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Abstract How new mate recognition systems evolve

when changes are required in both the male and female

components remains a conundrum. Here, we investigated

the molecular basis of pheromone reception in two species

of tortricid (leafroller) moth, Ctenopseustis obliquana and

C. herana. Male C. obliquana are attracted to a 90:10 blend

of (Z)-8-tetradecenyl acetate (Z8-14:OAc) and (Z)-5-tetra-

decenyl acetate (Z5-14:OAc), whereas C. herana males are

attracted to Z5-14:OAc alone. We used a transcriptome

sequencing approach from adult male and female antennae

to identify 47 olfactory receptors (ORs) from each species

and assessed their expression levels in male and female

antennae using RNA-Seq counting and quantitative RT-

PCR. Three male-biased and one female-biased OR were

identified in C. obliquana by quantitative RT-PCR, and

four male-biased and one female-biased receptor in C.

herana. The male-biased receptors, CoblOR7, CoblOR30,

CherOR7, CherOR30, CherOR1a and CherOR1b were

tested for their ability to respond to sex pheromone com-

ponents in a HEK293 cell calcium assay. CoblOR7 and

CherOR7 responded to Z8-14:OAc, however, no receptor

for Z5-14:OAc was identified. In addition to Z8-14:OAc,

CherOR7 also responded to Z7-14:OAc, indicating that this

receptor may be under relaxed constraint. Of the 29 amino

acid differences between CoblOR7 and CherOR7, signifi-

cantly more are located in the third and the sixth trans-

membrane domain regions. Overall, these findings are

consistent with studies revealing the presence of neurons

tuned to both Z8-14:OAc and Z5-14:OAc in both species,

but that for C. herana males, the ability to detect Z8-

14:OAc is currently not required.
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Introduction

Changes in both the female and the male components are

required for new mating systems to evolve. Pheromone-

based mating systems offer a discrete communication

system to understand how such systems evolve and are

becoming increasingly studied for this purpose (Niehuis

et al. 2013; Smadja and Butlin 2009; Shirangi et al. 2009;

Symonds and Elgar 2008; Albre et al. 2013; Lassance and

Lofstedt 2009). In moths, males locate females through

upwind flight along a concentration gradient of the sex

pheromone (Bradbury and Vehrencamp 1998). Compounds

that make up the sex pheromone are mainly fatty-acid

derivatives such as acetates, alcohols, and aldehydes that

are typically 10, 12, 14, 16 or 18 carbons in length with one

or two unsaturated positions along the chain (Linn and

Roelofs 1995). Typically, pheromone blends are composed

of one major component and one or more minor
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components. The composition of these sex pheromone

blends is often highly specific, with little variation within

populations and species. Species specificity in pheromone

production and reception forms a robust mate recognition

system that limits incompatible mating events (Linn and

Roelofs 1995).

How new sex pheromones and pheromone blends are

biosynthesised has been investigated in several species of

moths, revealing changes in both desaturases or fatty acid

reductases (Shirangi et al. 2009; Greenberg et al. 2003;

Sakai et al. 2009; Albre et al. 2012; Xue et al. 2007). Sex

pheromones are produced from simple fatty acids in

specialised glands in the abdomen of females where the

components are synthesised. Double bonds are introduced

into fatty acids through specialised fatty-acyl desaturases

(Knipple et al. 2002), often with several desaturases pres-

ent possessing distinct affinities for different fatty acids

substrates (Lienard et al. 2008). Differential expression of

the genes encoding these desaturase enzymes can be cru-

cial for producing new pheromone components. In the

Ostrinia species, O. nubilalis and O. furnacalis, for

example, the activation of ancestral desaturase genes,

together with gene duplication and retroposon fusion has

produced novel desaturase activities (Roelofs et al. 2002;

Roelofs and Rooney 2003; Xue et al. 2007; Fujii et al.

2011). In O. scapulalis and O. furnacalis, the differential

expression of desaturase genes is responsible for the pro-

duction of species-specific pheromone components (Sakai

et al. 2009). In addition to desaturases, altered fatty-acyl

reductases (FARs) can produce distinct pheromones

through differences in affinities for desaturated precusors in

their conversion from fatty acids to alcohols. For example,

the pheromones of the E and Z strains of O. nubilalis are

produced by distinct alleles of the pheromone FAR. The

alleles differ in the substrate specificity which leads to

differentially reduced ratios in the final pheromone blend

(Lassance et al. 2010).

How new pheromones are derived has been studied

extensively but to understand the evolution of mating

systems as a whole it is necessary to understand the role of

the receiver and how the evolution of sex pheromone

perception proceeds especially at the molecular level (Sy-

monds and Elgar 2008). It seems difficult for mating sys-

tems that rely on chemical cues to evolve rapidly because

purifying selection should prevent changes in either pher-

omone production or perception. A hypothesis that

attempts to solve this dilemma is the ‘‘asymmetric tracking

hypothesis’’, which suggests that in a species where

females are the limiting sex, greater variation may be tol-

erated in the male’s pheromone perception system to pro-

vide a scenario where rare males may exist that are able to

sense a novel pheromone blend (Phelan 1992; Domingue

et al. 2007). In males, changes in the preference for certain

pheromones may well depend on alterations in a multigene

family of receptors responsible for detecting the sex

pheromone components (Gould et al. 2010; Wanner et al.

2010; Miura et al. 2010; Leary et al. 2012). It has been

shown that even single mutations in the sequence of

olfactory receptor (OR) genes can change the specificity of

the receptor protein (Leary et al. 2012).

Moths perceive odorants through receptors located

within sensilla on their antennae. These ORs contain seven

transmembrane regions with a cytoplasmic N terminus and

an external C terminus (Smart et al. 2008; Benton et al.

2006; Lundin et al. 2007). Together with the olfactory

receptor co-receptor (Orco), they form a ligand-gated cat-

ion channel. While Orco is highly conserved (Guo and Kim

2007), ligand-binding ORs are more variable, with the C

terminus being more highly conserved than the N terminus

(Tunstall et al. 2007; Carraher et al. 2012). ORs involved in

sex pheromone perception in moths are located in specia-

lised long hair-like sensilla called sensilla trichodea

(Rumbo 1981, 1983). These very long sensilla are typically

more abundant on male antennae compared with females

(Heinbockel and Kaissling 1996; Jordan et al. 2008; Mit-

suno et al. 2008; Sakurai et al. 2004; Krieger et al. 2004).

