times, which are much 
shorter than time spans for biological evolution (see Peper 
2009) for a mathematical model considering interactions 
with the environment.1

These facts challenge the construction of models. In 
effect, the myriad of possible interactions motivates a con-
tinuous update in the information registered in databases. 
Thus, while some canonical pathways are well known, many 
other interactions, and possible variations, are still unknown 
and must be constantly updated when these mechanisms are 
reconstructed.

These variations are rooted in many possible ways to 
respond to the environment. The interconnection between 
different scales is a central concept that, despite its growing 
relevance in sciences, is usually ignored (Ellis 2012), and 
is related to the autopoietic character of biological systems. 
A hierarchic construct seems to be a first good approach, if 
small structures are involved in collective interactions that 
drive self-organization producing larger structures. But this 
organizational characteristic is not enough to understand 
how “assimilation” and “accommodation” work for systems 
included in larger organisms (Bitbol and Luisi 2004).

Like condensed matter (Castelvecchi 2015), and its fol-
lowing concepts from computational theory, micro processes 
in biological organisms are fundamentally incomplete and 
undecidable, implying that “there is more than a crude 
metaphor behind the analogy between cells and computers” 
(Danchin 2009).

Only when these processes are included in the organ-
ism is completeness achieved, allowing the evaluation of 
predictions using a mathematical formalism (which is the 
background for systems biology). We argue that to get this 
decidability, biological processes change their fundamental 
structure, changing also its relationship with the environ-
ment. This implies that systems not simply emerge or are 
merely autopoietic, but model themselves, in the spirit of 
basic cognitive notions as “assimilation,” “integration,” 
and “accommodation” to an environment (Bitbol and Luisi 
2004). To this end, we introduce an “elasticity” modulus to 
measure how strong the deformation of these mechanisms 
and cross-scale interactions are. We use this module as a 
measure, and demonstrate its use in a toy model for chemo-
taxis, complementing current methods based on network 
theory. Finally, we discuss this theory in the framework of 
systems theory and explore potential applications.

Vesicles and Completeness

Consider for instance the formation of vesicles, starting from 
a relatively static aqueous system (vesicle) formed by a sur-
factant S. Here a highly lipophilic precursor of S, indicated 
as S–S, binds to the boundary of the vesicle and is hydro-
lysed there. The vesicle grows, and eventually divides into 
two or more thermodynamically more stable smaller vesi-
cles. The more vesicles are formed, the more S–S is bound, 
forming additional vesicles, making the process autocata-
lytic. Since the entire process of hydrolysis and growth takes 
place because of and within the boundary, the vesicle can be 
seen as a simple self-reproducing, autopoietic system (Bitbol 
and Luisi 2004).

These simple vesicles contain internal reaction mecha-
nisms, as for instance when “the membrane (S) is formed 
from the molecule B through a process characterized by a 
generation velocity v Then, S decays with velocity v_deg. 
Additionally assume that the precursor metabolite A enters 
from the environment, and that B decays into C, which is 
eventually expelled.” This cycle can continue at infinite if 
the process is homeostatic and has access to energy sources 
that are able to maintain it. At this point all these processes 
are mechanistic, and can be described using simple ordinary 
differential equations (see Fig. 1).

Regarding the dynamics of the vesicle, the work of Matu-
rana and Varela is useful to understand how the interaction 
between an autopoietic unit and the environment can change 
by considering basic concepts of cognition (Maturana and 
Varela 2004). Indeed, there is adaptation whenever there is: 
(a) an environmental cause, in the example of the vesicles 
an outer molecule X–Y ; (b) a resulting effect from the unit, 
here the inception of the molecule X in the cycle and the 
release of the metabolite Y ; and (c) an adaptive virtue of the 

1  This adaptation explains why the rolling stones have survived so 
many time despite drug and general health abuse.
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effect (Bitbol and Luisi 2004), the inhibition of the vesicle 
reproduction, triggering of a degradation process. This cycle 
can repeat ad infinitum.

The fact that the bounded molecules X–Y may trigger or 
inhibit internal processes (from the unit) implies the intro-
duction of an external decision about the next state of the 
vesicle, regarding the population of other vesicles and the 
environment. The population with the initial set of reactions 
(square symbol in Fig. 1) surely fulfills all thermodynamic 
constraints, and is associated to a high fitness at the popula-
tion level. But these optimal conditions do not help the vesi-
cle to decide about, for example, when to stop or continue 
the replication process.

