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Abstract Vaccine design for rapidly changing viruses is

based on empirical surveillance of strains circulating in a

given season to assess those that will most likely spread

during the next season. The choice of which strains to

include in the vaccine is critical, as an erroneous decision

can lead to a nonimmunized human population that will

then be at risk in the face of an epidemic or, worse, a

pandemic. Here, we present the first steps toward a very

general phylogenetic approach to predict the emergence of

novel viruses. Our genomic model builds upon natural

features of viral evolution such as selection and recombi-

nation / reassortment, and incorporates episodic bursts of

evolution and or of recombination. As a proof-of-concept,

we assess the performance of this model in a retrospective

study, focusing: (i) on the emergence of an unexpected

H3N2 influenza strain in 2007, and (ii) on a longitudinal

design. Based on the analysis of hemagglutinin (HA) and

neuraminidase (NA) genes, our results show a lack of

predictive power in both experimental designs, but shed

light on the mode of evolution of these two antigens:

(i) supporting the lack of significance of recombination in

the evolution of this influenza virus, and (ii) showing that

HA evolves episodically while NA changes gradually.

Keywords Bayesian inference � Recombination �
Punctuated evolution � Viral evolution � Influenza H3N2

Introduction

One of the reasons why viruses are so prone to causing

epidemics stems from their high genetic diversity which, in

the case of influenza A viruses (IAVs), is in part due to

their high mutation rate and to their segmented genome,

comprised of eight negative single stranded RNA mole-

cules. The ten to twelve proteins encoded across these

segments (Wise et al. 2009) play different roles in the life

cycle of the virus and thus undergo different selective

pressures. The two most studied proteins are the hemag-

glutinin (HA) and the neuraminidase (NA), responsible for

host cell recognition and entry, and for facilitating virus

release from infected cells, respectively (e.g., Neumann

et al. 2009). The antigenic properties of these two cell

surface antigens are used to name and classify IAV sub-

types, which can form almost all possible combinations

between the 17 known subtypes of HA and the ten known

for NA (Tong et al. 2012). While most of these subtypes

have been observed in wild waterfowl, the most prevalent

subtypes in the human population are H1N1 and H3N2,

with H3N2 dominating human epidemics since its emer-

gence in 1968 (Rambaut et al. 2008; Guan et al. 2010).

Each of the eight IAV segments can be exchanged

between viruses coinfecting the same host, hereby leading

to reassortant viruses. This process has the potential to

change the antigenic properties of the virus in a dramatic
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way, leading to an ‘‘antigenic shift.’’ Such a process was at

the origin of the 1968 H3N2 pandemic (Guan et al. 2010)

or of the 2009 H1N1 pandemic (Smith et al. 2009), and can

be experimentally shown to lead to the adaptation of swine

and/or avian reassortant viruses to a mammalian host (Imai

et al. 2012). In addition to reassortment, the genetic

material of the virus also undergoes mutations which, in

the absence of a proofreading mechanism, lead to substi-

tution rates as high as &5 9 10-3 substitutions per site per

year (Rambaut et al. 2008). Evidence, however, suggests

that all subtypes do not evolve at the same rate. For

instance, emergence of new H1N1 variants is often slow

while H3N2 has often undergone rapid evolution and dis-

semination, as evidenced by the A/Sydney/5/97-like viru-

ses that were detected in all parts of the world six months

after their initial discovery (Hay et al. 2001).

In the face of these constantly evolving antigenes, the

human immune system detects the infecting virus and

generates antibodies that contain current viruses and help

prevent future infections. This immune machinery can

easily recognize similar viral variants, but novel influenza

strains that are antigenically different from their progeni-

tors can trump the host immune system. Vaccines help

boost the human immune system, but the rapid viral evo-

lution described above demands that the composition of the

influenza vaccine be updated every year. Currently, the

trivalent vaccine targets two IAV subtypes (H3N2 and

H1N1) and influenza B (Hay et al. 2001). Vaccine com-

position is reevaluated every year based on recommenda-

tions from the World Health Organization and other

National Influenza Centers distributed around the world

(see Hay et al. 2001)1. Candidate strains for vaccine

composition are based on circulating viruses. Strain

selection begins 8–10 months before the vaccine is avail-

able to the public, but the data used to determine candidate

strains are inaccessible to the general public (Salzberg

2008) and are largely based on HA inhibition assays that

often have poor resolution in distinguishing between strains

(Plotkin et al. 2002).