Receptors associated with sex pheromone perception in

moths to date all fall into a separate phylogenetic clade and

typically show higher levels of gene expression in the

antennae of males compared with females (Bengtsson et al.

2012, Grosse-Wilde et al. 2011, Mitsuno et al. 2008).

Many olfactory receptors and pheromone receptors

have been identified from a handful of moth species using

a range of techniques including whole genome sequencing

and RNA seq. From Heliothis virescens, 21 candidate OR

genes have been identified in whole genome assemblies by

BLAST searches using Drosophila ORs (Krieger et al.

2002). Sixty-six ORs were identified from the genome of

the silkworm, Bombyx mori (Tanaka et al. 2009), 43 were

identified from the antennal transcriptome of the codling

moth, Cydia pomonella (Bengtsson et al. 2012), 47 from

the antennal transcriptome of the tobacco hornworm,

Manduca sexta (Grosse-Wilde et al. 2011) and 70 in the

light-brown apple moth, Epiphyas postvittana, also iden-

tified from the antennal transcriptome (Corcoran 2014).

From these and a range of other moths, sex pheromone

receptors (PRs) have been identified, initially through

evidence of male-biased expression or phylogenetic posi-

tion and then through functional studies in a variety of

assay systems, including HEK293 cells (Grosse-Wilde

et al. 2007; Forstner et al. 2009), Xenopus oocytes (Sak-

urai et al. 2004; Nakagawa et al. 2005; Mitsuno et al.

2008; Miura et al. 2010; Wang et al. 2011; Wanner et al.

2010) and also in Drosophila olfactory receptor neurons

(Syed et al. 2006; Kurtovic et al. 2007; Montagne et al.

2012).
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The endemic New Zealand genera, Ctenopseustis

(brown-headed leafroller, five species) and Planotortrix

(green headed leafroller, seven species) (Tortricidae: Lep-

idoptera) include widespread and highly localised species

(Dugdale 1990; Newcomb et al. 2014 in press). Adult wing

patterning is highly variable within and between species,

making many of the species within these genera morpho-

logically cryptic (Dugdale 1990; Wearing et al. 1991).

Many of the speciation events are thought to be very recent

within the last million years, with some species not being

able to be resolved using variation in neutral molecular

markers due to incomplete lineage sorting (Langhoff et al.

2009). Within the two genera there are examples of highly

polyphagus and some monophagus species on plants such

as mangrove and fern. The polyphagus species C. obliqu-

ana, C. herana, P. octo and P. excessana together with the

light-brown apple moth, Epiphyas postvittana, form a

complex of horticultural pests in New Zealand (Wearing

et al. 1991) and therefore have received more attention than

the other species in Ctenopseustis and Planotortrix in terms

of research.

Females of the two genera produce sex pheromone

blends consisting of tetradecenyl acetates unsaturated at

either of the 5, 7, 8 or 9 positions in the cis (Z) conforma-

tion (Roelofs and Brown 1982; Newcomb and Gleeson

1998; Foster et al. 1986). These double bonds are intro-

duced through specialised fatty-acyl desaturases found in

female pheromone glands (Foster and Roelofs 1988, 1996).

Recently studies have been undertaken to investigate the

regulation of desaturase genes in the pest species (Albre

et al. 2012, 2013). Expression levels a D10-desaturase of C.

obliquana and C. herana as well as P. octo and P. exces-

sana are concordant with the presence (C. obliquana and P.

octo) or absence (C. herana and P. excessana) of the

pheromone component (Z)-8-tetradecenyl acetate (Z8-

14:OAc) in the blend of respective species (Albre et al.

2012). Further crossing experiments conducted in the lab-

oratory between P. octo and P. excessana revealed that the

difference in expression of desat5, which encodes the D10-

desaturase, is controlled by a trans-acting repressor and

requires a cis-regulatory mutation in the desat5 promoter

(Albre et al. 2013).

As well as sex pheromone production, the male’s ability

to perceive pheromone compounds has also been investi-

gated in the closely related species, C. obliquana and C.

herana. These species have overlapping distributions, with

C. obliquana found throughout New Zealand and C. her-

ana restricted to the South Island. While C. obliquana

males are attracted to a 90:10 blend of Z8-14:OAc and (Z)-

5-tetradecenyl acetate (Z5-14:OAc) (Foster et al. 1986;

Young et al. 1985), C. herana males are attracted to Z5-

14:OAc alone (Foster and Roelofs 1987). Electrophysio-

logical studies showed that trichoid sensilla of C.

obliquana contain a large spike amplitude cell that

responds strongly to the main component, Z8-14:OAc, and

a small spike amplitude cell responding to the minor

component, Z5-14:OAc. In C. herana the opposite is the

case, with the large spike amplitude cell responding to Z5-

14:OAc and a small spike amplitude cell responding to Z8-

14:OAc (Hansson et al. 1989). In wind tunnel experiments,

males of each species responded very selectively to pher-

omone blends produced by con-specific females and only a

few males were attracted by blends deviating from those

produced by pure-bred females (Foster et al. 1997). Field

cage experiments showed that males of both species are

only attracted to con-specific females (Clearwater et al.

1991) and genetic analysis provide evidence for no inter-

breeding in the wild between the two species (Langhoff

et al. 2009; Newcomb et al. 2014 and references therein).

Here, we produce transcriptome databases constructed

from the antennae of male and female C. obliquana and C.

herana and mine them for olfactory receptors. In the New

Zealand, native leafroller moths antennae show a strong

sexual dimorphism with male antennae possessing an

abundance of sensilla trichoidea type I, whereas females

possess none (unpublished datain prep.). We identify can-

didate pheromone receptors through phylogenetic analysis

and through the determination of differences in the levels

of gene expression between male and female antennae.

