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Abstract The genetic code has a high level of error

robustness. Using values of hydrophobicity scales as a

proxy for amino acid character, and the mean square

measure as a function quantifying error robustness, a value

can be obtained for a genetic code which reflects the error

robustness of that code. By comparing this value with a

distribution of values belonging to codes generated by

random permutations of amino acid assignments, the level

of error robustness of a genetic code can be quantified. We

present a calculation in which the standard genetic code is

shown to be optimal. We obtain this result by (1) using

recently updated values of polar requirement as input; (2)

fixing seven assignments (Ile, Trp, His, Phe, Tyr, Arg, and

Leu) based on aptamer considerations; and (3) using known

biosynthetic relations of the 20 amino acids. This last point

is reflected in an approach of subdivision (restricting the

random reallocation of assignments to amino acid sub-

groups, the set of 20 being divided in four such subgroups).

The three approaches to explain robustness of the code

(specific selection for robustness, amino acid–RNA inter-

actions leading to assignments, or a slow growth process of

assignment patterns) are reexamined in light of our find-

ings. We offer a comprehensive hypothesis, stressing the

importance of biosynthetic relations, with the code evolv-

ing from an early stage with just glycine and alanine, via

intermediate stages, towards 64 codons carrying todays

meaning.

Keywords Genetic code � Error robustness � Origin of

life � Polar requirement

Introduction

The genetic code is a basic feature of molecular biology. It

sets the rules according to which nucleic-acid sequences

are translated into amino acid sequences. The genetic code

probably evolved by a process of gradual evolution from a

proto-biological stage, via many intermediary stages, to its

present form (see e.g. Crick 1968; Lehman and Jukes 1988;

Vetsigian et al. 2006). During this process, error robustness

was built into the code (see e.g. Ardell 1998; Caporaso

et al. 2005; Crick 1968; Di Giulio 2008; Freeland et al.

2003; Higgs 2009; Ikehara et al. 2002; Massey 2008;

Vetsigian et al. 2006; Wolf and Koonin 2007; Wong 2005).

Two different kinds of error robustness can be observed

(Vetsigian et al. 2006) by even the most superficial

inspection of the standard genetic code (SGC). On one

hand, codons assigned to the same amino acid are almost

always similar, see Table 1. As an example, all codons

ending with a pyrimidine (U or C) in a codon box (the four

codons sharing first and second nucleotides) are without

exception assigned to the same amino acid (e.g. UAU and
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UAC both code for Tyr). On the other hand, similar codons

are mostly assigned to similar amino acids, e.g. codons

with U in the second position are all assigned to hydro-

phobic amino acids (Woese 1965; Woese et al. 1966a, b).

This is illustrated in Table 1, when looking at the values of

polar requirement: overall, low values of polar requirement

correspond to hydrophobic amino acids.

Three main approaches exist to explain the emergence

of this robustness of the code: specific selection for

robustness (see e.g. Freeland and Hurst 1998a; Haig and

Hurst 1991; Vetsigian et al. 2006), amino acid-RNA

interactions leading to assignments (see e.g. Woese 1965;

Yarus et al. 2009), and a slow growth process of assign-

ment patterns reflecting the history of amino acid repertoire

growth (see e.g. Crick 1968; Di Giulio 2008; Massey 2006;

Wong 1975). The concept that all three competing

hypotheses are important has also been brought forward

(Knight et al. 1999). In the present study we make

adjustments to earlier mathematical work in this field (see

e.g. Buhrman et al. 2011; Freeland and Hurst 1998a; Haig

and Hurst 1991), which integrate the three concepts into a

single mathematical model. We will now, one by one,

introduce these three adjustments.

Polar Requirement

The polar requirement (Woese et al. 1966a) is not just a

measure related to hydrophobicity. Several different mea-

sures of hydrophobicity exist, each focusing on different

aspects of it. Polar requirement specifically focuses on the

nature of the interaction between amino acids and nucleic

acids. Stacking interactions between e.g. the planar guan-

idinium group of arginine and the planar purine ring sys-

tems and pyrimidine ring systems of RNA is an example of

that. Woese chose to chemically model the nucleotide rings

by using pyridine as the solvent system in the measure-

ments leading to the polar requirement scale (Woese 1965,

1967, 1973; Woese et al. 1966a, b). This interaction

between amino acids and nucleic acids has been stressed as

an especially important aspect of early protein chemistry

because one possibility for the very first function of coded

peptides was suggested (Noller 2004) to be the enlarge-

ment of the number of conformations accessible for RNA

(realized by the binding of small, oligopeptide cofactors).

Thus, polar requirement could have been among the most

important aspects of an amino acid during early stages of

genetic code evolution.

The remarkable character of polar requirement as a

measure of amino acids in connection to the genetic code

was found again and again throughout the years. Firstly,

Woese found that distinct amino acids coded by codons

differing only in the third position are very close in polar

requirement, despite differences in general character

(Woese et al. 1966b). The pair cysteine and tryptophan

nicely exemplifies this. Secondly, Haig and Hurst (1991)

discovered that polar requirement showed the SGC to be

special to a much larger degree than another scale of

hydrophobicity [the hydropathy scale of Kyte and Doolittle

(1982)]. Thirdly, when Mathew and Luthey-Schulten

updated the values of polar requirement (Mathew and

Luthey-Schulten 2008) by in silico methods (the most

important change was believed to be due to a cellulose–

tyrosine interaction artefact in the original experiments),

the SGC showed a further factor 10 increase (Butler et al.

2009) in error robustness calculations. In all these devel-

opments the expectation that polar requirement would

behave in a special way, as interaction between nucleotides

and amino acids is biochemically important, was more than

borne out by the results. One of the adjustments we

Table 1 The standard genetic

code

Assignment of the 64 possible

codons to amino acids or stop

signals, with updated polar

requirement (Mathew and

Luthey-Schulten 2008) values

indicated in brackets

UUU Phe (4.5) UCU Ser (7.5) UAU Tyr (7.7) UGU Cys (4.3)

UUC Phe (4.5) UCC Ser (7.5) UAC Tyr (7.7) UGC Cys (4.3)

UUA Leu (4.4) UCA Ser (7.5) UAA STOP UGA STOP

UUG Leu (4.4) UCG Ser (7.5) UAG STOP UGG Trp (4.9)

CUU Leu (4.4) CCU Pro (6.1) CAU His (7.9) CGU Arg (8.6)

CUC Leu (4.4) CCC Pro (6.1) CAC His (7.9) CGC Arg (8.6)

CUA Leu (4.4) CCA Pro (6.1) CAA Gln (8.9) CGA Arg (8.6)

CUG Leu (4.4) CCG Pro (6.1) CAG Gln (8.9) CGG Arg (8.6)

AUU Ile (5.0) ACU Thr (6.2) AAU Asn (9.6) AGU Ser (7.5)

AUC Ile (5.0) ACC Thr (6.2) AAC Asn (9.6) AGC Ser (7.5)

AUA Ile (5.0) ACA Thr (6.2) AAA Lys (10.2) AGA Arg (8.6)

AUG Met (5.0) ACG Thr (6.2) AAG Lys (10.2) AGG Arg (8.6)

GUU Val (6.2) GCU Ala (6.5) GAU Asp (12.2) GGU Gly (9.0)

GUC Val (6.2) GCC Ala (6.5) GAC Asp (12.2) GGC Gly (9.0)

GUA Val (6.2) GCA Ala (6.5) GAA Glu (13.6) GGA Gly (9.0)

GUG Val (6.2) GCG Ala (6.5) GAG Glu (13.6) GGG Gly (9.0)
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introduce in our work compared to our earlier calculations

(Buhrman et al. 2011) is that in the present work we use

the new, updated values of polar requirement (see Table 1).