While the strain-selection process can be effective and

match as much as 91 % of the circulating viruses as in

2012–20132, the selection process is imperfect. In 2007 for

instance, a virulent H3N2 variant emerged in Australia and

New Zealand a short time before the onset of the influenza

season in the Southern hemisphere (April–September). To

some extent, because the virulent strain was not the part of

the 2007 vaccine, a widespread epidemic with a threefold

increase in prevalence compared to regular seasons ensued

(Owen et al. 2008). This then novel and highly infectious

strain, identified as Brisbane/10/2007, crossed the equator

to North America just before the onset of the Northern

hemisphere’s influenza season (November–March), elicit-

ing a similar epidemic during the 2007–2008 season (Saks

2008).

The failure of the 2007 and 2007–2008 vaccine shows

that there is a need for additional methods for determining

which strain to include in the vaccine for each upcoming

season. Computational methods have long been sought to

predict the emergence of influenza viruses. An early

method looked at nucleotide substitutions in codons of the

HA gene undergoing positive selection and used a phylo-

genetic approach to determine which HA sequence was

most likely to emerge (Bush et al. 1999). This type of

directional evolution was later dismissed as it was deter-

mined that the evolution of HA genes tends to be more

clustered than linear (Plotkin et al. 2002). The segmented

structure of the influenza genome must also be taken into

account when attempting to predict future influenza strains;

as the rate of change is not constant across all segments

(Holmes et al. 2005), epistatic interactions are likely to

shape the virulence of a given virus (Neumann et al. 2009;

Kryazhimskiy et al. 2011), and recombination / reassort-

ment are key processes of the evolution of most viruses

(e.g., Holmes 2009, p. 48).

To address the current dearth of prediction tools for the

emergence of novel viruses, we introduce a very general

phylogenetic approach that takes both selection and

recombination / reassortment into account. Because simu-

lations only confirm that a model performs well in the

absence of model misspecification, we put the model to test

in the worst possible scenarios: (i) detecting the emergence

of Brisbane/10/2007, and (ii) out of cluster prediction in a

longitudinal study design. In each context, a retrospective

analysis of HA and NA data sets shows that our model has

a different but low predictive power for these two genes.

We show that including punctual bursts of evolution in our

model almost doubles predictive power for HA, but not for

NA. In turn, this result suggests that the evolution of HA is

more episodic than that of NA in H3N2 viruses.

Methods

Overview of the Model

The objective of the model is to generate a sample of

sequences that have a high probability of emerging, given a

set of observed sequences. Let us denote the observed

sequences as ðX1; . . .;XtÞ ¼ X1:t. If time t represents the

current influenza season, then X1:t represents a set of

sequences sampled over the recent t seasons, and Xt?1

represents the sequences sampled from the future season.

1 http://www.who.int/csr/disease/influenza/vaccinerecommenda

tions1/en/
2 http://www.cdc.gov/flu/about/season/flu-season-2012-2013.htm
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The quantity of interest here is the posterior predictive

probability of the data at season t ? 1, given the data

observed between the recent t seasons, or p(Xt?1|X1:t). This

quantity can be decomposed as:

p Xtþ1jX1:tð Þ ¼
Z

H

p Xtþ1jhð Þp hjX1:tð Þdh ð1Þ

where h is a vector of nuisance parameters, typically the

branch lengths of the phylogenetic tree and the parameters

of the model of evolution, and where H denotes the state

space of h. Equation (1) represents the sum (integral) over

the product of two probability density functions: p(Xt?1| h),

the likelihood of h given the future data, and p( h|X1:t), the

posterior distribution of the nuisance parameters h given

the observed data. According to Bayes’ theorem, this

posterior distribution is proportional to the product of the

likelihood of h given the sampled data, p(X1:t| h), and a

prior on nuisance parameters p( h):

p hjX1:tð Þ ¼ p X1:tjhð ÞpðhÞ
pðX1:tÞ

ð2Þ

The posterior predictive probability (Eq. 1), therefore,

summarizes the information about the probability of new

(emerging) sequences given the likelihood, the prior, a

model of evolution and the observed data. However, the

integration in Eq. (1) cannot be done analytically. Instead,

we resorted to a two-step procedure where we first sample

h from the posterior distribution as in Eq. (2), and then use

these sampled h values to simulate future sequences Xt?1

(e.g., Pagel and Meade 2006; Liu and Pearl 2007; Liu et al.

2008).