From a short list of candidate receptors, functional studies

in HEK293 cells identify receptors that respond to

pheromone.

Methods

Insects

Insects were reared in the Plant & Food Research insect

rearing facility at the Mt Albert Research Centre, Auck-

land, New Zealand. The history of the laboratory strains of

C. obliquana and C. herana has been reported previously

(Gleeson et al. 2000). Eggs were collected and kept in a

humid environment until larvae hatched. Larvae were

reared separately in small glass tubes containing a general

purpose diet (Clare and Singh 1988) at 18 �C. Pupae and

adults were kept at 20 �C on a 16:8 light cycle. Adult

moths were provided with cotton cloth soaked in water.

Nucleic Acid Isolation

RNA for transcriptome sequencing was isolated from 100

male and female antennae each dissected from 2 to 3 days

old adults. RNA was extracted and purified using 800 ll

Trizol (Invitrogen, Carlsbad, CA, USA) following the

TRIzol Plus RNA Purification Kit protocol. DNase

44 J Mol Evol (2015) 80:42–56
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treatment was conducted on 10 lg of total RNA using the

TURBO DNA-free Kit (Life technologies) following the

manufacturer’s instructions on antennal RNA of C. herana.

RNA for quantitative RT-PCR (qPCR) experiments was

isolated from male and female antennae dissected from 2 to

3 days old individuals, as well as whole bodies, using

800 ll Trizol (Invitrogen) following the manufacturer’s

instructions. The initial screening for male-biased expres-

sion of odorant receptors was conducted with pools of ten

antennae pairs; however, for subsequent qPCR experiments

RNA extracted from single antennae pairs was used. One

microgram of extracted RNA was treated with DNase

(DNaseI amplification grade, Invitrogen) following the

manufacturer’s instructions. cDNA was synthesised using

iScript cDNA Synthesis Kit (Bio-Rad, Herts, United

Kingdom) from 1 lg of total RNA, incubated at 25 �C for

5 min, 42 �C for 30 min and 85 �C for 5 min.

Next-Generation Sequencing and Bioinformatics

RNAseq libraries were constructed from both male and

female adult antennae of C. obliquana and C. herana using

Illumina’s standard protocols and sequenced at Macrogen

(Seoul, South Korea). Quality score analysis on the read

pairs for each library was undertaken using FastQC

(FastQC 2008). In-house Perl scripts were used to trim all

reads by 13 bases at their 50 ends and remove any read pairs

containing Ns and mononucleotides. Mitochondrial con-

tamination was removed by mapping RNA-Seq read pairs

to a reference mitochondrial genome of C. obliquana

assembled from a draft genome. Mapping was performed

using bowtie (version 1.0.0) (Langmead et al. 2009) with

the reads mapping to the mitochondrial genome being

removed. Thereafter, read pairs were trimmed to a mini-

mum quality threshold of 20 using fastq-mcf from the ea-

utils package (Aronesty 2011). Duplicates within the read

files for C. obliquana were removed using in-house Perl

scripts prior to assembly, while the redundancy in the C.

herana sequences was removed after the assembly using

cd-hit (Li and Godzik 2006). De novo assembly of the

processed reads was performed for each of the individual

libraries (Online Resource 1) with trans-ABySS (version

1.3.2) (Robertson et al. 2010), where a k-mer series of 31 to

75 with an increment of two bases was used for the

libraries of C. obliquana, whereas k-mer values from 31 to

71 were used for the C. herana libraries.

Candidate ORs were identified using tblastn (Altschul

et al. 1990) with the amino acid sequences of 70 ORs from

the leafroller moth Epiphyas postvittana (Corcoran 2014)

used as queries. Full length open reading frames of ORs

were acquired using tblastn against the assembled contigs

of male and female antennae from C. obliquana and C.

herana. Where necessary, a draft genome assembly of C.

obliquana was used to extend sequences (unpublished

data). The post-processed RNA-Seq reads were mapped

onto a constructed set of OR sequences using bowtie

(version 2.1.0) (Langmead and Salzberg 2012). The

resulting alignment was then used to obtain expected read

counts using multiBamCov from the bedtools package

(v2.16.2) (Quinlan and Hall 2010) and cufflinks (v2.1.1)

(Trapnell et al. 2010) for Fragments Per Kilobase of tran-

script per Million reads (FPKM).

Sequence data were edited and aligned in Geneious

(Kearse et al. 2012) using ClustalW with E. postvittana OR

sequences. Maximum-likelihood trees were generated in

Mega (Hall 2013) with a model chosen by ModelTest

(Posada and Crandall 1998). The dN and dS rates were

estimated using codon-based substitution models in PAML

version 4.7 (Yang 2007) with the M3 model (Yang and

Nielsen 2000), which has three categories of site with a

free x ratio for each site class (x = dN/dS, the ratio of

non-synonymous/synonymous substitution rates). Trans-

membrane domains were predicted using SPLIT 4.0

(Juretic et al. 2002) at the transmembrane prediction server

(http://split4.pmfst.hr/split/4/). The topology diagram was

constructed using TOPO2 Transmembrane Protein Display

(Johns 2005) by the server at (http://www.sacs.ucsf.edu/

TOPO2).