In this example, biological processes cannot make deci-
sions “by themselves” based only on mechanistic (and physi-
cal) notions at the micro level. We suspect that this issue is 
common for many systems in biology and other sciences. 
For instance, for 2D lattices of atoms “the undecidability 
‘at infinity’ means that even if the spectral gap is known for 
a certain finite-size lattice, it could change abruptly—from 
gapless to gapped or vice versa—when the size increases, 
even by just a single extra atom. And because it is “probably 
impossible” to predict when—or if—it will do so, it will be 
difficult to draw general conclusions from experiments or 
simulations” (Castelvecchi 2015; Cubitt et al. 2015). This 
is a remarkable result since it extends concepts from the 
theoretical computation theory into physics.

We postulate that internal properties in vesicles are like 
changes in the internal states of atoms, such that populations 
of vesicles behave like a Turing Machine making them una-
ble to halt by themselves. Therefore, in this framework bio-
logical processes require assimilation and accommodation.

Thus, our hypothesis is that micro biological systems are 
inherently incomplete, and that assimilation and accommo-
dation help them to be complete and decidable. For instance, 
if the population of vesicles has enough energy then they can 
eventually continue reproducing (like an immortal cancer 
cell in a tumor), which is nothing different to an infinite 
iteration of a Turing machine. Only when this unit belongs to 
an organism this process will be decided (i.e., can continue 
forever or can be stopped) according to the functionality of 
the population as an organism.

Open‑Ended Evolution (oee), Computability, 
and Biological Mechanisms

Mathematical Background

The goal of mathematical descriptions of a biological sys-
tem is to compute its change and evolution, assuming that 
it is like a deterministic or stochastic system that can be 
mathematically described with continuous real functions or 
discrete states that evolve according to certain rules, like for 
instance Boolean rules.

Alternatively, biological systems are like computa-
tional machines that process input information to compute 
next states. Thus, this category is not a representation, but 
assumes that de facto biological systems are closer to a 
computation than classical dynamical system. In the last 
case, “an object x is computable if it can be described by 
machines like a Turing machine (Turing 1936); for exam-
ple, if there exists a Turing machine that produces x as an 
output.” (Hernández-Orozco et al. 2016).

Fig. 1   Example of a vesicle 
with a membrane formed by 
a cycle generated with the mole-
cules A, B, and C (i) that allows 
the vesicle replication. After 
interaction with the nearest 
population as well as with the 
environment a pair of molecules 
X–Y is absorbed (ii); thereafter 
the molecule X is linked into 
the cycle (iii). This interaction 
can trigger important “deci-
sions” in the vesicle concerning 
its maintenance or degradation, 
or the inhibition of the internal 
cycle
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Despite recent efforts to demonstrate the link between 
dynamical systems and computability theory (Buescu et al. 
2011), for instance by showing that analytical and real func-
tions are computable (either with classical or quantum com-
putational methods), there is no rigorous proof showing the 
equivalence between computational theory and dynamical 
systems theory. We opt here to assume that biological sys-
tems are like computational machines that overlap with a 
dynamical system. The examples shown in the previous sec-
tion are dynamical systems with unambiguous, finite, and 
complete information of initial states, i.e., computable sys-
tems. According to the formalization of Turing and Church, 
for these computational systems there are future states that 
cannot be predicted (Turing 1936).

As has been shown by Hernández-Orozco et al. (2016) 
decidability imposes limits to the growth of complexity, 
and for this reason oee, particularly non-decidability, are 
required to understand the complexity growth in biology. 
However, increase of complexity in cooperating organisms 
across scales can be life threatening, since processes must 
halt while a constraint in the complexity growth is retained 
(for example, apoptosis in cells stops the life cycle of the 
cell, sustaining the correct function of large organisms by 
maintaining a relatively constant population of cells). Since 
the behavior of the organisms depends on its adaptation and 
survival regarding an environment, these biological comput-
able systems also depend on an effective representation of 
the environment.