Computational Details

In the first step (Fig. 1, top), the h values are drawn with the

reversible-jump Markov chain Monte Carlo (rjMCMC)

sampler implemented in OmegaMap ver. 0.5 (Wilson and

McVean 2006). This model describes the evolution of codon

data with selection and recombination under a standard

coalescent prior (constant population size). The model has

two parameters, collectively denoted as h in Eq. 1: a

selection parameter x, which is the rate ratio of nonsyn-

onymous to synonymous substitutions; and the population

recombination rate q. Both can vary along the sequence by

defining a block-like structure that segments an alignment of

length L into at most L selection blocks and L-1 recombi-

nation blocks. In both cases, the number of blocks is esti-

mated from the data. The model was parameterized as

follows. Prior distributions for x and q were set to have

mean lengths of 20 and 74 codons, respectively, while in

intensity these parameters were assumed to follow expo-

nential priors centered on 1 for x ðexpð1ÞÞ and 0.01 for

q ðexpð1=10ÞÞ. The model also includes nuisance parame-

ters that are defined over the entire length of the alignment:

the transition to transversion rate ratio j� expð3Þ, the rate of

synonymous transversion l� expð1=14Þ, and the insertion/

deletion rate /� expð1=10Þ; the specification of these priors

followed Wilson and McVean (2006). Equilibrium codon

frequencies were set to their empirical frequencies. The

recombination model is asymmetric, as it assumes that one

of the sampled sequences is a mosaic of the other sampled

sequences; therefore, chains were run with ten random

sequence orderings. Each sampler was run for 107 steps with

a thinning of 100. Two independent runs were performed to

check for convergence and to obtain the marginal distribu-

tions of x|X1:t, q|X1:t as well as that of their respective block

structures. Burn-in periods were empirically determined.

The second step (Fig. 1, below the ‘‘?’’ sign) performs

the predictive simulation of future sequences Xt?1 based on

the h values sampled in the previous step. The procedure is

initialized by estimating the average amount of evolution b

separating two sequences in X1:t; by so doing, we assume

that the evolutionary process is on average time-homoge-

neous over the entire time window considered. Maximum

likelihood pairwise branch length estimation is performed

under the one-ratio codon model (Goldman and Yang

1994) with codeml (Yang 2007). Simulation of a

sequence from p(Xt?1|X1:t) proceeds in two steps. First, a

recombinant sequence is generated according to the

recombination block structure sampled from p( h | X1:t). For

that purpose, a ‘‘master’’ sequence is first drawn at random;

this draw is limited to the most recent sequences in X1:t,

i.e., those collected during the current season t. The posi-

tions of the recombination blocks are extracted from the

output of OmegaMap. For each of these blocks, a corre-

sponding block is drawn with probability [q|X1:t] from one

sequence taken at random with replacement from the most

recent sequences in X1:t. The blocks thus sampled are

concatenated to form the recombinant sequence Xt?1
q . This

recombinant sequence is then evolved following the block

structure of the selection (codon) process, as sampled from

p( h | X1:t). Indels are first replaced by a random nucleotide

(in practice, adenines) to give Xt?1
q\ indels. To reproduce the

among-site variation in x implemented in OmegaMap,

each x|X1:t block of Xt?1
q \ indels is used as the root of a

simulated two-sequence tree ðseq1 : b; seq2 : bÞ under the

one-ratio codon model parameterized with (x|X1:t,j|X1:t).

One of these sequences is drawn at random to form the

final sequence; indels are repositioned in this simulated

sequence Xt?1
q\ indels to give Xt?1. This process is repeated

100 times for each of the h values drawn from p( h|X1:t).

Finally, the likelihood of the alignment that includes the

simulated sequence is computed. To speed computations

up, only the selection block structure was taken into

J Mol Evol (2014) 78:1–12 3
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account (the recombination block structure was ignored).

For each x|X1:t block drawn by the rjMCMC sampler, a

matrix of maximum likelihood pairewise distances is first

estimated under the one-ratio codon model (Goldman and

Yang 1994), still using codeml. This matrix is used to

obtain an approximate tree for this block by weighted

Neighbor-Joining as implemented in weighbor (Bruno

et al. 2000). Negative branch lengths are set to zero to

avoid computational problems. A maximum likelihood tree

could also be obtained for greater accuracy, for instance

using codeml, but this approach is expected to increase

the computational burden. The log-likelihood of each block

is computed with codeml by reusing the parameters

drawn from the posterior distribution (x|X1:t and j|X1:t) and

the weighbor branch lengths. The log-likelihood of the

predicted alignment is obtained by summing the log-like-

lihood values over the selection blocks.

Computations involved in the last two steps are easily

distributed, either on a shared memory / multicore com-

puter or on a computer cluster. Therefore, they are typically

quick to perform (of the order of a few days for the data

analyzed below after parallelization of the algorithm on a

cluster). The main computational bottleneck is in the first

step, when samples are drawn from the posterior

distribution (of the order of a few weeks for the same data

even on a large shared memory computer).