Quantitative Real-Time PCR

The expression levels of ORs in male and female antennae,

as well as bodies, were determined by quantitative real-

time PCR relative to a-tubulin, b-actin and elongation

factor 1a (Turner et al. 2006). Primers were designed to the

C. obliquana receptors and tested on the orthologous

receptors from C. herana (Online Resource 2) and genomic

DNA in both species. Reactions (10 lL) included 20 ng of

cDNA, 5 lL 2 9 SYBR Green Mix (Bio-Rad) and

200 nM of each forward and reverse primer. Quantitative

real-time PCR cycling conditions were set up as following,

2 min at 95 �C followed by 45 cycles of 15 s at 95 �C, 30 s

at 60 �C and 30 s at 72 �C. A final dissociation curve

analysis was added with 15 s at 95 �C, 15 s at 60 �C and a

gradual heating to 95 �C at 0.01 �C/s. Experiments were

carried out with three biological replicates and three

technical replicates per biological replicate, with negative

controls for each replicate. Thermocycling was conducted

on a LightCycler480 Real-Time instrument (Roche Diag-

nostics, Basel, Switzerland). To determine the amplifica-

tion efficiency and the cycle threshold values for each

reaction the software LinRegPCRv11 was used (Ramakers

et al. 2003). The relative expression levels were calculated

following a modified version of the DCp method (Pfaffl

2001; Livak and Schmittgen 2001; Albre et al. 2013) as

described in Corcoran et al. (2014).
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Cell-Based Assays

Primers were designed to the 50 and 30 ends of the predicted

open reading frames of ORs that showed male-biased

expression in antennae or were members of the so-called

pheromone receptor clade (Online Resource 3 for primer

sequences). Standard PCR amplifications were carried out

in 50 lL reaction volumes containing 0.5 U Platinum Taq

polymerase (Invitrogen), 1 x reaction buffer, 1.25 mM

magnesium chloride, 0.2 mM dNTP mix and 0.2 lM of

each primer, with 2 lL of cDNA as template. For the PCR

amplifications, a GeneAmp 9700 (Applied Biosystems,

Carlsbad, CA, USA) PCR machine was used with an initial

denaturation step of 5 min at 94 �C, followed by 35 cycles

(94 �C for 10 s, 56 �C for 30 s, 72 �C for 45 s – 1.5 min)

and a final elongation step at 72 �C for 7 min. PCR pro-

ducts were resolved on a 0.7 % TAE gel at 80 V for

60 min. Gel pieces were extracted using the QIAquick Gel

Extraction Kit (QIAGEN, Venlo, Netherlands). Extracted

PCR products were cloned into pCR8/GW/TOPO vectors

(Invitrogen) and sequenced at Macrogen, Seoul, South

Korea, using M13 forward and reverse primers. Once at

least two clones of identical sequence were identifed; those

plasmids were used for cloning into the expression vector.

Full length clones were used as template to amplify full

length sequences containing restriction sites for transfor-

mation into the pcDNA 5/TO expression vector (Invitro-

gen) (see Online Resource 4 for primer sequences). Again

several clones were sequenced to check that acquired genes

contained the correct sequence. Candidate genes were

transfected into isogenic TREx HEK293 cell lines con-

taining the E. postvittana OR co-receptor, EposOrco,

which has 99.6 % amino acid identity to the Orco ortho-

logue in both Ctenopseustis species, following the protocol

described in Corcoran et al. (2014), except that no single-

cell sorting was conducted.

Functional assays were carried out as described in

(Corcoran et al. 2014). Briefly, 25,000 cells were plated

into each well of a poly-D-lysine-coated, black-walled

96-well cell culture plate (Becton–Dickinson, Franklin

Lakes, NJ, USA) and grown overnight (37 �C, 5 % CO2).

The next day, the cell culture medium was replaced with

fresh medium with 1 lg/ml doxycycline for induction and

without doxycycline as control. Cells were grown again

under the above conditions for 16–24 h before functional

testing. Before the assay, the cell culture medium was

removed and rinsed with assay buffer (DPBS containing

1 mM probenicid, pH 7.1). Fifty microliter of loading

buffer (assay buffer containing 1 lM Fluor4-AM (Life

Technologies) and 0.2 % pluronic acid) was added to each

well and incubated for 30 min at room temperature in the

dark. Then wells were rinsed twice with assay buffer,

100 ll of assay buffer was added followed by incubation

for another 30 min at room temperature in the dark. Cell

assays were conducted on an Omega FluoStar plate reader

system. Baseline fluorescence was determined by exciting

wells at 485 nM and reading emitted fluorescence at

535 nM. Receptors were screened with 30 lM mono-

unsaturated tetradecenylacetates (in assay buffer with

0.5 % DMSO) that are used most commonly as sex pher-

omone components in species within the New Zealand

endemic leafroller moth genera Ctenopseustis and Plano-

tortrix (Newcomb and Gleeson 1998), including saturated

tetradecenyl acetate (14:OAc), (Z)-5-tetradecenyl acetate

(Z5-14:OAc), (Z)-7-tetradecenyl acetate (Z7-14:OAc) and

(Z)-8-tetradecenyl acetate (Z8-14:OAc) (Pherobank,

Netherlands; 95–99 % purity). As a vehicle control 0.5 %

DMSO in assay buffer and as a control for Orco expres-

sion 50 lM of the insect Orco agonist VUAA1 (Jones et al.

2011) were used. After baseline determination, compounds

were added to three non-induced and three induced wells.

Change in fluorescence was measured for a period of 60 s

after addition of the compound, vehicle control or VUAA1.

Experiments for concentration–response curves for

compound-receptor combinations where positive responses

were observed followed the same protocol for preparing

plates and cells as for the screening experiments. In con-

centration–response experiments increasing concentrations

from 0.014 lM up to 300 lM of compound were used for

the compounds Z7-14:OAc and Z8-14:OAc in CoblOR7

and CherOR7. The mean response (±SEM) from each of

the three induced and non-induced wells were used to

construct concentration–response curves using the non-

linear regression function of GraphPad data analysis soft-

ware (GraphPad Software Inc, La Jolla, CA, USA).

Results

Four RNA-seq libraries were generated from the antennae

of adult male and female C. obliquana and C. herana,

generating from 39,823,878 to 71,083,823 raw sequence

reads (Online Resource 5). RNA-seq data have been

deposited into a Sequence Read Archive (SRA) database

online (http://www.ncbi.nlm.nih.gov/) under the Accession

Numbers 236626 and 236627. Resulting assemblies ranged

from 102,817 to 226,501 contigs (Online Resource 1).

Differences between species in the numbers of contigs may

be associated with differences in DNAse treatment of RNA

and/or removal of duplicates at different stages of the fil-

tering process. Blast sets were established for the four

transcriptomes and queried using the 70 ORs available

from E. postvittana (Corcoran 2014). A draft genome of C.

obliquana (unpublished data) was also employed to find

additional sequences within ORs identified with the tran-

scriptomes if missing from the antennal transcriptome

46 J Mol Evol (2015) 80:42–56
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assembles; we did not use the draft genome to explicitly

mine OR genes.