Aptamers

Oligonucleic-acid molecules that bind to a specific target

molecule (e.g. a specific amino acid) are called aptamers

(Ellington and Szostak 1990). Over the last two decades,

many results have been obtained regarding specific binding

of amino acids by RNA aptamers, mainly by Yarus and co-

workers (Illangasekare and Yarus 2002; Majerfeld and

Yarus 1994; Yarus et al. 2009). For several amino acids,

codons and anticodons were found in binding sites, in

quantities higher than would be expected to occur by

chance (Yarus et al. 2009). In Table 2, a list of occurrences

of anticodons in binding sites of RNA sequences is given,

together with the articles in which these sequences were

reported. Please note that the definition of anticodons used

in these articles is: triplets complementary to codons.

These anticodons are therefore not necessarily identical to

the triplets found in tRNA molecules which are normally

meant with the word ‘anticodon’. As an example: the

triplet AUG is considered as an His anticodon because it is

complementary to the His codon CAU. In tRNAs, how-

ever, the anticodon recognizing CAU is GUG (see Gros-

jean et al. 2010; Johansson et al. 2008) for reviews on

codon–anticodon interaction). We summarize published

details on the aptamers for seven amino acids, and subse-

quently formulate a conclusion regarding the implications

of the existence of these molecules for genetic-code error-

robustness calculations. This conclusion is based on rea-

soning presented by the Yarus group concerning the exis-

tence of specific relationships between certain triplets and

certain amino acids. These relationships could have led to

evolutionary conserved assignments of these amino acids

to these triplets, e.g. by a mechanism as presented in

(Yarus et al. 2009).

For Ile, Trp, and His, three binding motifs were described,

respectively named the ‘UAUU-motif’ (Lozupone et al.

2003), the ‘CYA-motif’ (Majerfeld et al. 2010, Majerfeld

and Yarus 2005), and the ‘histidine-motif’ (Majerfeld et al.

2005). As can be seen from the names, the anticodons UAU

for Ile, and CCA for Trp, are characteristic for the motifs

(‘CYA’ stands for ‘CUA or CCA’). In the case of His, both

GUG and AUG (the anticodons for the two His codons CAC

and CAU) are found in quantities higher than would be

expected by chance (Majerfeld et al. 2005).

Although binding sites for Phe and Tyr have so far not

been studied as extensively as those for Ile, Trp, and His,

the analysis of Yarus et al. (2009) shows that the antico-

dons (GAA and AAA for Phe, and GUA and AUA for Tyr)

are present in the binding sites more often than would be

expected on a random basis.

Both the CCU anticodon (Janas et al. 2010) and the UCG

anticodon (Yarus et al. 2009) are present in Arg binding sites

more often than would be expected on a random basis. Thus,

a physico-chemical background was observed, compatible

with: (1) Arg having more than four codons, and (2) all six

Arg codons sharing the same middle nucleotide.

A similar observation can be made for Leu, the other

amino acid which is encoded by six codons all having the

same middle nucleotide. For this amino acid, however,

only a single RNA sequence was found binding the amino

acid with specificity (Yarus et al. 2009). Inspection of this

sequence shows anticodons UAG, GAG, and CAA to be

present in its binding parts.

Taking the combined results of Yarus and co-workers

into consideration, we propose to fix assignments of Ile,

Trp, His, Phe, Tyr, Arg, and Leu for calculations using

random variants of the SGC.

Gradual Growth

In ‘Methods’ section we present our approach in detail. We

use Haig and Hurst’s ‘mean square’ measure, [as first

proposed in Haig and Hurst (1991)] to quantify the error

robustness of a given code. With this measure, a relatively

error-robust code gets a low value when compared to the

average value of a large set of codes produced by random

allocation of amino acid assignments [see Buhrman et al.

(2011) for a more in-depth treatment of the approach]. The

space of codes allowed to exist by the allocation procedure

can be large [in the original work of Haig and Hurst (1991)

the space has a size of exactly 20! codes, which is �
2:433� 1018 codes]. We call a code optimal if it reaches

the minimum in error robustness calculations among all

possible codes in a particular setting.

Table 2 The occurence of anticodons in binding sites of the RNA

sequences of amino acid binding aptamers, and the references in

which the actual RNA sequences can be found

Amino

acid

Anticodon References

Ile UAU Yarus et al. (2009,

pp 415–419)

Trp CCA Majerfeld et al. (2010,

p 1918)

His GUG, AUG Yarus et al. (2009,

pp 413–414)

Phe GAA, AAA Yarus et al. (2009, p 420)

Tyr GUA, AUA Yarus et al. (2009, p 423)

Arg CCU, UCU, ACG, GCG,

UCG, CCG

Janas et al. (2010, p 2)

Leu CAA, GAG, UAG Yarus et al. (2009, p 420)
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In 1975, Wong proposed the coevolution theory of the

genetic code (Wong 1975). According to this proposal,

SGC codons assigned to an amino acid biosynthetically

derived from another amino acid, were originally assigned

to that ‘precursor’ amino acid. As an example: Pro is

biosynthetically derived from Glu. According to coevolu-

tion theory, the four Pro codons (CCN) would have origi-

nally encoded Glu. Without embracing all details of the

original coevolution theory, or modern refinements of the

theory (Di Giulio 2008; Wong 2007), something remark-

able can be noted as a result of this way of looking at the

SGC. Shikimate-derived amino acids (Phe, Tyr, and Trp)

all have U in the first position of the codon (Phe: UUY;

Tyr: UAY; and Trp: UGG). Glu-derived amino acids (Pro,

Gln, and Arg) almost always have C in the first position of

the codon (Pro: CCN; Gln: CAR, which stands for ‘CAA or

CAG’; and Arg: AGR and CGN, where N stands for all

four nucleotides). Asp-derived amino acids (Ile, Met, Thr,

Asn, and Lys) all have A in the first position of the codon

(Ile: AUY and AUA; Met: AUG; Thr: ACN; Asn: AAY;

and Lys: AAR). Codons with G in the first position all code

for amino acids produced in Urey–Miller experiments1

(Val: GUN; Ala: GCN; Asp: GAY; Glu: GAR; and Gly:

GGN). This ‘layered structure’ of the SGC was first

pointed out explicitly by Taylor and Coates (1989). It may

indeed suggest a sequential development of the repertoire

of amino acids specified in the developing code, and a

possibly sequential introduction of use of G, A, C, and U as

first nucleotide in codons. The ‘layered structure’ of the

SGC is a regularity different from the well-known error-

robust distribution of polar requirement (Haig and Hurst

1991), which is pronounced in the first and the third, but

not in the second position of the codon (please note: hav-

ing, as a group, all the same nucleotide in the first position,

gives error robustness for the group character to changes in

the second and third position). As is shown in ‘Appendix:

Molecular Structure Matrix’, it is possible to prove the

presence of the ‘layered structure’ quantitatively, when the

appropriate set of values is developed and used as input.