The computation p of M̂ , p(M̂) determines how the micro 
states change in time, i.e., p ∶ �i,t → �i,t+1 , where M̂ is a 
structure where information is stored, and p(M̂) the set of 
rules to estimate the transition from one input state to the 
next. Therefore, p codifies the rules required to estimate the 

next state �i,t using the information stored in the network 
structure M̂ . The computation p(M̂) is apparently isomor-
phic to the dynamical description of the system. However, 
from the rigorous point of view, both are completely differ-
ent mathematical objects (Buescu et al. 2011). When this 
computation represents the environment E , then (see exam-
ple 1 in Table 1).

Following the definitions introduced by Hernández-
Orozco et al. (2016), the information of the organism is 
codified in a structure M̂ , which contains several microstates 
ordered in such way they can have a response to external 
inputs. This structure can be represented by a network, such 
that M̂ = gij𝜎i ⋅ 𝜎j , where gij is the connectivity factor of the 
information of microstates �i and �j.

“In weakly convergent systems, the program p(M̂) rep-
resents an organism, a theory or any other computable sys-
tem that use the structure M̂ to predict the behavior of E ” 
(Hernández-Orozco et al. 2016). If this representation can-
not be attained in a certain time period, then the system is 
non-adapted, or the theory is non-useful.

Since this theory overlaps computational theory with 
dynamic systems, the computation of the environment E 
means the computation of the trajectories Γ representing 
the environment � , i.e., E� = Γ� (for this notation see Wang 
et al. 2012b). This process can be seen as the search of food 
in a grid, or the expression of proteins in a genetic network 
expressing a phenotype.

If the environment is dynamic, i.e., E(�t) for a sequence 
of times �1 … �t … , then there exists a computation pt , such 
that pt(M̂𝛿t

) = E(𝛿t) , or in other words there exist a trajectory 
Γ(�t) . According to the theorem 13 in Hernández-Orozco 

(1)p(M̂) = E.

Table 1   How environment and control functions are internally represented in elements belonging to a system

Example 1: Homeostasis is related to the optimization of landscape U in a 
control function (for instance fitness) closely related to the environment. Each 
element (small spheres), as well as the whole organism (sphere population 
enclosed in a dotted circle) explore with their trajectories Γ their environment 
E and are constrained to the optimization ( {max,min}U ) of this landscape

Example 2: The control function Uk is locally optimized, but the entire popu-
lation is eventually constrained to a different control function Ul . The gap 
between trajectories in Eq. 3 depends on the accommodation and assimila-
tion of the organism (population) to these environments, or equivalently to 
the use in the organism of compensating mechanisms, such that biological 
functions are decided
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(2016), if a series of representations of the environment 
p ∶ t ↦ pt is computable, the function � ∶ t ↦ �t is computa-
ble, and the descriptive complexity of the system is bounded. 
On the other hand, if the sequence of times � ∶ t ↦ �t is 
non-computable, then the system is non-computable, i.e., 
the environment is non-computable. Thus, there is no way 
to decide if Γ(�t) , with this sequence of times, represents 
the environment, implying its growth of complexity. The 
definitions above [Lemma 11 and theorem 13, corollary 14 
(Hernández-Orozco et al. 2016)] represent the formal basis 
of open-ended evolution (oee).

For non-cooperative organisms, pt cannot find comput-
able conditions to represent its dynamical environment, 
increasing the complexity of the system. Such organisms are 
sensitive to E(�t) , but are in general blind to further varia-
tions of the environment. However, organisms can cooperate 
with other organisms and the environment, and recognize 
that the increase of the complexity can be life threatening 
(for instance non-apoptotic cells in cancer tissues). For this 
reason, we argue that systems not only own oee, and that 
they look for computability conditions.

Computability can be imposed if more than one (dynami-
cal) environments exist and � is computed. Under this con-
dition, the system explores a family of trajectories Γ�(�t) 
searching for computability conditions in the environment, 
and generating in this way a biological function. This is a 
plausible condition in multi-scale systems (cells, organelles, 
organs, etc.), such that

where Γ�(�t)
||{max,min}U� is the trajectory of the microstates 

constrained to the optimization (maximization or minimiza-
tion) of the control function U� related to the environment � , 
which simultaneously belongs to a family of environments 
� = 1⋯Λ (see Table 1).

This condition implies a distance between two trajecto-
ries belonging to two different environments k and l ( k and 
l ∈ � = 1⋯Λ ), which is the absolute value of the mean dis-
tance between the points of two trajectories

In this expression, there is an implicit difference between 
different landscapes of control functions originated in 
changes in the environment (see Table 1).