Episodic bursts of evolution or of recombination were

incorporated into the model as follows. In the base model

described above (Fig. 1), the simulated sequences are

evolved on a two-sequence tree in which the branch lengths

are both set to the average branch length �bjX1:t within each

selection block, while recombination follows the sampled

q|X1:t within each recombination block. Episodic bursts of

evolution are then emulated by multiplying �bjX1:t by a

scaling factor denoted m, while episodic bursts of recom-

bination are generated by multiplying q|X1:t by a scaling

factor ..

Identification of the Simulated Sequences

The simulated sequences were then used as queries in

BLASTn searches (Altschul et al. 1990) against a local

copy of the influenza database3. As a result, it is possible to

infer the identity (year and country of sampling, subtype

and accession number) of the most similar sequences

present in the database, and check whether the algorithm is

Fig. 1 Workflow of the algorithm used to draw sequences from the

posterior predictive distribution. The first step of the algorithm

computes the posterior distribution p(h|X1:t) with the rjMCMC

sampler implemented in OmegaMap. The second step of the

algorithm samples from p(Xt?1|X1:t) by first drawing a sequence from

X1:t; this sequence is used to generate a recombinant sequence and is

then evolved by an amount m under a codon model; this simulation

step gives rise to two sequences, seq1 and seq2; one of these two

sequences is drawn at random (red oval) to generate Xt?1. The

posterior predictive probability is then computed as described in the

text (Color figure online)

3 ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA

4 J Mol Evol (2014) 78:1–12
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capable of sampling sequences from the future with a high

probability.

Sequence Data for the Retrospective Studies

Individual protein-coding sequences for both the HA and

NA genes were downloaded from the influenza Virus

Resource (Bao et al. 2008). Only unique, full-length

sequences collected between 2002–2007 were used,

resulting in 555 HA sequences and 498 NA sequences. As

these sequences were not limited to a particular geographic

area, they represent the worldwide diversity of sampled

influenza viruses available during this entire period of time.

Two designs were used to assess predictive power: one

analyzing the whole period (2002–2007), and one analyz-

ing the data year by year (longitudinal analyses). In the first

design, due to the relatively large size of these sequence

alignments, we clustered sequences with at least 95 %

similarity (Abdussamad and Aris-Brosou 2011), so that the

size of each data set is reduced while maintaining most of

the diversity found in each data set. A single sequence from

each resultant cluster was randomly picked as the repre-

sentative sequence for that group, save for the Brisbane/10/

2007 strain, which was set to represent its own cluster. This

subsampling of each data set resulted in alignments com-

prising 19 HA and 30 NA sequences, which represent most

of the diversity found in the original pool of sequences. In

the second design, 24 sequences were randomly sampled

for each year for both HA and NA data sets. The algorithm

was then run on each year Xt to predict sequences circu-

lating during Xt?1; note that each year in the Northern

hemisphere overlaps with two seasons, with the majority of

sequences coming from the second half of the first season.

In order to assess the predictive power of our model, we

constructed Neighbor-Joining trees of the original and

simulated sequences together. These trees were obtained

using maximum likelihood pairwise distances estimated

under the general-time reversible substitution model with

among-site rate variation modeled with a discrete C dis-

tribution (e.g., Aris-Brosou and Rodrigue 2012). For each

of the resulting trees, we computed the patristic distance

between the simulated sequence and the target Brisbane/

10/2007 sequence (both for HA and NA). If the model has

good predictive power, then we expect that highly probable

sequences will be very similar to the target sequence and

hence show a significant relationship between the proba-

bility of the generated sequences and their distance to the

target sequence. Predictive power was then quantified by

computing the R2 value of the regression (proportion of the

variance explained by the linear model). Equality of slopes

was tested with an F test (Sokal and Rohlf 2011, p. 513).

Trees in Fig. S3 were reconstructed by maximum likeli-

hood using fasttree (Price et al. 2010) under the

GTRþ C model of evolution; support values are based on

the SH-like P-values from the approximate likelihood ratio

test (Anisimova and Gascuel 2006).

Results

Prediction Under the Base Model

Full-length HA and NA sequences were extracted from

NCBI. In the first retrospective study, the current sampling

period was set to cover the 6-year period spanning

2002–2007. The objective was to test if the emergence of

the Brisbane/10/2007 strain, our target sequences, can be

predicted from first principles of molecular evolution,

involving selection and recombination / reassortment.

The reduced HA and NA data sets (after clustering)

were first analyzed together to demonstrate the possibility

of identifying ‘‘breakpoints’’ in concatenated data sets. The

results show that the algorithm is able to recover the con-

catenation point between the two genes as the most prob-

able breakpoint (at codon position 567 in Fig. 2a). Two

other codon positions have high breakpoint probabilities

(dotted lines in Fig. 2a); they do not correspond to subunit

limits: in HA for instance, the limit between HA1

(encoding the globular part of the antigen) and HA2

(encoding the transmembrane domain) is at position 328

(dashed line in Fig. 2a). However, these two peaks of

breakpoint probabilities correspond to positions of elevated

x rate ratios (Fig. 2b, d), which is due to the confounding

signals of recombination and selection (Anisimova et al.

