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Abstract Here, we report a fluorescent probe based on a

macrocyclic peptide scaffold that specifically stains

EpCAM-expressing MCF7 cells. The 14-mer macrocyclic

peptide binding to the extracellular domain of EpCAM

with a dissociation constant in the low nM range (1.7 nM)

was discovered using the random non-standard peptide-

integrated discovery system. Notably, this probe containing

a fluorescence tag is less than 3000 Da in total and able to

visualize nearly every live cell under high cell-density

conditions, which was not achieved by the conventional

mAb staining method. This suggests that the molecular

probe based on the compact macrocyclic scaffold has great

potentials as an imaging tool for the EpCAM biomarker as

well as a delivery vehicle for drug conjugates.

Keywords In vitro selection � Macrocyclic peptide �
EpCAM � Fluorescent imaging probe � Cancer cell imaging

Introduction

Epithelial cell adhesion molecule, so-called EpCAM, is a

transmembrane glycoprotein expressed exclusively in

epithelia and epithelial-derived neoplasms (Armstrong and

Eck 2003). Extensive studies on EpCAM have led to the

knowledge of its roles in not only the original function of

cell adhesion (Ladwein et al. 2005; Litvinov et al. 1997;

Nochi et al. 2004; Trzpis et al. 2007) but also signaling

(Guillemot et al. 2001; Maetzel et al. 2009; Munz et al.

2004), cell migration (Guillemot et al. 2001; Osta et al.

2004), proliferation (Munz et al. 2004; Osta et al. 2004),

and differentiation (Cirulli et al. 1998; Osta et al. 2004).

Most importantly, immunohistochemical studies revealed

that EpCAM is overexpressed on various carcinoma cells

isolated from patients with breast, prostate, ovarian, lung,

colon, renal, and gastric cancer (Baeuerle and Gires 2007;

Patriarca et al. 2012; Spizzo et al. 2004, 2006; Went et al.

2005, 2006), implying the importance of EpCAM as a

diagnostic biomarker for various cancers. Moreover,

EpCAM is recently recognized as a critical biomarker of

cancer stem cells, which makes it more exciting to develop

specific probes for not only in vitro/vivo imaging but also

in drug-conjugate carriers.

Specific probes to cancer biomarkers are often made of

monoclonal antibodies (mAbs) (Chaudry et al. 2007;

Deonarain et al. 2009; Kwiatkowska-Borowczyk et al.

2015; Linke et al. 2010). Specific mAbs against EpCAM

have been generated and even commercially available from

various venders for laboratory use. To make fluorescently

active probes, the mAb can be directly tagged with a flu-

orescent molecule, such as fluorescein or rhodamine, often

involving random modification(s) to the exterior lysine

residues available on the mAb by the chemistry of amide

bond formation. Alternatively, partial or full reduction of
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disulfide bond(s) liberates thiol groups, which can be

covalently modified with the thiol-selective fluorescent

molecules using maleimide chemistry, for instance (Kratz

et al. 2012; Shaunak et al. 2006). Despite the high speci-

ficity and affinity of mAb to EpCAM in the complex of 1:1

or 1:2 stoichiometry, a drawback of the above method is

that neither of these methods produces a homogeneously

modified probe. Instead, a secondary mAb conjugated with

a fluorescent molecule is often used for non-labeled anti-

EpCAM mAbs. Because of convenience of this method due

to a single kind of the secondary mAbs against a constant

region of mAbs is applicable to a variety of different mAbs

against antigens of interest, this method is more generally

utilized particularly in vitro experiments. However, for the

application of human in vivo imaging or drug-conjugate,

the former method involving a humanized mAb directly

modified with such molecules is the only choice.

More recently, probes based on non-full-length anti-

bodies or alternative molecules have been developed.

Single chain antibody fragment (scFv) often generated by

phage-display is a typical example of the former alternative

(Hristodorov et al. 2014; Huls et al. 1999; Hussain et al.