Thus, these kind of systems own “ears and eyes” that are 
able to sense dynamical changes in the environment, and 
impose decidability on one process, since the change of one 
to other relative environment stops a computation, while the 
inherent increase of complexity is reduced. In contrast, con-
ventional dynamical systems are centered in the computation 
of a single trajectory.

(2)p_i(M�(�t) ) = Γ�(�t)
|||{max,min}U�

,

(3)ΔklΓ =
||||Γ

k(�t)
|||{max,min}Uk

− Γl(�t)
|||{max,min}Ul

|||| ;

This also implies the existence of a family of structures, 
such that M̂𝜆 = gij

𝜆𝜎i ⋅ 𝜎j . If two trajectories exist, then 
there is a probability to establish a distance between differ-
ent structures, such that for two environments k and l , with 
ΔklM̂ = H(gij

k, gij
l) the hamming distance between these 

both structures.
If computational structures are deformed to explore new 

trajectories and make computational systems decidable, 
then taking elements of elasticity theory (see Rathgeber 
2002; Landau 2004), we conjecture that we can measure 
the deformation of these structures/mechanisms in the net-
work. Like the elasticity modulus in solid mechanics, the 
elasticity modulus of mechanisms (EMM) is measured as 
the distance between two network structures regarding two 
environments ΔklM̂ respect the mean distance between two 
trajectories ΔklΓ (Eq. 3), and is defined as2

In a family of environments, and similar to the tensor 
notation of the elasticity modulus in solid mechanics, the 
expression (4) becomes a tensor-like structure:

If Dkl = 0 there are no changes in the structure, implying 
that either the system remains as non-computable, and pre-
serves oee, or the system is complete and simple trajectories 
can be computed. This last case implies that the system 
can be mathematically described (for instance using differ-
ential equations).3 On the other hand, if Dkl

≫ 0 there are 
changes in the structure M̂ to make the system decidable. 
Thus, if an organism cannot compute its environment, or 
the trajectories are undecidable, but try to modify internal 
structures to meet decidable structures, then the system has 
been distorted.

In the next section, we present a simple example with a 
system exploring two different environments to illustrate the 
use of an elasticity modulus of mechanisms.

(4)Dkl =
ΔklM̂

ΔklΓ
.

(5)Dkl =

⎛⎜⎜⎜⎝

Δ11M̂

Δ11Γ

Δ𝜆1𝜆2 M̂

Δ𝜆1𝜆1Γ
⋯

Δ1lM̂

Δ1lΓ
Δ21M̂

Δ21Γ

Δ22M̂

Δ22Γ
⋯

Δ2lM̂

Δ2lΓ

⋮ ⋮ ⋯
ΔklM̂

ΔklΓ

⎞⎟⎟⎟⎠
,

2  This relation is valid since we relate two distances. No additional 
mathematical structures are here involved.
3  Both conditions are dangerous, since dynamical systems could be 
used to describe systems that are oee. This can be wrong if the exist-
ence of the gap between trajectories describing the environment is not 
recognized.
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Example: A Modified Predator–Prey System 
with Chemotactic Response

Due to the fact that intrinsic networks are not consistent, 
there are several possible responses that can be assigned to 
different network architectures. To illustrate this, we employ 
an example for chemotaxis where is difficult to decide 
between two candidate networks associated to two differ-
ent responses to stimuli (Chang and Levchenko 2013). We 
argue that the system is non-computable in the sense that 
the system cannot decide alone which trajectory should be 
computed.

Here, “perfect adaptation of a signaling response turns 
out to be quite restrictive in terms of the number of possible 
ways it can be achieved. A recent analysis suggested that 
the ‘architecture’ or topology, of the underlying signaling 
networks would be expected to fall into two classes: those 
containing a negative (integral) feedback (NFB) and those 
that contain two parallel initially diverging and ultimately 
converging pathways, affecting the output in opposite ways. 
The latter network type has been termed an ‘incoherent 
feed-forward’ loop (iFFL)” (Alon 2006). The, “adaptation 
to temporally changing inputs can be a key in this response.”