2003).

To alleviate the computational cost of the algorithm,

from here on, we analyzed the HA and NA genes inde-

pendently of each other, so that q represents intragenic

recombination and not reassortment or a mixture of these

two processes. Output from the first step of the compu-

tation (Fig. 1) showed evidence of varying selective

pressures (Fig. S1a, b) and recombination levels (Fig. S1c,

d) across the entire length of both the HA and NA

alignments (see also Fig. 2c, d). In the second step of our

model (Fig. 1), these posterior distributions of x and q
were used to generate gene sequences drawn from their

target posterior predictive distribution. A large proportion

of the simulated sequences, for both data sets, was iden-

tified with BLASTn to be from the 2002–2007 time frame,

our ‘‘current sampling period’’ (Fig. S2). The model was

able to simulate sequences BLASTn-identified as the

Brisbane/10/2007 strain for the NA data set (521/

16,317 = 3.2 % in one particular run of the MCMC

sampler), but not for HA. In addition, no simulated

sequences were BLASTn-identified as coming from 2008

or later with a high posterior predictive probability (in the

J Mol Evol (2014) 78:1–12 5
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top 5 % of the distribution) using either the HA or NA

data set (Fig. 3). On the other side of the prediction

spectrum, both the HA and NA analyses contained simu-

lated sequences that were already circulating well before

2002, illustrating the wide range of diversity simulated by

the model, as well as the potentially long persistence time

of viral sequences. Note that, this persistence of circulat-

ing sequences might be less pronounced for the HA gene

(Fig. 3a) than for the NA gene (Fig. 3b). Results were

robust to the inclusion of the target sequences in the

‘‘current sampling period’’ (Fig. S2) for HA (distribution

of top-scoring simulated sequences over the years:

v48
2 = 54, P = 0.2559; Fisher exact test: P = 1.000) and

for NA (v49
2 = 56, P = 0.2289; Fisher exact test:

P = 1.0000).

In order to quantify the predictive power of the model,

we plotted the log-posterior probabilities of the simulated

sequences against the patristic distances to the target strain

(Fig. 4) and calculated the R2 value of the regression.

Table 1 shows that the base model has a predictive power

of 26 % for HA and 18 % for NA.

Effect of Duration of Current Sampling Period

We then investigated the impact of the duration of the

current sampling period. The hypothesis here was that the

longer this time window, the higher the predictive power—

assuming that the evolutionary process is stationary during

the sampled time period, and that no multiple clades of

H3N2 viruses were co-circulating. Alternatively, reducing

the duration of the sampling period should decrease pre-

dictive power.

This hypothesis was evaluated by subsampling the ori-

ginal data sets of 555 (for HA) and 498 (for NA) sequences

according to time. The original data were sampled from

2002 and 2007. A phylogenetic tree of the original 555 HA

sequences highlighted multiple clusters of sequences that

were sufficiently distant from the rest of the sequences to
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Fig. 2 Concatenated analysis of HA and NA gene segments. All

panels represent posterior estimates along the concatenated sequence

of breakpoint probabilities for recombination blocks (a), selection

blocks (b), posterior estimates of recombination (c), and selection (d).

Gray lines indicate the 5 and 95 % percentiles of the posterior means

(in black). HA run from codon position 1–567 (vertical red line),

while NA runs from position 568–1035. Dotted vertical lines mark

the peaks of recombination breakpoint probabilities within each gene

at position 246 for HA and 336 (904-568) for NA; for HA, this

position differs from the HA1/HA2 boundary (vertical dashed line)

(Color figure online)
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pose potential problems to the prediction model (Fig. S3).

Closer inspection revealed that these clusters consisted of

sequences circulating each year, suggesting that multiple

evolutionary shifts might occur every year. Therefore, the

most distant sequences, circulating in 2002 and 2003, were

removed from both the HA and NA data sets, and the

posterior predictive algorithm was then run on the

remaining 2004–2007 sequences. This provided a 4-year

time span of data, as opposed to the original 6-year span.

Furthermore, a data set containing only the 2005 sequences

was also extracted, as 2005 was the year that contained the

largest number of sequences in the original data sets. As a

result, we could compare the effectiveness of the predictive

method across three sampling durations: 1 year (2005),

4 years (2004–2007), and 6 years (2002–2007). Note that,

all three sampling durations aim at making out of cluster

prediction.