Transcripts of 47 OR genes from C. obliquana and 47

from C. herana were identified in antennae and predicted

protein sequences derived and the numbering of identified

receptors follows largely the numbering of the orthologous

E. postvittana ORs. Except for one OR from outside the

sex pheromone receptor clade of each species (CoblOR66

and CherOR37), all receptors were represented by orthol-

ogous pairs (Fig. 1a). The orthologous ORs share from 89

to 99 % amino acid identity (Online Resource 6). The

clade predicted to contain the sex pheromone receptors of

many moth species is well supported by bootstrap analysis

(93.3 % from 1000 bootstrap replicates; for detailed

bootstrap values see Online Resource 7). However,

orthology among the ORs of the two Ctenopseustis species

and E. postvittana within this pheromone receptor clade is

less clear (Fig. 1b), unlike other receptors that show male-

biased expression from outside this clade in E. postvittana

and the Ctenopseustis species (see later Fig. 1c).

Gene Expression of ORs

Because in moths, sex pheromone receptors are often more

highly expressed in male than in female antennae (Krieger

et al. 2004; Grosse-Wilde et al. 2010), we identified
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Fig. 1 Maximum-likelihood tree of odorant receptors from Ctenop-

seustis obliquana and C. herana a Circle tree of odorant receptors

from C. obliquana and C. herana, together with those from Epiphyas

postvittana. The tree is rooted with the odorant receptor co-receptor,

Orco. The positions of OR01, OR07 and OR30 are indicated with

stars. The sex pheromone receptor clade is highlighted in grey

b Phylogeny of the sex pheromone receptor clade containing odorant

receptor genes of E. postvittana, C. obliquana and C. herana. Odorant

receptors displaying higher levels of expression in adult male

compared with female antennae are highlighted. These include

OR07 and OR01, showing the two versions of OR01 in C. herana.

c Phylogeny of the second OR clade also containing receptors that are

more highly expressed in male than female antennae from adult E.

postvittana, C. obliquana and C. herana
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receptors that showed this pattern of sexual dimorphic

expression between the sexes in antennae. Using RNA-seq

counting with a two-fold cut-off criteria, six OR genes

were identified as having male-biased expression in both

species. Two ORs were identified as male biased in both

species, OR7 and OR30, whereas in C. herana two similar

genes (CherOR1a and CherOR1b; 86.9 % identical at the

amino acid level), also showed male-biased expression.

CherOR1b is homologous to CoblOR1 in C. obliquana,

however, no related gene was found for OR01a in C.

obliquana. Of the ORs that show male-biased expression,

OR01 and OR07 are located in the sex pheromone receptor

clade, whereas OR30 is located outside this clade in the

phylogeny (Fig. 1a). RNA-seq count also revealed ORs

that are more highly expressed in female than in male

antennae (Online Resource 8 and 9). A two-fold cut-off on

RNA-seq count revealed six female-biased ORs in C.

obliquana (CoblOR14, CoblOR22, CoblOR25, CoblOR49,

CoblOR58 and CoblOR63) and nine in C. herana (Che-

rOR12, CherOR22, CherOR25, CherOR45, CherOR49,

CherOR52, CherOR58, CherOR63 and CherOR64).

Thirty two genes in C. obliquana and 21 in C. herana

were assessed for their levels of gene expression using

qPCR. These included the three male-biased receptors by

RNA-seq count and another four members from the

pheromone receptor clade of C. obliquana and four male-

biased receptors and the remaining four in the pheromone

receptor clade of C. herana. Of those tested, three OR

genes were significantly male biased in their expression in

the antennae of both species (Online Resource 10 and 11).

As found with RNA-seq count, OR7 and OR30 were

significantly male biased (CoblOR7 P = 0.044; CherOR7

P = 0.014; CoblOR30 P = 0.002; CherOR30

P = 0.005), as was OR1 (CoblOR1 P = 0.004; CherOR1

P = 0.005) (Fig. 2). However, it should be noted that the

primers designed for the qPCR screening for the two

versions of OR1 in C. herana were located in regions

were the paralogous genes are very similar and therefore,

the results for the two OR1 genes from C. herana may be

confounded. Attempts to design primers in regions that

are distinct in the two genes failed to result in primers

useful for qPCR. In C. obliquana where there is only one

version of OR1, the transcript could be detected as male

biased by qPCR. Quantitative PCR failed to confirm

female-biased expression of tested receptors from C.

obliquana (CoblOR14 P = 0.119, CoblOR22 P = 0.098,

CoblOR25 P = 0.263, CoblOR49 P = 0.140) and C.

herana (CherOR12 P = 0.315, CherOR22 P = 0.110,

CherOR25 P = 0.565). Overall, of the 13 receptors that

were identified by RNA-seq as potentially male or female

biased and successfully tested in qPCR experiments, six

were confirmed to show sex-biased gene expression. All

of the male-biased ORs were expressed at significantly

higher levels when tested in qPCR and potentially female-

biased ORs showed a trend in this direction, although no

receptor was statistically significant. This suggests that

use of RNA-seq is a reasonable method to identify can-

didate OR genes for further testing.

Fig. 1 continued
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Cell Assays

The full length cDNA sequences of three receptors from C.

obliquana (OR1, OR7 and OR30) and their orthologues

from C. herana, plus one additional OR (CherOR1a) were

recovered by PCR from antennal cDNA. These seven OR

genes were cloned into expression vectors, confirmed by

sequencing and tested in cell assays against four mono-

unsaturated tetradecenyl acetates. Of the receptors tested

only OR7 from C. obliquana and C. herana responded to

any of the compounds tested. While CoblOR7 responded to

Z8-14:OAc (EC50 = 651 ± 33 nM) alone (Fig. 3a, b),

CherOR7 responded to Z7-14:OAc (EC50 = 2012 ± 32

nM) and Z8-14:OAc (EC50 = 4022 ± 30 nM) (Fig. 3c, d).