Freeland and Hurst (1998b) followed the concept of

Taylor and Coates, and formally divided the 20 amino

acids in four groups of five amino acids each: Gly, Ala,

Asp, Glu, and Val in a first group which could be called

‘the prebiotic group’; a second group of amino acids with

codons starting with A (Ile, Met, Thr, Asn, and Lys); a

third group with codons mainly starting with C (Leu, Pro,

His, Gln, and Arg); and, finally, a group with codons

mainly starting with U (Phe, Ser, Tyr, Cys, and Trp).

Division of the set of twenty in these four subsets was

subsequently incorporated in the calculations on code error

robustness (Freeland and Hurst 1998b). This approach

reduced the size of the space from which codes could be

sampled randomly in a drastic way: from a size of about

2� 1018 codes (see above) to a size of (5!)4 codes (which

is exactly 2:0736� 108 codes). This space was called the

‘historically reasonable’ set of possible codes (Freeland

and Hurst 1998). By sampling from the historically rea-

sonable set of possible codes, we incorporate in the current

study the notion of a chronologically-determined, layered

structure of the SGC.

Integration of assumptions

We have found that if: (1) the updated values for polar

requirement are used as amino acid attributes; (2) the

assignments of seven amino acids to codons are fixed

following the rationale given above; and (3 the subdivision

leading to the historically reasonable set of possible codes

is used to define the space of code variations [which is also

reduced in size by (2)], then the SGC is optimal. It is

important to note that the constraints applied drastically

reduce the size of the space: with applying both (2) and (3),

the ‘realistic space’ has a size of 11,520 codes.

Methods

We use the mean-square method developed by Alff-

Steinberger (1969), Wong (1980), Di Giulio (1989), and

Haig and Hurst (1991). For the mathematical formulation,

we follow the approach of Buhrman et al. (2011) and

consider the undirected graph G = (V, E) that has the 61

codons2 as its vertices and an edge between any two

codons if they differ in only one position, yielding 263

edges. A code F maps each codon c to exactly one amino

acid F(c). We denote by rF(c) the polar requirement of the

amino acid that codon c encodes in the code F and by r the

full vector of 20 values. The mean square error function of

code F is then given by

MS
a;r
0 ðFÞ ¼

1

N

X

fc;c0g2E

ac;c0 ðrFðcÞ � rFðc0ÞÞ2

where the ac,c’ are the weights of the different mutations

that can occur (corresponding to edges of the graph) and

N ¼
P
fc;c0g2E ac;c0 is the total weight. Following Haig and

Hurst (1991), we use a subscript 0 to indicate the overall

measure. If we set all 263 weights ac,c’ to 1, we get the

original function described by Haig and Hurst (1991),

which we simply denote by MS0(F). We also consider the

1 For a recent update on prebiotic synthesis see (Parker et al. 2011)

and references therein.

2 In the original calculation, Haig and Hurst ignored the three ‘stop

codons’ encoding chain termination.
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following set of weights introduced by Freeland and Hurst

(1998a), which differentiates between transition errors (i.e.

U to C, C to U, A to G, G to A) and transversion errors and

the position where they occur in the codon:

– ac,c’ = 0.5 if (c, c0) is a transversion in the first position

or a transition in the second position,

– ac,c’ = 0.1 if (c, c0) is a transversion in the second

position,

– ac,c’ = 1 otherwise.

Using weights for different codon positions implies the

existence of a tRNA with a triplet anticodon during the

process of code evolution. As we consider a process of

gradual expansion of the repertoire of amino acids during

the evolution of the SGC (see e.g. Ardell 1998, Crick 1968,

Lehman and Jukes 1988) as the most likely mechanism—

with duplication of tRNA genes, and subsequent diver-

gence [cf. (Ohno 1970)] of their sequences and functions—

we think this assumption is acceptable. This assumption

does not necessarily imply the existence of protein

aminoacyl-tRNA synthetases during all or part of the

process of code evolution, as there could originally have

been ribozymes which fulfilled their function. The value of

error-robustness of a code F using the set of weights

introduced above will be denoted by MS0
FH(F).

In principle, there are at least three ways in which one

can improve the model of Haig and Hurst (1991) to reflect

biological reality more accurately. The first possibility is to

change how the level of error robustness is measured, e.g.

by introducing weighting factors as described above.

Variations of the weighting factors used in the calculation

show an even higher error robustness of the SGC, as

noticed by e.g. Butler et al. (2009), Freeland and Hurst

(1998a), Gilis et al. (2001). The rationale behind changing

weighting factors is improved reflection of natural selec-

tion pressures. It is, however, difficult to decide which

weighting factors adequately reflect the natural selection

pressures operating during the early evolution of the

genetic code [see comment 4 of Ardell in Novozhilov et al.

(2007) and the exchange of thoughts with respect to ‘col-

umn 4’ in Higgs (2009)].

The second way to improve the model is to change the

set of values representing amino acid properties used as

input in the error-robustness calculation. For instance, one

can use the values of hydropathy from Kyte and Doolittle

(1982), or the matrix of Gilis et al. (2001) instead of the

polar requirement scale. In our paper, we use the values of

the 2008 update of polar requirement by in silico methods

(Mathew and Luthey-Schulten 2008) given in Table 1.

Work concerning the issue what an ‘ideal’ set of 20 values

would look like, and work considering different known sets

of amino acid properties is presented in ‘Appendices:

Inverse Parametric Optimization and Scan of Other Amino

Acid Properties’.

The third way to improve the model is to change the

size of the space from which random codes are sampled

(Buhrman et al. 2011). The incentive to enlarge that space

[as was done in Buhrman et al. (2011)] is the wish to work

from a space that encompasses all possible codes, or at

least, all known codes. As indicated in Buhrman et al.

(2011), larger spaces are increasingly difficult to work

with. The frequency distributions obtained by sampling

from the larger spaces in Buhrman et al. (2011) highly

coincide with the frequency distribution obtained from the

original space [as presented in Haig and Hurst (1991)].