The input z(t) , intracellular concentrations for activation 
and inhibition loops ( x(t) and y(t) ) and the response r(t) of 
the organisms as well as the development of the popula-
tion of consumers C(t) and predators P(t) , assuming that 
the population behaves according to a Lotka–Volterra sys-
tem, are presented in Fig. 2a, b (corresponding equations 

have been written down in "Appendix"). The equations for 
the chemotactic response are adapted for the responses of a 
social amoeba, and were extracted from Wang et al. (2012a). 
The results for each response are presented assuming that 
stimuli can linearly increase with the time (Chang and Lev-
chenko 2013). We select a simple stimulus, and not oscilla-
tory examples, to avoid artifacts that other kinds of stimuli 
can introduce.

The notion of distortion in this model is useful to track 
the completeness of the system. Additionally, to seek the 
reduction of the distortion helps us to define a co-evolution 
of the internal chemostatic states in the population.

“As the rate of the change increases, the cells would tend 
to maximize their response, recognizing that they move in the 
direction leading them more precisely towards the source of 
the chemoattractant.” However, some organisms will require an 
adaptation to the external response, i.e., when they approached 
the source they minimize their response, requiring the NFB but 
not the iFFL architecture. Here it is difficult to exactly define 
or identify the underlying network. Furthermore, we see a sys-
tem that is incomplete, i.e., two different competing models, 
eventually based on common molecular interactions: both can 
perfectly explain the behavior of the system.

We argue that both responses can belong to a cell that 
is able to adapt its response to an external source. To this 
end, one of both responses must be selected depending on 
whether the entire system (the population as organism) is 
incomplete or not. We do that if the cell prefers an adaptive 
response, only if this response lies below a threshold value. 

Fig. 2   a Non-adaptive response, of organisms in a population with 
low propagation velocity v(t) . The equations describing the organ-
ism’s response, based on an NFB architecture and the population 
dynamics are presented in "Appendix" (Eq. 8). b Adaptive response, 

in a population with high propagation velocity v(t) . The equations 
describing the organism’s response, based on an iFFL architecture, 
the population dynamics are presented in "Appendix" (Eq. 7)
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Thus, the cells as an organism “decide” (“accommodation”) 
which response fits better depending on the behavior of the 
population of consumers and predators (see Fig. 3). In this 
way, we establish a direct interaction between the single 
organisms and the entire population.

We construct a toy model using the following steps (the 
complete set of equations for the population dynamics are 
presented in Eqs. 7–9 in "Appendix"):

•	 Assume that consumers ( C(t) , population of predators) are 
close to a chemical stimulus that is frequented by a popula-

tion of bacteria that is predated ( P(t) ). In our example, the 
stimuli grow proportional to the time.

•	 The bacteria have a variable response: switch from an adap-
tive to a non-adaptive response. The bacteria alone cannot 
“decide” which is the better response; this decision is made 
as an organism, but accounting the entire population and 
its environment. The response will depend on the whole 
population of predators.

•	 If C(t) , (population of predators) is relatively low, then 
the preferred response remains constant; otherwise, if the 
population of predators increases above a critical number, 
then the preferred response changes from a non-adaptive 
to an adaptive response.

•	 The kind of response influences the velocity towards the 
stimuli: a non-adaptive response is related to high propa-
gation velocity towards the stimuli. Otherwise, an adap-
tive response is related to a slow propagation velocity (see 
experiments about changes of velocities for aggregation of 
bacteria in chemotaxis).

This “trick” should affect the number of predators, and 
should influence the cycles of the population (Arditi and Gin-
zburg 1989) (Fig. 4).

In this example, there is apparently a co-evolution. How-
ever, observe that the underlying network is incomplete since 
it has two potential background models that mutually compete; 
the apparent co-evolution is the decision to adopt one or other 
response depending on the pressure over the entire population 
of consumers and predated organisms. In this process, there 
is a constant distortion, until the organism meets a “decision” 
and selects only one response. According to Eq. 5, below the 
first �a = 1000 time steps

(6)

H
(
gij

1; gij
2
)
= 2 > 0,

||r(t) − rS=1(t)
|| > 0,

D12 |t<𝜏a = D21 |t<𝜏a > 0.