The remaining receptors showed no response to any of the

tested components, with no receptor found that responded

to Z5-14:OAc. It cannot be ruled out that these receptors

(CoblOR1, CoblOR30, CherOR1a, CherOR1b, CherOR30)

are capable of responding to pheromone components but

are just not properly expressed or trafficked to the mem-

brane in HEK293 cells.

Sequence Comparison of CoblOR7 and CherOR7

Sequence comparisons among orthologues of OR7 from C.

obliquana and C. herana, together with two species from the

sister genus Planotortrix (P. octo and P. excessana; data not

shown) revealed a dN/dS ratio of x = 0.963 for C. obliqu-

ana (29.1 non-synonymous and 10.9 synonymous changes)

and x = 0.1311 for C. herana (1.8 non-synonymous and 5.1

synonymous changes) (Fig. 4a). A likelihood ratio test

(LRT) of M0 (with one fixed x ratio) versus M3 (with three

categories of site with a free x ratio for each site) was sig-

nificant (Table 1). The M3 model is a better fit to the data

than M0, indicating variability of the x ratio at sites across

the coding sequence of OR7. Potentially selected sites

identified by M3 included amino acid positions 85, 276 and

300 (Table 2). The more stringent comparisons of M7

(‘‘beta’’ neutral model) with M8 (‘‘beta plus x), and M8 with

M8a (M8 with a fixed x at 1), which are typically used as

indicators of positive selection, were not significant.

To identify potential substitutions encoding the selec-

tivity differences between CoblOR7 and CherOR7, as well

as to investigate evidence for relaxed constraint, we com-

pared the sequence of the two receptors. CoblOR7 and

CherOR7 differ by 45 nucleotide substitutions, comprising

13 synonymous and 29 non-synonymous substitutions. The

29 non-synonymous substitutions are distributed across the

predicted regions of the OR (Fig. 4b). A test for equal

distribution of identified non-synonymous substitutions in

the 15 regions (N terminal region, the seven transmem-

brane regions, the three intracellular loops, the three

extracellular loops, and the C terminal region) was rejected

(X2 = 24.34, P = 0.042). There was a higher than expec-

ted proportion of amino acid substitutions in the third and

sixth transmembrane regions (TM3 P = 0.02, TM6

P = 0.005). However, the contingency table included a

number of empty cells violating an assumption of the X2

test. Therefore, the non-parametric Fisher’s exact test was

also conducted using 1,000,000 simulations to estimate a

P value (P = 0.033), which was also significant. None of

the selected sites identified in the M3 model fall in either

TM3 or TM6.

Discussion

Here, we identify 47 odorant receptors expressed in adult

antennae of each of the two closely related New Zealand

endemic leaftroller moths, Ctenopseustis obliquana and C.

herana using a transcriptome approach. Considering the

number of OR genes found in the transcriptome of other

species, including 43 in C. pomonella, 47 in M. sexta and

70 in E. postvittana (Bengtsson et al. 2012; Grosse-Wilde
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Fig. 2 Relative expression of the odorant receptors OR01, OR07 and

OR30 in the male (blue) and female (red) antennae of adult

a Ctenopseustis obliquana and b C. herana. CT values are the

mean ± SE normalised to the housekeeping genes a-tubulin, b-actin

and elongation factor 1a (BDL = below limits of detection)
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et al. 2011; Corcoran 2014), the number of ORs identified

in the two Ctenopseustis species could be regarded as

representative of the majority of the receptors from each of

these species. Additionally to the 47 ORs identified and

expressed in the antennae seven orthologous, ORs of E.

postvittana were found in the genome but could not be

detected in the transcripts of C. obliquana and C. herana

(EposOR8, EposOR13, EposOR17, EposOR21, Epo-

sOR23, EposOR40 and EposOR55). Unfortunately, no

information regarding the number of glomerili in these

species is available. In addition to the mining OR genes,

the transcriptomes described here will provide a useful

resource for isolating and comparing other genes involved

in chemosensory perception in these species, including

odorant-binding proteins and odour-degrading enzymes.

Outside the pheromone receptor clade all OR genes

described in Ctenopseustis are orthologous to each other

and an E. postvittana OR. These include orthologues of

Orco and the citral receptor EposOR3 that have been

described previously (Jordan et al. 2009; Carraher et al.

2012). However, within the pheromone receptor clade this

level of orthology breaks down with orthologues identified

between C. obliquana and C. herana, but typically no

counterpart in E. postvittana. The male-biased ORs, Cob-

lOR1 and CoblOR7 in C. obliquana, as well as CherOR1a,

CherOR1b and CherOR7 in C. herana, are found within

this clade where pheromone receptors from several lepi-

dopteran species also reside (Sakurai et al. 2004; Nakag-

awa et al. 2005; Grosse-Wilde et al. 2007; Wang et al.

2011). CoblOR7 and CherOR7 were both found to bind the

pheromone component Z8-14:OAc, whereas neither of the

other male-biased receptors in the pheromone receptor

clade responded to any of the pheromone components

presented in the HEK293 cell system. It would be inter-

esting to test the receptors in other systems like Xenopus

oocytes (Mitsuno et al. 2008; Nakagawa et al. 2005; Sak-

urai et al. 2004; Miura et al. 2010; Wang et al. 2010;

Wanner et al. 2010) to verify our results. Furthermore, the

presence of pheromone-binding proteins could have an

effect on the ligand specificity of ORs (Grosse-Wilde et al.

2006). Although not strictly orthologous, EposOR7 was not

found to bind any of E. postvittana’s pheromone compo-

nents or any other compounds tested (Corcoran 2014).