2006). Other protein scaffolds such as designed ankyrin

repeat proteins (DARPins) (Martin-Killias et al. 2011;

Stefan et al. 2011) or antigen-specific shark vNAR domains

(Zielonka et al. 2014) have been also used to generate

EpCAM-specific and high affinity molecules. More distinct

alternatives are nucleotide aptamers, which have been

successfully generated by the in vitro selection (or SELEX)

method (Jung et al. 2014; Song et al. 2013; Subramanian

et al. 2014). All these molecules can be conjugated with an

appropriate fluorescent tag for the use of tumor imaging.

Although these alternatives have smaller molecular sizes

than mAb, they are yet in a size of over 10,000 Da. Thus, it

still remains a challenge to obtain specific probes for

EpCAM with less than 10,000 Da, which gives us better

synthetic accessibility as well as chemical amenability.

Here, we report that macrocyclic peptides strongly bind

to the extracellular domain of EpCAM (ex-EpCAM) with a

dissociation constant in the low nM range (1.7 nM), and a

fluorescently labeled probe derived from one of the

macrocyclic peptides is able to specifically stain MCF7

cells expressing EpCAM. This 14-mer thioether-linked

macrocyclic peptide containing a single D-tryptophan was

discovered by means of the random non-standard peptide-

integrated discovery (RaPID) system (Morioka et al. 2015;

Passioura et al. 2014; Yamagishi et al. 2011). The probe

derived from this peptide consists of a triple-repeat of

glycine-serine linker followed by a lysine residue of which

e-amino group in the sidechain was tagged with fluores-

cein, of which the molecular mass was less than 3000 Da.

Notably, this small probe was able to visualize nearly every

live cell under high cell-density conditions, which was not

achieved by the conventional mAb staining method. This

suggests that the molecular probe based on the compact

macrocyclic peptide scaffold has great potentials as an

imaging tool for the EpCAM biomarker as well as a

delivery vehicle for drug conjugates.

Results and Discussion

The RaPID Selection of Anti-EpCAM Macrocyclic

Peptides

To discover macrocyclic peptide ligands against ex-

EpCAM, we have utilized the RaPID system (Morioka

et al. 2015; Passioura et al. 2014) that enables us to ribo-

somally express a macrocyclic peptide library from the

corresponding mRNA library under the reprogrammed

genetic code; and then the individual peptides are fused to

the cognate mRNA via a puromycin (Pu) linker (Nemoto

et al. 1997; Roberts and Szostak 1997) which is ligated to

the 30-end of mRNA by the catalysis of ribosome (Fig. 1).

Since the details of the technology have been discussed

elsewhere (Hayashi et al. 2012; Ito et al. 2015; Kodan et al.

2014; Morimoto et al. 2012; Tanaka et al. 2013; Yamagishi

et al. 2011), we here focused on describing the design of

the library used in this study. The initiator codon (AUG)

was reprogrammed to encode N-ClAc-D-tryptophan

(ClAc-DW), where ClAc-DW-tRNAfMet
CAU prepared by a

flexizyme (eFx) was added to the Met/RF1-deficient

translation (FIT, flexible in vitro translation) system (Goto

et al. 2011). Following the initiator ClAc-DW, elongator

amino acid sequences were encoded by (NNK)n (K = U or

G, n = 4–12) on the mRNA library. Subsequently, a cys-

teine residue was encoded by UGC, (GS)3 linker encoded

by (GGCAGC)3, followed by a terminator encoded by

UAG that would not result in release of the peptide chain

due to the lack of RF1; instead, the Pu linker, which was

annealed and ligated to the constant region of the 30-end
region of the individual mRNAs, would be efficiently fused

with the C-terminus of the (GS)3 linker via an amide bond.

The thiol sidechain in a Cys residue encoded by UGU

appeared in the random region (except for the 2nd position,

see Iwasaki et al. 2012) or the designated downstream

linker region would selectively react with the N-terminal

ClAc group (Goto et al. 2008; Iwasaki et al. 2012). This

intramolecular SN2 substitution displayed the thioether-

macrocyclic peptides on the cognate mRNAs, which would

allow us to perform in vitro selection of active species for

binding to the ex-EpCAM immobilized on magnetic beads.