The results show that the 4-year and 1-year analyses

have higher probabilities than the 6-year study performed

above (Fig. S4 for HA), which is expected since the 6-year

alignment is larger. More critically, the slope of the

regression on the 4-year data set is smaller (in absolute

value) than that of the full 6-year data set, which suggests a

decrease in predictive power with smaller data sets (shorter

sampling durations). Indeed, the R2 value for the 6-year

data set stands at 0.37, and drops to 0.11 for the 4-year data

set (P \ 0.0001) and to 6.5 9 10-4 for the 1-year data set

(P \ 0.0001). Therefore, longer sampling durations

improve the predictive (and out of cluster) power of our

model. As a result, we only used the original 6-year data

sets in the rest of this study.

Effect of Punctual Bursts of Evolution

So far, the model had a rather small predictive power,

probably due to the structure of H3N2 circulation with each

year forming its own cluster. However, cluster-shift or the

emergence of ‘‘unexpected’’ strains might be due to
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Fig. 3 Distribution of the BLASTn-identified sequences in the top

5 % of the posterior predictive distribution. Results are presented for

data sets including the target sequence for (a) HA and (b) NA, and the

data set excluding the target sequence for (c) HA and (d) NA. Shaded

bars represent sequences BLASTn-identified as coming from the

‘‘current sampling period’’ (2002–2007), while empty bars represent

sequences coming from outside of this period
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episodes of accelerated evolution. To test this hypothesis,

we incorporated punctual bursts of evolution and of

recombination into the base model. Both the HA and NA

data sets were used to test the effect of increasing the

length of the branch leading to the predicted sequences by a

factor m, hereby mimicking a punctual burst of evolution.

By default, this length is set to the average branch length of

the tree containing only the sequences from the current

sampling period. This rate multiplier m was set to 1, 2, 5,

and 10 for both data sets, HA and NA.

The results show a very significant negative relationship

between posterior predictive probabilities and patristic

distances for all m multipliers, both for HA (Fig. 4a) and

NA (Fig. 4b). Our model is, therefore, able to predict

sequences that have a relatively high probability. Table A.1

further shows that for HA, the average probability is

increasing with m (see also Fig. 4a), while the slopes show

a small but significant decrease in absolute value (Table

A.1). The pattern is similar for NA, where the slopes are

progressively decreasing (in absolute value) with m, but to a

much larger extent (Table 2 and Table A.1). As a result,

the inclusion of bursts of evolution in the model helps out

of cluster prediction for HA but not NA sequences. Indeed,

the R2 values of the regressions for HA increase to almost

40 % as m increases (Table 1). On the other hand, the

inclusion of bursts of evolution makes our prediction of

NA sequences worse, as R2 values decrease with increasing

m (Table 1). This shows that the evolution of HA sequences

during that period of time for the H3N2 subtype was

characterized by episodic bursts of evolution (at least

between 2002 and 2007), while the evolution of NA was

more gradual.

Effect of Punctual Bursts of Recombination

Homologous (intrasegmental) recombination is generally

considered to be insignificant in IAVs (Nelson and Holmes

2007; Boni et al. 2008). In order to assess the impact of

recombination on the emergence of the target Brisbane/10/

2007 strain under a different perspective, we incorporated a

burst of recombination in our model. Branch length mul-

tipliers m were first kept constant and set to 1, while

recombination rates along the branch leading to the simu-

lated sequences were multiplied by a factor . that was

varied from 1 to 5, a value of 5 meaning that recombination
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Fig. 4 Patristic distances of both recombination rates and branch

lengths. Log-posterior probabilities plotted against patristic distance

between each simulated sequence and the target Brisbane/10/2007

sequences, both for HA (a) and NA (b)

Table 1 R2 values for the linear regressions of log-posterior pre-

dictive probabilities against patristic distances to the target sequence

m = 1 m = 2 m = 5 m = 10

HA

. = 1 0.2646 0.3014 0.3812 0.3782

. = 2 0.2455 0.2901 0.3647 0.3712

. = 5 0.2327 0.2743 0.3490 0.3677

NA

. = 1 0.1840 0.1281 0.1311 0.1324

. = 2 0.1620 0.1300 0.1231 0.1313

. = 5 0.1562 0.1173 0.1264 0.1308

Table 2 Slopes for the regressions of log-posterior predictive prob-

abilities against patristic distances to the target sequence

m = 1 m = 2 m = 5 m = 10

HA

. = 1 -1557.39 -1442.62 -1445.97 -1419.97

. = 2 -1488.93 -1414.07 -1420.37 -1399.90

. = 5 -1437.57 -1371.95 -1388.85 -1385.06

NA

. = 1 -1149.83 -854.64 -734.02 -622.88

. = 2 -1040.27 -849.57 -704.74 -616.66

. = 5 -1012.37 -793.47 -705.28 -618.56
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rates leading to the predicted sequences were 5 times larger

than those sampled from the rest of the tree.