Fig. 3   Example in chemotaxis where a population must decide 
between two different kinds of responses: one for an iFFL architec-
turegij1 (left—squares) and an NFB gij2 architecture (right—trian-
gles), depending on the interaction of the entire population with the 
environment (predator’s population)

Fig. 4   In figure above, P(t) are 
the predated population (in our 
example bacteria) and C(t) are 
consumers. S detects which 
response has been selected: 
S = 1 is for a non-adaptive 
response; S = −1 for adaptive 
response. The complete set of 
equations and parameters are 
presented in "Appendix"
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Observe that the selected parameters generate a criti-
cal behavior, in which the cells alternatively select two of 
the responses. The change of response depending on the 
predator’s population implies a distortion D12 = D21

> 0 
(which is known in this model). The additional oscillation 
of this distortion implies self-organization in the population 
dynamics and the adaptation of the response. Also, in this 
model we assume that each kind of response is complete, 
i.e., D11 |t<𝜏a = D22 |t<𝜏a = 0.4

Above a critical value of the stimuli the cell 
finally selects one response from the two poten-
tial responses, after 1000-time steps, implying that 
D21 |t>𝜏a = D12 |t>𝜏a = D11 |t>𝜏a = D22 |t>𝜏a = 0 . This tran-
sition is visualized in the phase diagram in Fig. 4.

In this example there is uncertainty about how to choose 
the best response to the environment. The microstates do 
not simply have a passive response to the environment, but 
actively select a response (in our example from two possible 
responses), modifying their behavior at higher levels. By 
doing this, higher levels close the loop and generate com-
pleteness, i.e., multi-scaling is responsible for the generation 
of completeness.

Thus, the organism can stop or restart a computation 
(response or function) regarding the response of the mac-
rostate. This also implies that the organism can in principle 
maintain different redundant structures that either perform 
the same function or response (Tononi et al. 1999) or that 
can iterate different responses, a decision that depends on the 
multi-scaling where the organism is embedded.

Discussion

The construction of theories requires completeness in order 
to make them predictive. However, we continuously experi-
ence a challenge to this completeness in various levels. Writ-
ing a text like this is an example about how difficult it is to 
retain completeness in the transmitted message and decide 
when to stop. The goal is to write a code that works like a 
mechanism in the minds of other people; but so many ideas 
and concepts compete, making it difficult to find a complete 
sentence, or decide when to stop writing. This also applies 
to our daily life and business, as well as biology in writing 
and expressing genetic codes.

In the nature we find very often incompleteness and unde-
cidability. Several mechanisms can run to infinity, as we 
have shown in our vesicles example (“Vesicles and Com-
pleteness” section). However, the interaction with the envi-
ronment, as well as the selection of functionality induces a 

primitive cognition that helps these processes to decide, in 
the frame of accommodation and assimilation (Bitbol and 
Luisi 2004). Constant changes in the environment imply a 
change of the initial completeness, pushing living organ-
isms to constantly try to maintain a decidability or relative 
completeness. This sets a limit to our ability to identify 
models in systems biology: while a mechanism can be valid 
under certain circumstances, continuous assimilation and 
accommodation of organisms challenge the completeness of 
these mechanisms. This implies a distortion of interaction 
mechanisms.

A measure of this distortion is therefore helpful to decide 
when a model is predictive or can be extrapolated. From 
our daily experience we know that it is almost impossible to 
fly by pulling on our shoe laces. Similarly, incompleteness 
in the nature cannot be solved from the microstates alone. 
Thus, “higher levels” in biology close the loop and generate 
completeness where a single level (the microstate) cannot, 
providing a framework where multi-scaling is essential for 
the computability of the system. In this way the distortion 
module quantifies the deformation of computational struc-
tures, triggered by larger scales, to explore new trajectories 
and make computational systems decidable.

We use this concept to model several responses in chem-
otaxis. If the distortion is larger than zero, then different 
responses associated to different interaction networks are 
selected depending on the population of predators. This 
example allows us not only to model making use of this dis-
tortion, but also to exemplify this assimilation and accom-
modation depending on the evolution of the populations of 
bacteria and predators.

However, chemotaxis is not the single field where these 
concepts can be applied. Cancer is also a potential candi-
date: “The oxygen-deprived cells (environment) suffer an 
excess of DNA methylation, which silences the expression of 
tumor-suppressing genes, thereby enabling aberrant cellular 
behavior and enhancing tumor growth.”5 (Thienpont et al. 
2016). This also is related to the way how cancer is treated: 
while several efforts focus on the identification of biologi-
cal mechanisms for the targeted treatment of the disease, 
the practical application has shown that this strategy often 
not only does not work, but is in some cases harmful to the 
patient. This problem is not only rooted in the complex-
ity of the cancer mechanisms, but also on the capability of 
the cancer cells to evolve and develop tolerance and mutate 
against treatments6.