We thus performed selection against the ex-EpCAM

according to the standard procedure (Hayashi et al. 2012;

Yamagishi et al. 2011). At the 4th round of selection, the

recovery of binding species significantly increased over the
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background (i.e., species binding to magnetic beads), and

we have decided to clone the enriched peptide species after

5 rounds of selection and carry out sequencing of 19 clones

(Fig. 2a). Sequence alignment of the 19 peptides revealed

three classes of macrocyclic peptides, Class I–III (Sup-

plementary Fig. 1). Among them, Class I peptide (Epi-1)

with a 14-mer macrocyclic structure was the most abundant

single species (5/19), where the Cys residue used for

thioether macrocyclization came from the designated UGC

Cys codon. The third abundant single species (3/19), Class

II peptide (Epi-2), has a small macrocycle with a linear tail

peptide. It should be noted that both Class I and II peptides

were expressed ‘‘in-frame’’ from the respective mRNA

templates, which were apparent from the triplet repeat of

the GS linker (Supplementary Fig. 1).

In the Class IIIa–c peptides (Epi-3–9), the Cys residue

that formed thioether bond to the N-terminus was flanked

by two consensus regions (Supplementary Fig. 1). The

Class IIIa peptides, including the second abundant single

species of Epi-3, have a consensus sequence of LGLI,

while the Class IIIb and IIIc peptides have a single muta-

tion from G to H and L to H, respectively. The C-terminal

sequence appeared following the Cys residue contained

seven consecutive alanine residues followed by RTGGG,

which are fully conserved in the Class IIIa–c peptides. This

conserved sequence was originated from a ‘‘frame-shift’’

occurred in the random sequence region likely caused by

deletion of a base in the mRNA library, i.e., one-nucleotide

deletion in the random region resulted in the frame-shift of

the originally designed UGC-(GGC-AGC)3 region encod-

ing a single Cys residue and (GS)3 linker to GCG-(GCA-

GCG)3 yielding seven consecutive alanine residues.

Characterization of the Macrocyclic Peptides

in the Display Format

To verify the binding activities of the selected peptides,

Epi-1 and Epi-3 were chosen for further studies (Fig. 2b).

Fig. 1 Overview of the RaPID system for the in vitro selection of

macrocyclic peptides that bind to the extracellular domain of

EpCAM. Messenger RNA libraries containing random sequence

domain, (NNK)4–12, were transcribed from the corresponding cDNA

library and conjugated with an oligonucleotide bearing a 30-
puromycin residue. The resulting mRNA library was translated by

FIT system in the presence of initiator tRNA charged with

chloroacetyl-D-tryptophan (ClAc-DW). Linear translation products

displayed on the individual mRNAs were spontaneously cyclized

after translation to give the mRNA-displayed macrocyclic peptide

library. The library was then subjected to Fc-tagged extracellular

domain of EpCAM (ex-EpCAM) immobilized on protein G magnetic

beads and the binding fraction was isolated. Reverse transcription was

performed after the selection at the 1st round and before the selection

from at the 2nd and following rounds. The cDNAs on active mRNA-

peptide fusion were recovered and amplified by PCR

212 J Mol Evol (2015) 81:210–217
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We first performed binding assay using the display format,

where the recovery of Epi-1-mRNA or Epi-3-mRNA to the

ex-EpCAM-immobilized beads versus the free beads was

determined by real-time PCR (Fig. 2c). Moreover, to verify

importance of the macrocyclic scaffold, we prepared their

liner versions, LinEpi-1-mRNA and LinEpi-3-mRNA

(Fig. 2b), to monitor the recovery rates (Fig. 2c). The data

showed that both Epi-1-mRNA and Epi-3-mRNA had three

orders of magnitude higher recovery rates over the back-

ground, indicating that these macrocyclic peptides bound

ex-EpCAM. Linearization in both peptides resulted in

complete loss of their binding ability, indicating that the

macrocyclic scaffold is critical in both peptides.