From this viewpoint, working in the original space is

acceptable as a simplification. In the current study, we

shrink the size of the space, based on considerations of

fixed assignments of certain codons, and combining this

with the constraint of the historically reasonable set of

possible codes of Freeland and Hurst (1998b), as outlined

in ‘Introduction’ section.

MATLAB-programs were used for the error-robustness

calculations and visualizations. All software can be found

as supplemental information, or downloaded from https://

github.com/cschaffner/gcode.

Results

Among all genetic codes (in this particular setting of the

problem), the SGC is optimal in terms of error-robustness

if:

1. We use the updated values of polar requirement

(Mathew and Luthey-Schulten 2008).

2. We use fixation for Phe, Tyr, Trp, His, Leu, Ile, and

Arg, based on aptamer experiments (Janas et al. 2010;

Yarus et al. 2009).

3. We use the historically reasonable set of possible

codes (Freeland and Hurst 1998b).

Figure 1 shows a histogram of MS0
FH(F)-values resulting

from this procedure. When, the original error function

MS0(F) from Haig and Hurst (1991) is used, the result is

essentially the same: the SGC is the optimal code. We

wondered if by fixation of just one or two more assign-

ments, the SGC would be optimal in the space resulting

from the combination of these fixations with the random

permutations of amino acid assignments according to the

method used by Haig and Hurst (1991), without the

constraint of the historically reasonable set of possible

codes (Freeland and Hurst 1998b). This was not the case

(as is reported in ‘Appendix: Minimal Number of Fixed

Assignments’).
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Discussion

What is the biological relevance of the mathematical result

presented, if any? Can we indeed conclude that natural

selection steered the translation system toward better and

better variants of the assignments (in terms of error-

robustness) within realistic boundaries? Stated differently,

when making a model, should one respect that seven

assignments are fixed, and that the system evolved gradu-

ally (as reflected by using the historically reasonable set of

possible codes), until the optimal code (within these

boundaries) was reached? Or is it rash to arrive at such a

conclusion, and could one imagine positive selection for

error-robustness to be an illusion?

The space of codes resulting from the constraints

imposed on the calculations is a space of very limited size:

only 11,520 codes (2!� 2!� 4!� 5!). The fact that the

SGC is optimal in this space is impressive, but of a dif-

ferent order of magnitude than the near-optimalities in

significantly larger spaces presented in earlier studies (e.g.

Buhrman et al. 2011; Butler et al. 2009; Freeland and

Hurst 1998a; Freeland et al. 2000; Gilis et al. 2001). The

impact of the different fixed assignments varies: for the

MS0-values, it would theoretically suffice to fix the three

assignments of Phe, Trp, and Arg (or any set containing

them) in order to find the SGC to be optimal in the

resulting space.3 In this way, the SGC can be thought of as

the global optimum in a space of 3!� 4!� 5!� 5! ¼
2073600 codes. We further refrain from presenting it thus,

because in doing so we would abandon the physico-

chemical facts which were the starting point for our cal-

culations with fixed assignments.

It is also possible to increase the number of fixed

assignments (and in this way decrease the size of the space

of random code variants) even further. A recent article

(Johnson and Wang 2010) suggests that more than the

seven assignments (listed in Table 2) are fixed.

The logical extreme of fixing assignments is that all

assignments of the SGC are fixed, as argued recently by

Erives (2011). In his theory, a kind of RNA cage (pacRNA:

proto-anti-codon RNA) is presented, in which different

amino acids are bound by different kinds of ‘walls’, which

are exposing anticodons to the different amino acids.

Although this model combines elegant explanations for

several aspects of present-day tRNA functioning, it is very

hard to get an objective measure for the specificity of

amino acid-anticodon interactions in this model. In par-

ticular, the different possibilities allowed by ‘breathing’ of

the cage cast doubt on interaction specificity. Some

objections can also be raised regarding the tRNA activation

mechanism. Yarus and co-workers recently reported a very

small ribozyme (only five nucleotides in length), which

was experimentally shown to aminoacylate certain small

RNAs using aminoacyl-NMPs as activated precursors

(Turk et al. 2010; Yarus 2011). Such an early activation

mechanism, using NTPs as source of energy, is different

from the one in Erives’ model, where the 50 end of the

pacRNA is performing this role.

Taking all considerations sketched above into account, it

is possible to draw a tentative picture of genetic code

evolution which is compatible with the indications con-

cerning which aspects of code evolution are important.

Code evolution probably followed classical mechanisms of

gene duplication and subsequent diversification (here of

‘tRNA’ genes and genes involved in aminoacylation).

Evolution would be mainly by stop-to-sense reassignments

(Lehman and Jukes 1988), with occasional reassignments

in only slightly different new or developing uses of codons

[cf. Ardell 1998; Vetsigian et al. 2006], not yet massively

present in protein-coding sequences [cf. the frozen accident

concept (Crick 1968)]. In a proto-biological stage, RNA

would be absent while very small peptides could have been

synthesized, e.g. by the salt-induced peptide formation

(SIPF) reaction (Rode et al. 1999; Schwendinger and Rode

1989). Under prebiotic conditions especially Ala and Gly

would be expected to be present in relatively large amounts

(see e.g. Higgs and Pudritz 2009; Philip and Freeland

2011). Asp-containing peptides could possibly play a role

in the origin of RNA, as they could position Mg2? ions in

the correct orientation to help polymerize nucleotides, and,

concomitantly, keep these ions from stimulating RNA

hydrolysis (Szostak 2012). Asp content of peptides could
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Fig. 1 Histogram of MS0
FH-values when using the historically

reasonable set of possible codes, and fixing Phe, Tyr, Trp, His, Leu,

Ile, Arg. Standard genetic code (indicated by dashed red line) is

optimal

3 When using the Freeland and Hurst weights (and hence the MS0
FH-

values), it is possible to fix another set of three amino acids Phe, His,

Trp in order to make the SGC optimal.
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be enriched in the presence of carboxyl-group binding

montmorillonite surfaces (Rode et al. 1999).

In the first stages of coded peptide synthesis, GCC and

GGC probably were the only codons in mRNAs (Eigen and

Schuster 1978), and coded peptides would consist of Ala

and Gly. The remaining codons effectively would be stop

codons (Lehman and Jukes 1988), although functioning

without release factors: water would break bonds between

tRNA and peptide whenever codons stayed unoccupied for

too long. The ‘single-step biosynthetic distance’ between

Ala and pyruvate suggests a carbon storage role for these

peptides; Gly allowing folding of such molecules. A

mRNA/tRNA system functioning without a ribosome has

been proposed by several authors (Crick et al. 1961; Leh-

man and Jukes 1988; Woese 1973). The first rRNA could

then have been functioning in improved termination (see

above). At this stage the proposal that coded peptides

enlarge the possible range of RNA conformations should

be taken into account (Noller 2004).