Similar to EposOR7, no direct orthologous OR could be

Fig. 3 Concentration-response curves of OR07 from Ctenopseustis

obliquana and C. herana induced (red) and un-induced (blue) 10 s

after injection of the test compound a CoblOR07 response to (Z)-7-

tetradecenyl acetate b CoblOR07 response to (Z)-8-tetradecenyl

acetate c CherOR07 response to (Z)-7-tetradecenyl acetate d. Che-

rOR07 response to (Z)-8-tetradecenyl acetate
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found for EposOR1 in either of the two Ctenopseustis

species. This OR from E. postvittana has been shown to

bind a range of terpenoids and benzoates responding best to

methyl salicylate as a ligand (Jordan et al. 2009) and shows

a higher rate of molecular evolution than ORs outside the

sex pheromone receptor clade (Carraher et al. 2012). More

recently, EposOR1 has been shown to be capable of

responding to the minor pheromone component for E.

postvittana, (E,E)-9,11-tetradecenyl acetate (Corcoran

2014). The non sex-biased ORs, CoblOR6 and CherOR6,

together with CherOR45 and CoblOR45a and CoblOR45b

are the most closely related ORs to EposOR1. It would be

interesting to understand whether these receptors have a

similar function to EposOR1, but unfortunately to date

efforts in amplify full length versions of the genes encod-

ing CoblOR6, CherOR6, CherOR45 and both versions of

CoblOR45 have been unsuccessful. The receptors binding

Z5-14:OAc in C. obliquana or C. herana have not yet been

identified. The remaining receptors that fall into the sex

pheromone receptor clade are possible candidates for being

able to respond to this compound, even if these receptors

could not be detected as male biased in RNA-seq count or

qPCR. Similarly, receptors from E. postvittana that reside

dN 0.0318
dS 0.0330

dN/dS 0.9630dN 0.0020
dS 0.0154

dN/dS 0.1311

dN 0.0597
dS 0.1790

dN/dS 0.3336

A

C

N

Extracellular

Cytoplasmic
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Fig. 4 a Maximum-likelihood tree of OR7 orthologues from Cte-

nopseustis obliquana (CoblOR7), C. herana (CherOR7), Planotortrix

octo (PoctOR7) and P. excessana (PexcOR7). dN, dS and dN/dS

values were generated with the M3 model b Predicted transmembrane

topology of OR7 with variable sites highlighted. Amino acid

substitutions in C. obliquana compared to a predicted common

ancestor are in black, whereas amino acid substitutions in C. herana

are in grey. Sites predicted to be under selection by M3 are indicated

with an arrow. The double line indicates the membrane region, with

extracellular and cytoplasmic sides labelled

Table 1 Likelihood ratio tests between models of x for odorant

receptor 7

OR7 2DLa dfb P value

M0 versus M3 14.31 4 0.006

M7 versus M8 0.31 2 0.3

M8 versus M8c 0.29 1 0.3

a Twice the difference of log likelihood between the two models
b Degrees of freedom are the difference in the number of parameters

between models
c Significance is determined by a P value for the 50:50 mixture of

distributions
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in this clade, but do not show male-biased expression, have

also been shown to respond to pheromone components

(Corcoran 2014). OR30 shows higher levels of expression

in male compared with female antennae, but falls outside

the pheromone receptor clade. In the related species, E.

postvittana EposOR30 and EposOR34, like CoblOR30 and

CherOR30, also display male-biased expression and do not

seem to respond to pheromone components (Corcoran

2014). Further efforts are required to identify ligands for

these male-biased receptors that reside outside the phero-

mone receptor clade, and their orthologues. Apart from

OR30, no orthologues of other male-biased receptors in E.

postvittana (EposOR6, EposOR07, EposOR34) could be

found in either of the two Ctenopseustis species.

Of the OR genes that tend towards being female biased

in their expression, OR25, OR49, OR58 and OR63 show

similar expression differences in both Ctenopseustis spe-

cies, suggestive of a similar role in both species. Not-

withstanding this, we should mention that none of these

genes remained female biased in our qPCR analysis. While

the female-biased ORs in E. postvittana are largely located

in a distinct clade separate from the pheromone receptor

clade (EposOR31, EposOR36 and EposOR40), in C.

obliquana and C. herana, they are dispersed throughout the

phylogeny. No ligands have been identified for any of the

female-biased ORs in E. postvittana and none are closely

related to other female-biased receptors from B. mori,

which respond to linalool and benzoic acid (Anderson et al.

2009). Further research is required to identify the ligands

for these female-biased receptors in Ctenopseustis and

Epiphyas species, which may be tuned to volatile com-

pounds produced by host plants or male-produced phero-

mones. If these receptors are involved in host finding then

with the presence of both specialists and generalists in

these genera, this system may be useful in understanding

the evolution of host specificity (Dugdale 1990). Further-

more, it has been shown in other species that males can

also produce pheromones that are used in proximity to the

female and are an important factor during courtship for

mate acceptance (Davie et al. 2010; Hillier and Vickers

2004, 2011). Males in the sister genus, Planotortrix, have

been observed to present hair-pencil-like structures at the

tip of the abdomen to the female during courtship

(unpublished data). Such structures typically produce male

pheromones in moths.

Electrophysiological investigations of male antennae of

C. obliquana and C. herana have revealed that both species

can perceive the sex pheromone components, Z5-14:OAc

and Z8-14:OAc, even though Z8-14:OAc is not required to

attract C. herana males behaviourally (Hansson et al.

1989). However, the neurophysiological response is dif-

ferent in each species, with C. obliquana possessing a

neuron with a large spike amplitude that responds strongly

to the major component Z8-14:OAc and another neuron

with a small spike amplitude responding weakly to the

minor component Z5-14:OAc. Neurons in C. herana show

an opposite response to these compounds (Hansson et al.

1989). As such identifying a receptor in C. herana, as well

as C. obliquana, that responds to Z8-14:OAc (namely

OR7) is consistent with these electrophysiological results.

Presumably, once the receptor responding to Z5-14:OAc is

identified it too will be found to be present and expressed in

the antennae of males of both species. Therefore, the

genetic differences explaining the changes in either neuron

size or the expression of the receptor in either the large or

small neuron are likely to be encoded at a locus/loci dis-

tinct to the pheromone receptors.