Predictive power was assessed again by plotting log-

posterior probabilities of the simulated sequences against

patristic distances to the target strain. These regressions are

highly significant for both the HA and the NA genes

(P \ 0.0001; Fig. 4). However, increasing the recombina-

tion rate multiplier . essentially led to unchanged or even

decreasing predictive power, both for HA and NA

(Table 1). Therefore, our results confirm the general con-

sensus that homologous (intrasegmental) recombination is

not a significant process in the evolution of IAVs, at least

in the case of the Brisbane/10/2007 strain.

Joint Effect of Bursts of Evolution

and of Recombination

Despite the lack of evidence for any effect of recombina-

tion in the emergence of the Brisbane/10/2007 strain, we

tested the hypothesis of a potential interaction between

bursts of evolution and bursts of recombination. The model

was then run on all combinations of multipliers for branch

lengths (m set to 1, 2, 5, and 10) and recombination rates (.
set to 1, 2, and 5). Phylogenetic trees were constructed as

above for each of the 4 9 3 = 12 possible combinations.

The computation of patristic distances for the different m
and . combinations supported the pattern of increased

sequence diversity both for HA (Fig. 4a) and NA (Fig. 4b).

Consistently with the results found when varying m or .
independently, the HA gene proved to be more responsive

than NA to a joint increase in m and ., while the impact of

bursts of recombination was negligible in both cases

(Table 1). These results again support the hypothesis that

the evolution of HA is mostly driven bursts of rates of

evolution, and that (intrasegmental) recombination did not

play any role in the evolution of these two genes.

Longitudinal Analyses

In the preceding sections, we assessed predictive power

with respect to one specific strain, Brisbane/10/2007. A

more general way to assess predictive power is to monitor

posterior predictive distributions longitudinally in time. We

used a sliding window of width 1 year, from year y = 2002

to y = 2007, to try and predict year y ? 1 in each case.

Note that, in this longitudinal design, there is no ‘‘target

sequence’’: the goal is to be able to predict sequences that

will be circulating in the upcoming year (y ? 1).

For computational reasons, we capped the number of

sequences to 24 in each year. We then ran the complete

algorithm on each of the 6 years, for both HA and NA.

Given the results in Table 1, we used for our simulations

two sets of rate multipliers: a first set with m = 1 and

. = 1, and a second set with m = 5 and . = 1, which is

the rate multipliers’ setting that corresponds to the largest

posterior predictive power for HA.

The results are essentially the same for the two settings

of rate multipliers, so we only present the case where m = 1

and . = 1. The results are shown for HA (Fig. 5a) and for

NA (Fig. 5b). If the predictive power was significant, then

the average predicted year in the top 1 % of the log-pos-

terior predictive distribution would be on or above the solid

line. This was not the case, as for every year analyzed, the
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Fig. 5 Distribution of BLASTn identified sequences in the longitu-

dinal analyses. Analyses were performed on each individual year
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under the hypothesis that the analysis can predict emerging sequences
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average predicted year in the top 1 % of the posterior

predictive distribution was not significantly different from

the current year. This result is, however, in line with those

obtained above (Fig. S4), where predictive power was

inexistent when the ‘‘current sampling period’’ is reduced

to a single year. Further testing of the algorithm should

focus on determining the optimal size of this sliding

window.

Discussion

The original motivation behind the development of the

model presented here was to be able to predict the emer-

gence of influenza viruses: (i) in a timely manner, and (ii)

accurately. The computational time required by our model

in a pilot phase was, at three months for about 500

sequences, far greater than what can be desired in practice

(compared to about 20 days with the reduced data, with

samplers run 10 times longer). The burden was essentially

caused by the first step, where posterior distributions are

estimated with omegaMap. The second step, being

amendable to parallelization (each posterior predictive

simulation being carried out as an independent thread),

does not stand as a serious computational bottleneck.

Therefore, a sampling method was used to produce smaller

HA and NA data sets, while still preserving most of the

existing sequence diversity (Abdussamad and Aris-Brosou

2011). However, this sampling method intrinsically dis-

cards information relative to haplotype frequencies, which

may be critical to help predict emerging viruses. Yet,

because genetic diversity of influenza viruses, as measured

by effective population sizes scaled to generation time, is

thought to be low (Rambaut et al. 2008), it is more likely

that nonadaptive processes play a key role in the emer-

gence of influenza viruses. If this nonadaptive hypothesis is

correct, then our filtering of the data to represent most of

the available sequence diversity circulating in a region or

worldwide might be an efficient method to predict

emerging viruses.