In the next stage of coded peptide synthesis, Asp and

Val could have been added to the repertoire (see e.g. Ardell

1998; Eigen and Schuster 1978; van der Gulik et al. 2009;

Higgs 2009; Ikehara 2002). This would have been a crucial

step: enabling directed production of the important Asp-

containing peptides (van der Gulik et al. 2009; Szostak

2012) as well as formation of something resembling pro-

tein structure, characterized by hydrophobic cores (Val)

and hydrophilic exteriors (Asp). The emerging polypep-

tides could have functioned in carbon storage, as men-

tioned above. Having started with trinucleotide codons, this

aspect was retained, not because four nucleotide codons are

in principle impossible, but this system allowed a further

robust development (cf. Vetsigian et al. 2006). Depletion

of prebiotic pools of either Ala, Gly, Asp, or Val (e.g. by

excessive storage in coded peptides) could have led to the

biosynthetic routes involving Gly, Ser, Val, Asp, Ala, and

pyruvate. In this way the lack of an amino acid could in

principle be resolved by use of the other three (cf. the

hypothesized carbon storage function of coded peptides).

In a further stage, Ser, and Asp-derived amino acids like

Asn and Thr would be added to the repertoire. Asn would

be the first amino acid with an entirely biosynthetic origin

(it is relatively unstable, and does not accumulate prebi-

otically). The production of Asn is known to be originally

linked to enzymatic conversion of Asp to Asn on a tRNA

(see e.g. Wong 2007). When instead of two molecules of

pyruvate, one molecule of pyruvate and one molecule of

alpha-keto-butyrate are fed into the Val biosynthesis

pathway, Ile is produced instead. Therefore, when both Thr

and Val biosynthesis are present, the evolution of just one

enzyme (making alpha-keto-butyrate from Thr) suffices for

the emergence of Ile. Aptamers can handle this amino acid,

and these two factors (easy development from existing

biochemistry and easy manipulation by RNA) could be

responsible for the ‘choice’ of Ile (cf. Philip and Freeland

2011).

Larger amino acids like His and Gln would have

appeared in a later stage of code development than Asp-

derived amino acids like Asn and Thr. The reactions cat-

alyzed by the few enzymes in the Leu biosynthesis, which

are not enzymes involved in Val biosynthesis (apart from

leucine aminotransferase) are reminiscent of the first three

reactions of the citric acid cycle (Voet and Voet 1995).

Jensen (1976) hypothesized that originally enzymes would

have had much broader substrate specificity. With the citric

acid cycle being ‘old’, as well as important for bio-ener-

getic reasons, and Val biosynthesis being present, the

system could have produced an excess of Leu. Again, ap-

tamers would be able to ‘handle’ Leu. Existing biochem-

istry and aptamer potential would thus answer the question

why Ile and Leu are part of the Set of Twenty, and e.g.

norleucine and alpha-amino-butyric acid are not (cf. Philip

and Freeland 2011). Linked to the citric acid cycle and

important in nitrogen management are Glu and Gln. A

further expansion of the repertoire with a Glu-derived

amino acid is the expansion with Arg. Two of the enzymes

of the urea (nitrogen management) cycle are related to

pyrimidine synthesis enzymes, two others to purine syn-

thesis enzymes (Berg et al. 2007). The last enzyme in the

cycle is arginase. This suggests an ancient accumulation of

Arg as a side effect of RNA synthesis, upon Glu becoming

a major cell component. Arginase could function in

bringing the Arg concentration down to acceptable levels.

Aptamers could also have evolved to manipulate Arg lev-

els, allowing Arg to become part of the Set of Twenty.

Again Jensen’s concept of primordial broad substrate

specificity (Jensen 1976) is essential to get a possible

answer to the ‘Why these 20?’ question: Arg could be part

of the set, rather than ornithine and citrulline, because Arg

accumulates, and Arg can be manipulated by aptamers.

In an advanced stage of code development aromatic

amino acids would be added to the repertoire, and release

factors would evolve. Van der Gulik and Hoff (2011) have

argued that codons UUA, AUA, UAA, CAA, AAA, GAA,

UGA, and AGA could not function unambiguously until the

anticodon modification machinery was developed, which is

seen by them as the last development leading to the full

genetic code. Because archaea and bacteria have different

solutions for the ‘AUA problem’ [agmatidinylation vs. ly-

sidinylation (van der Gulik and Hoff 2011)], unambiguous

sense assignment of AUA must have been late indeed.

The SGC has probably evolved in a genetic environment

characterized by rampant horizontal gene-flow (Vetsigian

et al. 2006). The interaction between genetic systems with

slightly different, still-evolving codes, is thought to have

caused both universality and optimality of the SGC
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(Vetsigian et al. 2006). Universality, because the genetic

code functioned as an innovation sharing protocol (Vetsi-

gian et al. 2006). Optimality, because competition allowed

selection for the ability to translate the genetic information

accurately (Vetsigian et al. 2006). The work presented in

our paper illuminates constraints within which this process

of genetic code development took place. Both the step-by-

step increasing complexity of biochemistry, and the ste-

reochemical relationship between at least some amino

acids and triplets, are factors which have to be taken into

account.

In summary, although there are at least two different

lines of research suggesting a greater number of fixed

assignments than the seven given in Table 2 [based on the

work of Yarus and co-workers (Janas et al. 2010; Yarus

et al. 2009)], for now it is not clear that more [or even all

(Erives 2011)] assignments are fixed. Thus, the observed

error-robustness still needs explanation. It is possible that

the optimality of the SGC we found results from positive

selection for error-robustness, though starting within a

more restricted set of possibilities than previously thought.

Acknowledgements We thank the EiC and two anonymous

reviewers for suggestions which improved the manuscript. Part of this

research has been funded by NWO-VICI Grant 639-023-302, by the

NWO-CLS MEMESA Grant, by the Tinbergen Institute, and by a

NWO-VENI Grant.

Appendices

Four further observations are reported here. Firstly, as

explained in ‘Introduction’ section , consideration of the

biosynthetic pathways leading to the different amino acids

suggests an aspect of organization of the SGC, in which

GNN codons tend to be assigned to ‘prebiotic amino acids’,

ANN codons to comparatively small, aspartate-derived

amino acids, CNN codons to larger amino acids, and UNN

codons to the largest, or (in the case of cysteine) the most

instable and reactive amino acid. In other words: the first

position of the codon might have a link with the complexity

of biochemistry, e.g. the UNN codons being the only ones

encoding aromatic amino acids and the instable cysteine,

and reflecting the most advanced stage of biochemistry

during the evolution of the genetic code (when the bio-

chemistry was sufficiently complex to handle cysteine, and

to build tryptophan). In ‘Appendix :Molecular Structure

Matrix’, we study this link with the biosynthetic develop-

ment of amino acids by measuring how many one-atom

changes are required to transform one amino acid into

another. With respect to this distance measure, amino acids

derived from the same precursor (like e.g. Ile and Thr) are

comparatively close, because they share structure parts.