Since Epi-3 has a tail peptide of hepta-alanine followed

by RTGGG, we wondered how important these residues

are for the binding. We thus prepared four constructs of

deletion mutants of Epi-3 (Supplementary Fig. 2), in which

the tail peptide was completely replaced with a (GS)3-lin-

ker peptide (Epi-3-GS), partly with the GS-linker peptide

(Epi-3-A1 and A3), and with hexa-alanine only as the tail

peptide (Epi-3-A6). To our surprise, only Epi-3-A6 was

able to bind to ex-EpCAM with a slight loss of wildtype

activity, suggesting that the poly-A tail peptide plays some

roles in the binding.

Synthesis of a Fluorescent Probe for Cellular

EpCAM

Prior to the synthesis of a fluorescent probe based on the

macrocyclic peptides, we chemically synthesized the Epi-1

and Epi-3 with C-terminal carboxyamide and determined

their kinetic constants to ex-EpCAM on an SPR sensor

chip (Supplementary Fig. 3). The association rate constant

(ka) and the dissociation rate constant (kd) of Epi-1 were

5.1 9 106 M-1 s-1 and 8.5 9 10-3 s-1, respectively.

These values have led to the dissociation constant (KD) of

1.7 nM (Table 1). Similar values were also observed for

Epi-3 (Table 1). These results indicated that both macro-

cyclic peptides have remarkable binding ability to ex-

EpCAM, as expected from the qualitative results using the

display format. However, we concerned that the

hydrophobicity of the hepta-alanine tail peptide might

cause non-specific interactions with other transmembrane

proteins on cells. Therefore, we decided to focus on the

Epi-1 macrocyclic peptide for the development of fluo-

rescent probe for cellular EpCAM.

We designed two fluorescent probes based on the Epi-1

peptide sequence. One probe was the macrocyclic Epi-1,

and its C-terminus was modified with a lysine-car-

boxyamide residue where the e-amino group on the side-

chain was tagged with fluorescein (Epi-1-F, Fig. 3a). The

other probe was the liner Epi-1 with the same fluorescein

modification (LinEpi-1-F, Fig. 3a). These molecules were

readily synthesized and purified by means of the standard

solid-phase chemical synthesis and preparative HPLC.

Fluorescent Imaging of EpCAM-Expressing Cells

Using the Macrocyclic Peptide Probes

We first tested Epi-1-F to fluorescently stain EpCAM-ex-

pressing MCF7, breast cancer cells. Incubation of Epi-1-F

with MCF7 cells for 5 min, followed by gentle wash with

media, allowed us to clearly visualize the membrane region

of individual live cells using a fluorescent confocal

Fig. 2 In vitro selection of macrocyclic peptides that bind to ex-

EpCAM. a Progress of the selection. Recovery rates of cDNA at each

round were calculated from the initial and recovered amounts of

cDNAs determined by quantitative PCR. The recovery rates in the

positive selection against ex-EpCAM-immobilizing protein G beads

are shown in black while those in the negative selection against free

protein G beads are shown in gray. b Two representative peptides

identified from the cDNA pool after the 5th round and their linear

analogs. See Supplementary Fig. 1 for the full list of identified

peptide sequences. c Binding of mRNA-displayed peptides to ex-

EpCAM immobilized onto magnetic beads. Each peptide was

expressed and conjugated with its mRNA template in the FIT system.

The resulting mRNA-displayed peptides were subjected to free

magnetic beads (gray) or ex-EpCAM-immobilized beads (black), and

recovery rates of cDNA were calculated from the initial and

recovered amounts of cDNAs determined by quantitative PCR
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microscope (Fig. 3b). Simultaneously, the cells were also

stained by a conventional immunostaining method using

anti-EpCAM antibody, giving nearly the same staining

pattern as the Epi-1-F staining. In contrast, LinEpi-1-F,

which should lack of binding ability to EpCAM based on

our previous study (Fig. 2c), was unable to fluorescently

stain MCF7 cells at all, whereas the antibody control could

do (Fig. 3c). This indicates that the binding ability of Epi-1

Fig. 3 Imaging of EpCAM on the living cells by fluorescent-labeled

Epi-1. a Sequences of fluorescent-labeled Epi-1 (Epi-1-F) and its

linear analog (LinEpi-1-F). Fluorescein was conjugated onto the

sidechain of the C-terminal lysine of each peptide. b–d Laser

confocal images of cells treated with the peptides and anti-EpCAM

antibody. MCF7 cells or HuO-3N1 cells were treated with fluores-

cein-labeled peptides and stained with an anti-EpCAM antibody and

an anti-IgG antibody conjugated with Alexa Fluor 633

Table 1 Kinetic and binding

constants of Epi-1 and Epi-3
Name Sequence Mw ka (M

-1 s-1) kd (s
-1) KD (nM)