While the computational burden was reduced, the

accuracy of the model as a prediction tool for emerging

viruses was not impressive. The sequences generated by

the predictive model reveal in particular that the majority

of the high-probability sequences were generated from

2002 and 2007 (Fig. 3). This suggests that H3N2 strains

continue to circulate for several years after their emergence

(Holmes et al. 2005; Plotkin et al. 2002). The best pre-

diction under the base model, which did not incorporate

any burst of evolution or of recombination, was obtained

by analyzing a window of 6 years. By including punctual

bursts of evolution, the predictive power of the model

increased from 25 to 40 % for HA, but not for NA the

power of which remained low at 12–28 % (Table 1).

Therefore, while the forte of the current approach may not

lie in its predictive power, the analysis reveals two key

features about the mode of evolution of HA and NA in

H3N2 viruses: (i) none of these genes undergo recombi-

nation (Nelson and Holmes 2007; Boni et al. 2008); and

(ii) the evolution of HA is episodic in H3N2 viruses,

undergoing sporadic bursts of evolution, while NA evolves

gradually. This confirms a recent report that took a more

direct approach to estimate bursts of evolution (Westgeest

et al. 2012), based on a codon model explicitly allowing

selection to change episodically (Kosakovsky Pond et al.

2011).

Irrespective of these confirmatory results, the general

low accuracy of the approach presented here highlights the

difficulties in predicting the emergence of influenza viruses

in two nonexclusive situations: (i) long-term predictions of,

and (ii) out of cluster viruses. In the case of long-term

predictions, the stationarity assumption of our model is

likely to be violated by changes in the mode of evolution of

viruses. For instance, pandemic H1N1 viruses showed in

2009 increased x rate ratios, which were interpreted as an

increase in surveillance and/or adaptation to the new

human host (Smith et al. 2009). In the second situation,

H3N2 viruses form clusters of co-circulating strains every

year (Fig. S3) (see also Plotkin et al. 2002; Nelson et al.

2006), so that our approach here attempts to perform out of

cluster prediction based on multicluster information. In this

light, it becomes clear that making such out of cluster

prediction is difficult (Fig. 5) as the underlying evolu-

tionary process is nonstationary.

Compared to previous approaches, either rooted in

phylogenetics (Bush et al. 1999; Plotkin et al. 2002; Fer-

guson and Anderson 2002) or in machine learning (Xia

et al. 2009; Trtica-Majnaric et al. 2010; Lees et al. 2010;

Ito et al. 2011), the predictive model we described has

several unique features such as the incorporation of a more

realistic model of natural selection along with a model of

recombination / reassortment in a Bayesian phylogenetic

framework. Our model would therefore be directly appli-

cable to predicting the emergence of viruses that undergo

intragenic recombination such as retroviruses (e.g., Holmes

2009, p. 50), or the evolution of viruses with segmented

genomes like influenza by concatenating segments in a

whole-genome analysis. However, with the present algo-

rithm, this kind of analysis of long (genomic) sequences is

computationally prohibitive. In addition to incorporating

heterogeneity of the evolutionary process (Le et al. 2008)

and the interplay between mutation and selection (Rodri-

gue et al. 2010), a more fruitful set of extensions would be

either to consider antigenic determinants, either by using

predictive tools as in Abdussamad and Aris-Brosou (2011)

or by using grammar models (Loose et al. 2006), or to take
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the ecology of the virus and the spatial patterns of its

spread into account. Demographic models usually adopt a

different formal structure, being based on systems of partial

differential equations (Ferguson et al. 2005), and are,

therefore, difficult to incorporate into genetic models. One

notable exception attempted to reconcile the outputs of the

two approaches (Ferguson et al. 2003), but the authors did

not attempt to predict emerging strains. More recent forays

into spatial studies addressed the surveillance issue from a

phylogenetic point of view (Wallace et al. 2007; Parks

et al. 2009; Janies et al. 2010; Cybis et al. 2013). Although

these tools have the potential to predict where a particular

virus is likely to emerge (Janies et al. 2010), they do not

attempt to predict which viral strain is likely to emerge.

Finally, the development of predictors of epidemics and

pandemics would clearly benefit from the release of a

public database linking influenza genomes to a proxy of

their phenotype, such as the results of hemagglutination

inhibition assays (Smith et al. 2004). In order to increase

the predictive power of the model presented here, special

efforts will probably be required to combine spatial and

immunological models with genetic models, without for-

getting demographic modeling as well as the population

genetics of the virus of interest.
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