5  http://www.genengnews.com/gen-news-highlights/cancers-grow-
by-throwing-epigenetic-smother-parties/81253107/.
6  http://www.nature.com/nature/journal/v537/n7619_supp/
full/537S63a.html.

4  Otherwise we must assume for instance more than one adaptive 
response associated to different models

http://www.genengnews.com/gen-news-highlights/cancers-grow-by-throwing-epigenetic-smother-parties/81253107/
http://www.genengnews.com/gen-news-highlights/cancers-grow-by-throwing-epigenetic-smother-parties/81253107/
http://www.nature.com/nature/journal/v537/n7619_supp/full/537S63a.html
http://www.nature.com/nature/journal/v537/n7619_supp/full/537S63a.html
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Also in physics, there are potential traces of incomplete-
ness. For instance, a toy model for spin ice can also illus-
trate this incompleteness and distortion, with a connectivity 
of microscopic states depending on a whole energy land-
scape (Ochoa 2014). It also implies that equations of life, 
for instance relating entropy with replication, are only valid 
when the energy gap of internal reservoirs with respect to 
the environment is zero (England 2012, 2015).

These facts are against the definition of laws for com-
plex systems. Perhaps we can identify rules; but rules are 
not laws, which is a fact that starts to be recognized not 
only in biology but in general in many social and tech-
nological systems that may “require removing the segre-
gation of states and fixed dynamical laws characteristic 
of the physical sciences for the last 300 years” (Adams 
et al. 2017). This fact allows us to observe regularities 
that cannot be generalized for all the systems, in the sense 
of a strict generalization or at least as a ceteris-paribus 
rule (Carroll 2016). This is true not only for biology, but 
also for social sciences. Mathematically this has a deep 
implication: whereas in physical systems it is possible to 
recognize laws and fundamental models that in principle 
work in every part of the universe, for complex systems 
there are rules, rather than laws, that are often subject to 
exceptions.

Mathematically this also implies that there is no method-
ology to produce good universal predictions, and that biol-
ogy cannot be solely described using differential equations 
(Danchin 2009). This is only valid when Dkl = 0 . Once we 
want to predict something we are confronted to the necessity 
to constantly collect and update information.

This also implies that when using networks to describe 
mechanisms certain mathematical laws must be considered 
more as a rule that can be subjected to exceptions. For exam-
ple, the concept of scale-free distribution of node connectiv-
ity in networks is perhaps a rule (Barabási 2009), but not a 
law, which can be continuously challenged by the incom-
pleteness of molecular networks (Khanin and Wit 2006).

Finally, in its current form the measurement of the distor-
tion of the mechanisms with an elasticity modulus should 
not be confused with the distortion–rate theory, initially 
defined by Claude Shannon and which has been applied in 
recent works in biology by Marzen and DeDeo to study the 
“evolution of lossy compression and quantify the trade-off 
between acquisition costs and perceptual distortion, allow-
ing to talk about the extent to which an organism can save 
costs of transmitting a representation of their environment 
by selectively discarding information” (Marzen and DeDeo 
2017).

Both approaches, the EMM and the distortion–rate theory 
of Marzen and DeDeo, handle two different aspects: the first 
focus on the computability of dynamical systems; the second 
is essentially an optimization problem that quantifies the 

optimization of acquisition costs with respect to perceptual 
distortion. However, in their roots, both information theory 
and computation theory are deeply interlinked (Danchin 
2009), implying that a more detailed study is required to 
link both concepts in a single theoretical framework.

Concluding Remarks

This work is an alternative to the conventional bottom-up or 
up-bottom approaches to comprehend living systems. In our 
opinion, there is not a hierarchy of scales, but much more an 
interaction across different scales, as has also been pointed 
by Ellis for instance as top-down causation in adaptive selec-
tion (Ellis 2012).

Incompleteness is also the impossibility to know how an 
organism and its mechanisms have specific functions regard-
ing evolutionary pressures. Certainly there are well-defined 
functions, but organisms across scales fulfill so many tasks, 
that as a result is difficult to make optimal definitions. As 
we have shown in our toy model, it is useful to consider 
contrasting objective functions and try to obtain one solu-
tion by accepting that the organism decides which function 
will be adopted depending on how consistent this objective 
function is with respect to its environment.