Changing the second position of the codon (in the case of

Ile and Thr: changing AUU to ACU) would then replace an

amino acid by one with a comparatively similar structure,

reflecting their membership of the same biosynthetic fam-

ily. If the error-robustness calculation is performed with

these molecular-structure distances, the SGC is found to

have error protection in substitution mutations in the sec-

ond position (and therefore grouping e.g. ANU codons

together). The results are given in ‘Appendix :Molecular

Structure Matrix’.

Secondly, we tried to find numerical values for the 20

amino acids which make the SGC optimal in terms of error

robustness among all possible genetic codes. Using a

numerical optimization approach developed by Eppstein

(2003), we were able to find 20 such values. In fact, many

different sets of 20 values have this property. Details about

these SGC-optimality calculations can be found in

‘Appendix: Inverse Parametric Optimization’.

Thirdly, we screened a large list of physico-chemical

amino acid characteristics on their performance in our

error-robustness calculations. Polar requirement was one of

the best performing measures. This strongly supports the

remark by Haig and Hurst [‘The natural code is very

conservative with respect to polar requirement. The strik-

ing correspondence between codon assignments and such a

simple measure deserves further study’ (Haig and Hurst

1991)]. The observation of Vetsigian, Woese, and Gold-

enfeld (‘Although we do not know what defines amino acid

‘similarity’ in the case of the code, we do know one par-

ticular amino acid measure that seems to express it quite

remarkably in the coding context. That measure is amino

acid polar requirement […]’ (Vetsigian et al. 2006) should

also be mentioned. More details are given in ‘Appendix:

Scan of Other Amino Acid Properties’.

Finally, we wondered if, by fixing just one or two more

assignments, the SGC would be optimal without using the

subdivision leading to the historically reasonable set of

possible codes (as explained in ‘Introduction’ section) This

was not the case. When working with Haig–Hurst weights

(i.e. equal weighting), there exist 34 sets of 9 fixed

assignments which do have this characteristic. However,

none of these 34 sets consists of the seven fixed assign-

ments based on aptamer considerations plus two more

amino acids. The smallest set containing the seven has size

10. When working with Freeland–Hurst weights (see

‘Methods’ section), sets of 8 or 9 fixed assignments with

the required characteristic, do not exist. This work is pre-

sented in ‘Appendix: Minimal Number of Fixed

Assignments’.

Molecular Structure Matrix

Polar requirement is just one physico-chemical aspect of

amino acids. The discovery that only 1 in 10000 random
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codes has a lower error-robustness value than the SGC

when polar requirement is used as an amino acid charac-

teristic (Haig and Hurst 1991) is compelling evidence that

error robustness is present in the SGC. When a conserva-

tive attitude is taken, and a phenomenon is considered

noteworthy only when the probability to encounter it as a

random effect is\0.1 %, the SGC is clearly noteworthy. If

one considers the error-robustness values for the three

positions separately [please refer to Buhrman et al. (2011)

for details] the results in the left column of Fig. 2 are

obtained. The third position is in the \0.1 % category, the

first position is in the \1 % category, while the second

position, with about 22 %, is not even in the \5 % cate-

gory, and can thus not be considered special.

This result is not entirely satisfactory, because the

codons of several pairs of similar amino acids are related

by second position changes. For instance, a change from

phenylalanine (Phe) to tyrosine (Tyr) is clearly a conser-

vative change from a biological viewpoint. To develop a

measure for this kind of amino acid relatedness, we

introduce a new way of measuring amino acid similarity by

one-atom changes which yields a measure of similarity in

terms of molecular structure. We should stress that this

measure does not reflect actual chemical reactions/steps.
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Fig. 2 Histograms of the MS-

values of 10 million random

samples using updated polar

requirement (Mathew and

Luthey-Schulten 2008) (4

histograms on the left) and

molecular-structure distances

from Table 3 squared (4

histograms on the right). The

top row shows the MS0 value,

the second row is the

component from the first codon

position (MScore1), third and

forth row the components from

the middle (MScore2) and last

(MScore3) codon position. In

contrast to the original

definition (Haig and Hurst

1991) of MSi for i C 1, we have

chosen to normalize MScorei

with the same constant as MS0

so that MS0 =
P

i=1
3 MScorei.

The dashed red line indicates

the value of the SGC
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As an example, we compute the distance between Phe and

Tyr to be 3 as follows: the hydrogen atom at the end of the

side chain of Phe is taken off as a first step. An oxygen

atom is placed on the position, which the hydrogen atom

had before as a second step. The Tyr molecule is completed

by addition of an hydrogen atom on top of this oxygen

atom, producing the hydroxyl group at the end of the side

chain of Tyr, and this is the third and final step. Generally,

the distance between two molecules is defined to be the

minimal number of ‘allowed one-atom changes’ to trans-

form one molecule into the other, where the allowed one-

atom changes are the following:

– taking off or attaching an arbitrary single atom,

– creating or destroying a single bond (thereby possibly

opening or closing a ring structure),

– changing a single bond to a double bond or vice versa.

It is not hard to see that an algorithmic way of computing

the distance between two molecules m1 and m2 is to find

the maximal common sub-graph mc of their molecular

structure, and to sum up how many steps are required to go

from m1 to mc and from m2 to mc. The distance matrix

between the 20 amino acids in Table 3 has been obtained in

this way, using the Small Molecule Subgraph Detector

(SMSD) toolkit (Rahman et al. 2009) to find the maximal

common subgraph and post-processing this information

with a python script. The software code can be found in the

supplemental information.

In order to perform the error-robustness calculations, we

followed the procedure by Haig and Hurst (1991) and

considered the squared distances. In this way, the zeroes in

the diagonal remain zero. The values for small changes

become slightly larger (so the edge from Phe to Tyr gets a

value 9), while the values for large changes (like going

from Gly to Tyr) become considerably larger (in the case of

Gly to Tyr 20 becomes 400). Large changes thus get

stronger emphasis (Di Giulio 1989). Whether squaring is

the right way to make these kind of calculations has been

discussed elsewhere (Ardell 1998; Freeland et al. 2000);

we just want to compare molecular structure as an input to

characteristics like polar requirement, hydropathy, volume

and isoelectric point, as studied by Haig and Hurst (1991).

The histograms of the error-robustness in terms of molec-

ular structure are shown in the right column of Fig. 2.

Although not producing (unlike polar requirement) a

result in the\0.1 % category, it is still remarkable that the

SGC is, with 0.151 %, in the\1 % category when molecular

structure is used as input. This means that this matrix is

performing better than volume or the hydropathy scale of

hydrophobicity in the work of Haig and Hurst (1991). Even

more remarkable, the error robustness comes mainly from

the second position, using this measure (Fig. 2).