Epi-1 2417.8 5.1 9 106 8.5 9 10-3 1.7

Epi-3 2365.8 6.2 9 106 1.0 9 10-2 1.6

Kinetic/binding parameters determined by SPR analysis are shown. See Supplementary Fig. 3 for SPR

sensorgrams
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to EpCAM is critical for the staining of cells. As an

additional negative control, we examined staining of the

EpCAM-deficient cells, HuO-3N1, using Epi-1-F. Neither

Epi-1-F nor antibody was able to stain HuO-3N1 cells, as

expected, clearly showing the high specificity of Epi-1-F as

an EpCAM probe.

During the course of the above study, we noticed that a

certain area of cells could be stained only by Epi-1-F, not

antibody (see the bottom part of the merged image of

Fig. 3b). It turned out that this area of cells was denser than

other areas of cells. We therefore wondered if Epi-1-F

could fully stain MCF7 cells under high cell-density con-

ditions. In fact, Epi-1-F was able to stain nearly every live

cell not only the surface area of dense cells (Fig. 4a) but

also the middle area of cell–cell interfaces (Fig. 4b). In

contrast, the antibody could stain the surface area better

than the middle area.

Although the above qualitative analysis under the con-

ditions where MCF7 cells are adherent on the plate has

indicated that Epi-1-F effectively binds EpCAM on the

cells, we have also preformed quantitative analysis of the

peptide staining for suspended (floating) MCF7 cells by

means of flow cytometry. The EpCAM-positive MCF7

cells and EpCAM-negative HLF cells were treated with

trypsin independently, and then the respective cells were

resuspended in Hank’s balanced salt (HBS) solution. These

cells were then stained with both Epi-1-F and an allophy-

cocyanin (APC, which has a 670 nm fluorescent emission

profile, distinct from that of fluorescein at 520 nm) con-

jugated anti-EpCAM monoclonal antibody simultaneously

and subjected to flow cytometry (Supplementary Fig. 4a,

b). Epi-1-F effectively stained 81.7 % of MCF7 cells

whereas it stained only 1.1 % of HLF cells. The antibody

was able to stain 99.3 % of MCF7 cells compared with a

negligible population of HLF cells. The results clearly

indicate that despite its small size compared with the

antibody, Epi-1-F can effectively distinguish the EpCAM-

positive cells over the negative cells.

Conclusion

Here, we have reported the RaPID selection of thioether

macrocyclic peptides that strongly bind to ex-EpCAM. The

most abundant macrocyclic peptide among the clones

identified in this study, referred to as Epi-1, exhibits

remarkably high affinity to the EpCAM with KD of a sin-

gle-digit nM. The fluorescent probe derived from Epi-1

with 2904 Da is able to specifically stain EpCAM-ex-

pressing cells. Even though Epi-1 was selected against the

extracellular domain of EpCAM in vitro, it is capable of

binding to the full-length cellular EpCAM in the highly

specific manner, allowing us to utilize it as an excellent

fluorescent imaging probe. Particularly, our study on the

Epi-1-F staining of MCF7 under high cell-density condi-

tions showed its greater advantage of effective staining of

every cell interfaces than the conventional antibody stain-

ing. This result encourages us to develop not only an

imaging probe for EpCAM-expressing cancer stem cells

but also a drug-delivery vehicle with the format of a pep-

tide-drug conjugate. Moreover, the RaPID system would

enable us to discover potent macrocyclic peptide ligands

against a wide array of tumor-associated transmembrane

proteins, which opens a new opportunity for the next

generation of small non-protein drugs.
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