Interestingly, the pharmacology of the two OR7 ortho-

logues is different. CoblOR7 is an order of magnitude more

sensitive to the C. obliquana sex pheromone component

Z8-14:OAc compared with CherOR7. Furthermore, of the

compounds tested, CoblOR7 responds only to Z8-14:OAc,

while in addition to this compound, CherOR7 also

responds to Z7-14:OAc. This compound is not a sex

pheromone component used by either of these two species,

but is used as a pheromone component in the ancestral

species with the genus, C. servana (Foster and Dugdale

1988) and species within the sister genus Planotortrix

(Foster et al. 1986; Foster and Dugdale 1988). Considering

that C. herana uses Z5-14:OAc solely as it’s sex phero-

mone, it would suggest that CherOR7 is under relaxed

constraint compared with its orthologue CoblOR7. That is,

mutations in CherOR7 that alter sensitivity and selectivity

in this receptor are less likely to have any impact on the

ability of males to locate female C. herana. In the closely

related species of corn borer, the European and the Asian

Table 2 Sites with a posterior probability [0.75 in odorant receptor 7

Site Domain M3 posterior probability Amino acids at selected sites

Ctenopseustis herana Ctenopseustis obliquana Planotortrix excessana Planotortrix octo

85 TM2 0.836 Thr Glu Thr Val

276 L4 0.784 His His Lys Asp

300 TM5 0.915 Leu Thr Leu Met
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corn borer, a single mutation in the sequence of an OR

gene changes the specificity of that receptor to the com-

pound it is binding. This mutation is found in the third

transmembrane region (TM3) in position 148 where a

threonine to alanine substitution is responsible for an

alteration of sensitivity to the pheromone component E11-

14:OAc (Leary et al. 2012). Interestingly, in CoblOR7

there are also amino acid differences to CherOR7 in TM3

at positions 147 (alanine to glycine), 148 (serine to leucine)

and 149 (phenylalanine to cysteine). Another highly vari-

able region is located in TM6 where five amino acid dif-

ferences in positions 322, 323, 324, 327 and 328 are

located. Although comparison of M7/M8 and M8/M8a did

not provide evidence of positive selection in OR7, the M0/

M3 comparison revealed substantial variability among

amino acid sites especially at positions 85 (TM2), 276 (L4)

and 300 (TM5) (Table 2). However, we note that these

likelihood-based methods can produce false positives

(Suzuki and Nei 2001, 2002) and that the posterior prob-

abilities at these predicted sites under selection, while over

0.75 did not reach 0.95. Together the amino acid substi-

tutes from these two analyses become candidates respon-

sible for the changes in specificity and selectivity of

CherOR7, except for position 276 where CherOR7 and

CoblOR7 do not differ.

The pheromone component Z8-14:OAc is produced in

the pheromone gland by a D10-desaturase (desat5) from

palmitic acid and is followed by a round of b-oxidation

before reduction and acetylation. The basal species within

the genus Ctenopseustis, C. servana, does not use phero-

mone components that contain double bonds in an even

position. This would mean that in the evolution of the

genus, presumably there must have been a gain of

expression of desat5 in their pheromone glands after the

split from C. servana (Newcomb and Gleeson 1998; Albre

et al. 2012). C. servana uses a blend containing Z5-14:OAc

and Z7-14:OAc and it has been discussed that in the evo-

lution of pheromone production, C. obliquana gained the

use of Z8-14:OAc as a pheromone component (Albre et al.

2012). It has been hypothesised that South Island popula-

tions of a C. obliquana ancestor lost the expression of

desat5 in the pheromone gland that gave rise to C. herana

(Albre et al. 2012). Our results suggest a different model,

the high substitution rate in the lineage leading to the Z8-

14:OAc receptor, CoblOR7, and low substitution rate in the

unspecific Z7/Z8-14:OAc orthologue, CherOR7, could

suggest that C. obliquana and C. herana ancestors could

have split from C. servana creating a scenario where

positive selection maintained mutations that increased the

specificity and sensitivity towards Z8-14:OAc in C.

obliquana ancestors and a lack of selection in C. herana

slowly decreased the specificity of OR7 to Z7-14:OAc.

Positive selection has previously been found to act on

odorant receptor orthologues in Drosophila (Tunstall et al.

2007). It has been suggested that positive selection may act

on some Drosophila ORs, especially on amino acid sites

that could be responsible for altering the sensitivity of

receptors towards odorants (Tunstall et al. 2007).

Changes in the sensitivity and selectivity of pheromone

receptors during periods of relaxed constraint might allow

a currently ‘unused’ receptor to evolve to be able to per-

ceive a future novel component produced by a variant

female. Such changes may contribute to the formation of a

new species, perhaps by producing ‘rare males’ that per-

ceive and therefore are able to ‘track’ divergent female

pheromones as suggested in the ‘‘asymmetric tracking

hypothesis’’(Phelan 1992). In Ostrinia nubilalis, it has been

shown that a few ‘rare males’ are capable of responding to

the pheromone blend of O. furnacalis (Domingue et al.

2007). Differences in the neurophysiological response were

responsible for these rare males flying upwind to the

pheromone blend of the closely related species, revealing

that males can perceive a larger range of compounds, but

only a few of these trigger a behavioural response

depending on how the male’s olfactory receptor neurons

are tuned (Domingue et al. 2007). In C. obliquana and C.

herana, it also has been shown that males in both species

can perceive the compound Z8-14:OAc, even though it is

only used in C. obliquana as a pheromone component, but

the neurophysiological response is different (Hansson et al.

1989). Ostrinia scapulalis males possess pheromone

receptors that are very specific and some that are broadly

tuned also to pheromones of congeners (Miura et al. 2010).

A more broadly tuned receptor as found in C. herana could

provide the ability to produce males with a preference for

more pheromone components when such broadly tuned

receptor genes are expressed in large spike amplitude

neurons or perhaps to be able to identify females moths of

closely related species and respond negatively towards

them. In the wasp Nasonia, it has been shown that phero-

mone components can exist in a population without being

initially perceived by the responder and a preference for

this component can evolve to an additional pheromone

component leading to the evolution of a new species

(Niehuis et al. 2013). Finally, a further possibility is that

the receptor remains unused and becomes a pseudogene,

losing its ability to produce a functional receptor as has

been found in receptor genes in Drosophila (Guo and Kim

2007).
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