Table 3 Molecular structure matrix

Phe Leu Ile Met Val Ser Pro Thr Ala Tyr His Gln Asn Lys Asp Glu Cys Trp Arg Gly

Phe 0

Leu 15 0

Ile 21 10 0

Met 21 14 14 0

Val 22 15 5 11 0

Ser 17 12 14 10 11 0

Pro 17 8 8 10 11 10 0

Thr 20 13 9 9 6 5 9 0

Ala 16 11 13 9 10 3 9 8 0

Tyr 3 16 22 22 23 18 18 21 17 0

His 18 15 17 17 18 13 13 16 12 19 0

Gln 20 13 13 11 12 11 9 10 10 21 12 0

Asn 19 14 16 12 13 8 12 11 7 20 13 13 0

Lys 17 12 12 14 15 14 8 13 13 18 17 13 16 0

Asp 18 13 15 11 12 7 11 10 6 19 14 12 5 15 0

Glu 19 12 12 10 11 10 8 9 9 20 15 5 12 12 11 0

Cys 17 12 14 10 11 4 10 9 3 18 13 11 8 14 7 10 0

Trp 12 23 27 27 28 23 23 26 22 15 18 22 25 23 24 25 23 0

Arg 24 15 15 17 18 17 11 16 16 25 10 12 19 15 18 15 17 24 0

Gly 19 14 14 12 11 6 12 9 5 20 15 13 10 16 9 12 6 25 19 0

The entry in row i and column j denotes the number of steps required to transform the ith amino acid into the jth
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Inverse Parametric Optimization

Instead of asking the question ‘What is the most error-

robust genetic code in terms of e.g. polar requirement?’,

one could also ask the question ‘Is there a set of numerical

values for the 20 amino acids such that the SGC is the

optimal code in terms of error robustness?’ If one particular

set of 20 values turns out to have that property, one can

compare this set with different sets of amino acid charac-

teristics, and suggest which characteristic resembles the

‘ideal values’ best. This then might be the factor playing a

selective role during evolution of the SGC.

Let A be the set of amino acids and let F be the set of all

codes. We aim at solving the following problem: find a

non-trivial vector x 2 IRA
� 0 of amino acid property values

such that MS
a;x
0 ðSGCÞ ¼ argmin

F2F
MS

a;x
0 ðFÞ.

To solve this problem, we used a modification of the

method of Eppstein (2003). We define variables x 2 IR20

and consider the following constraint satisfaction problem:

Find x such that

x 6¼ 0 ð1Þ
x� 0 ð2Þ

MS
a;x
0 ðSGCÞ�MS

a;x
0 ðFÞ for all F 2 F ð3Þ

Note that the number of inequalities (3) equals the size

of the code space, which can be quite large. To deal with

the potentially large number of constraints we follow a

cutting plane approach. We work with intermediate

solutions xi, start with i = 0, and set x0 to some random

values that satisfy constraints (1) and (2). We then solve

the separation problem for the class of constraints (3). That

is, we have to find a code F such that MS
a;xi

0 ðFÞ
\MS

a;xi

0 ðSGCÞ or prove that no such code exists. We can

answer this question by finding

F� ¼ arg min
F2F

MS
a;xi

0 ðFÞ;

using the quadratic assignment approach described in

Buhrman et al. (2011). In fact, for the actual procedure it

suffices to use much faster QAP heuristics, e.g. based on

simulated annealing (Burkard and Rendl 1984) or the

GRASP heuristic (Li et al. 1994), instead of full QAP

solvers. If we find an F with MS
a;xi

0 ðFÞ\ MS
a;xi

0 ðSGCÞ, we

have found a violated inequality

MS
a;x
0 ðSGCÞ�MS

a;x
0 ðFÞ;

which we add to the constraint satisfaction problem. We

solve this set of quadratic constraints using the non-linear

constraint solver fmincon from MATLAB’s optimization

toolbox (MATLAB 2011), obtain a new set of values xiþ1

and iterate the process until no more violated inequalities

can be separated. A final solution x* can be verified by a

QAP solver such as Burkard and Derigs (1980). All soft-

ware used is provided as supplemental information.

Using this procedure, we found many different sets of 20

values under which the SGC is optimal with respect to

error-robustness. We steered the values towards the polar

requirement values r by using the distance to r as the

objective function in our approach. See Fig. 3 for an

illustration of some of the solutions we found.

An analysis of the correlation coefficients of these

‘ideal’ values with a database of 744 known amino acid

properties from the literature (AAindex: Kawashima et al.

1999) shows no correlation above 0.82 except with polar

Fig. 3 Eight examples of sets

of values for the 20 amino acids

that make the SGC the most

error-robust genetic code. The

(artificial) values are found by

using inverse parametric

optimization, as described in

Appendix: Inverse Parametric

Optimization. All sets have

been normalized to have mean 0

and standard deviation 1. For

comparison, we also show the

original polar requirements on

top (1), and the updated polar-

requirement values on the

second row (2). Value sets 3–6

make the SGC optimal with

respect to MS0. Value sets 7–10

make the SGC optimal with

respect to MS0
FH
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requirement. In other words, we do not know of any sets of

straightforward physico-chemical amino acid properties

which resemble one of these ‘ideal’ sets. This might sug-

gest that a combination of several aspects of code evolution

and amino acid properties [as suggested by e.g. Higgs

(2009)] resulted in the configuration of the SGC.

Scan of Other Amino Acid Properties

We performed error-robustness calculations for all (com-

plete) amino acid properties of the AAindex-database

(Kawashima et al. 1999). For the purpose of comparison,

we extended the database to include the original polar

requirements (Woese et al. 1966a), and the updated polar

requirements (Mathew and Luthey-Schulten 2008), as well

as two sets of numerical values found by the procedure

described in ‘Appendix: Inverse Parametric Optimization’.

In a first scan, 50000 random codes were sampled from

1. all codes,

2. codes with the seven assignments of Phe, Tyr, Trp,

His, Leu, Ile, and Arg fixed,

3. codes with seven fixed assignments and respecting the

structure enforced by the constraint of the historically

reasonable set of possible codes (all 11,520 codes were

computed in this case).

For all of the three settings above, error-robustness values

were computed using Haig–Hurst and Freeland–Hurst

weights (the same random samples were used for the two

weight sets, the results are thus statistically correlated).

Table 4 Table of the 20 most error-robust amino acid properties from the AAindex-database (Kawashima et al. 1999)

106 random codes no

blocks fixed

106 random codes 7

blocks fixed

11,520 codes 7

fixed, subsets

Description

HH FH HH FH HH FH

0 (1) 0 (1) 0 (1) 2 (3) 0 (1) 2 (26) Some set of 20 values that make SGC optimal with Haig–Hurst weights

(this study)

1 (2) 0 (1) 1 (2) 0 (1) 0 (1) 0 (1) Some set of 20 values that make SGC optimal with Freeland–Hurst

weights (this study)

10 (3) 4 (6) 443 (30) 13 (10) 1 (11) 3 (33) Long range non-bonded energy per atom (Oobatake and Ooi 1977)

17 (4) 0 (1) 6 (3) 0 (1) 0 (1) 0 (1) Updated Polar Requirements (Mathew and Luthey-Schulten 2008))

24 (5) 40 (16) 48 (10) 21 (13) 2 (17) 0 (1) Information value for accessibility; average fraction 23% (Biou et al.