Then, can biology or complex social and technological 
systems be explained using fundamental theories or even 
physics? Our answer is: only sometimes. Occasionally we 
can define laws that envision the possibility to describe these 
systems by means of fixed dynamical laws like in physics 
(Goldenfeld and Woese 2011), but in general it is much 
more cautious to speak about rules. We also recognize that 
in these kind of systems, rules are non-invariant [an opin-
ion currently shared by other authors (Adams et al. 2017)]. 
This is not a pessimistic statement, but instead is a stimulat-
ing chance coupled to our current technological ability to 
increase measurements and use stream data and artificial 
intelligence to better understand evolving systems, particu-
larly in systems biology.
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Appendix: Model Equations

Structure: Molecular Network

The implemented equations for a chemotactic response were 
adapted from Wang et al. (2012a). Adaptive response relies 
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on a ‘negative feedback adaptive’-based response (iFF) 
which is described by the following equations

We assume that r(t) is the response function, x(t) is an acti-
vating pathway, y(t) is a delayed inhibitory pathway, Force 
the external stimuli in the network, defined as a stimulus that 
growths proportional to the time

with Ampl = 0.5 ; and x(t) , y(t) , and z(t) the internal concen-
trations in the network. For this case, we use the following 
parameters, extracted from the supplementary material from 
Wang et al. (2012a).

Parameter adaptive response Value

K1cb 0.01
K2cb 0.2
K1Fbb 0.1
K2Fbb 0.01
K1ac 1
K2ac 1
K1bc 2
K2bc 0.1

If organisms have a non-adaptive response then

When the organism switchs to a non-adaptive response, a 
negative integral feedback (NFB) is implemented. In this case 
the following network of interactions were defined

(7)

dx(t)

dt
= K1cb ⋅ y(t) ⋅

(1 − x(t))

((1 − x(t)) + K2cb)
− Fb ⋅ K2Fbb ⋅

x(t)

x(t) + K1Fbb

dy(t)

dt
= K2ac ⋅ z(t) ⋅

(1 − x(t))

((1 − x(t)) + K2cb)
− Fb ⋅ K2Fbb ⋅

x(t)

x(t) + K1Fbb

dz(t)

dt
= −z(t) + Force

dr(t)

dt
= x(t) − r(t)

Force (t) = Ampl × 0.0007 × t

S = − 1

(8)

dx(t)

dt
= K1cb ⋅ y(t) ⋅

(1 − x(t))

((1 − x(t)) + K2cb)
− Fb ⋅ K2Fbb ⋅

x(t)

x(t) + K1Fbb

dy(t)

dt
= K2ac ⋅ z(t) ⋅

(1 − y(t))

((1 − y(t)) + K1ac)
− K2bc ⋅

x(t) ⋅ y(t)

y(t) + K1bc

dz(t)

dt
= −z(t) + Force

dr(t)

dt
= z(t) − r(t)

with the following parameters, extracted from Chang and 
Lexchenko (2013).

Parameter non-adaptive response Value

K1cb 0.0007
K2cb 0.0769
K1Fbb 0.1
K2Fbb 0.1473
K1ac 4.7339
K2ac 0.4695
K1bc 0.0069
K2bc 0.0790

If organisms have a non-adaptive response then

Population Dynamics

The set of equations above describe the response of the 
organism to external conditions depending on the changes 
in the concentration of the intracellular molecules.

Now, we introduce the population dynamics, which 
depends on the consumption of resources as well as the bal-
ance between the population of consumers C(t) and predated 
cells with chemotaxis P(t) (owning an adaptive/non-adaptive 
response). We describe this population using the Lotka–Vol-
terra equations:

S = 1
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where the parameter v represents the velocity of propagation 
of the prey, which is a parameter that depends on the kind of 
response of the organisms that belong to P(t) . In our experi-
ment, we assume that organisms with non-adaptive response 
have a slow propagation velocity; we consider therefore the 
following parameters.

Non-adaptive response (sus-
tained response)

Adaptive response (fast relaxa-
tion)

v = 0.01 v = 0.05

For organisms with distorted mechanisms we impose the 
following conditions

For all the experiments, we considered the following ini-
tial conditions: x = 0.0, y = 0.0, z = 0.0, r = 0.0, P = 1, C = 0. 
For the population dynamics, we use normalized values.
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