1988)

30 (6) 6 (7) 26 (5) 6 (8) 6 (35) 3 (33) Polarity (Grantham 1974)

35 (7) 57 (18) 313 (22) 44 (18) 4 (30) 5 (44) Free energies of transfer of AcWl-X-LL peptides from bilayer

interface to

40 (8) 130 (31) 37 (7) 27 (15) 3 (25) 0 (1) Surface composition of amino acids in intracellular proteins of

mesophiles

46 (9) 57 (18) 205 (21) 111 (22) 0 (1) 0 (1) Optimized relative partition energies - method D (Miyazawa and

Jernigan 1999)

51 (10) 26 (11) 185 (20) 8 (9) 13 (41) 1 (19) Effective partition energy (Miyazawa and Jernigan 1985)

58 (11) 42 (17) 55 (12) 500 (39) 1 (11) 3 (33) Average side chain orientation angle (Meirovitch et al. 1980)

96 (12) 12 (8) 173 (19) 101 (21) 3 (25) 1 (19) Linker propensity from small dataset (linker length is less than six

98 (13) 58 (20) 623 (37) 135 (24) 32 (50) 3 (33) Optimized relative partition energies - method C (Miyazawa and

Jernigan 1999)

108 (14) 34 (13) 322 (23) 3 (5) 21 (46) 4 (40) Optimal matching hydrophobicity (Sweet and Eisenberg 1983)

112 (15) 37 (14) 330 (24) 3 (5) 21 (46) 4 (40) SWEIG index (Cornette et al. 1987)

119 (16) 3 (5) 41 (8) 4 (7) 2 (17) 2 (26) Original Polar Requirements (Woese et al. 1966a)

127 (17) 23 (10) 109 (16) 38 (17) 5 (34) 1 (19) Average gain ratio in surrounding hydrophobicity (Ponnuswamy et al.

1980)

136 (18) 1 (4) 28 (6) 2 (3) 2 (17) 2 (26) Polar requirement (Woese 1973)

218 (19) 95 (28) 452 (31) 235 (31) 1 (11) 0 (1) Information value for accessibility; average fraction 35% (Biou et al.

1988)

279 (20) 16 (9) 120 (17) 286 (35) 2 (17) 2 (26) Direction of hydrophobic moment (Eisenberg and McLachlan 1986)

The numbers indicate how many codes were found that are strictly more error-robust than the standard genetic code. The numbers in parentheses

denote the rank among the 55 properties that have been analyzed. Description in italic indicate that this property is not included in the AAindex-

database, but has been added for comparison

HH Haig–Hurst, FH Freeland–Hurst
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Out of the 55 best-performing codes, the same calcula-

tions as above were performed with 106 samples. The 20 best

performing properties are presented in Table 4. Not sur-

prisingly, our two sets of (artificial) numerical values found

by inverse parametric optimization (described in ‘Appendix

Inverse Parametric Optimization’) end up on the top.

Furthermore, we observe that the SGC is error-robust in

terms of several measures of polar requirement [as noted,

e.g. in Vetsigian et al. (2006)]. One of these (for which this

is not immediately obvious) is Grantham’s polarity scale

(1974), which is a combination of Aboderin’s scale (1971)

and polar requirement. It is especially noteworthy that the

updated polar requirement (Mathew and Luthey-Schulten

2008) is consistently showing up within the best four sets

of numerical values. When the sets found by inverse

parametric optimization are left out, the updated values of

polar requirement are in all three settings (no blocks fixed,

7 blocks fixed, and the set of 11,520 codes resulting from 7

fixed blocks plus the constraint of the historically reason-

able set of possible codes) the best set of values when

Freeland–Hurst weights are used.

Minimal Number of Fixed Assignments

In this appendix, we investigate how many amino acid

assignments need to be fixed such that the SGC is the most

error-robust genetic code with respect to the updated polar

requirements (Mathew and Luthey-Schulten 2008), when

we do not use the constraint of the historically reasonable

set of possible codes.

For the case of the Haig–Hurst weights, there are 67

different minimal subsets S1; S2; . . .; S67 	 fPhe;Leu;

Ile; . . .; Ser;Gly} such that for any i 2 f1; 2; . . .; 67}, fixing

the assignments of all amino acids in Si makes the SGC the

most error-robust genetic code. Any super-set of these 67

minimal subsets will also have this property, because fixing

more assignments only limits the number of possible

genetic codes. Out of the 67 minimal subsets, 34 of them

are of size 9, 15 of size 10, 15 of size 11, and 3 of size 12.

When fixing the seven assignments of Phe, Tyr, Trp,

His, Leu, Ile, and Arg (based on aptamer experiments) the

minimal sets of assignments that need to be fixed in

addition are: {Ser, Gln, Cys} or {Met, Ser, Gln}.

For the case of the Freeland–Hurst weights, there are

186 different minimal subsets: 2 subsets of size 10, 4 of

size 11, 13 of size 12, 44 of size 13, 52 of size 14, 45 of

size 15, 21 of size 16, and 5 of size 17. When fixing the

seven assignments of Phe, Tyr, Trp, His, Leu, Ile, and Arg

(based on aptamer experiments), there are 6 different

minimal sets (of size 6) each of which can be fixed in

addition in order to make the SGC the most error-robust

genetic code.

References

Aboderin AA (1971) An empirical hydrophobicity scale for a-amino-

acids and some of its applications. Int J Biochem 2(11):537–544

Alff-Steinberger C (1969) The genetic code and error transmission.

Proc Natl Acad Sci USA 64(2):584–591

Ardell DH (1998) On error minimization in a sequential origin of the

standard genetic code. J Mol Evol 47(1):1–13

Berg JM, Tymoszko JL, Stryer L (2007) Biochemistry, 6th edn. W.H.

Freeman and Company, New York, p 664

Biou V, Gibrat JF, Levin JM, Robson B, Garnier J (1988) Secondary

structure prediction: combination of three different methods.

Protein Eng 2(3):185–191

Buhrman H, van der Gulik PTS, Kelk SM, Koolen WM, Stougie L

(2011) Some mathematical refinements concerning error mini-

mization in the genetic code. IEEE/ACM Trans Comput Biol

Bioinf 8(5):1358–1372

Burkard R, Derigs U (1980) Assignment and matching problems:

solution methods with FORTRAN-programs. Lecture notes in

economics and mathematical systems. Springer-Verlag, Berlin.

http://books.google.nl/books?id=0jwZAQAAIAAJ

Burkard RE, Rendl F (1984) A thermodynamically motivated

simulation procedure for combinatorial optimization problems.

Eur J Oper Res 17(2):169–174

Butler T, Goldenfeld N, Mathew D, Luthey-Schulten Z (2009) Extreme

genetic code optimality from a molecular dynamics calculation of

amino acid polar requirement. Phys Rev E 79(6):060,901(R)

Caporaso JG, Yarus M, Knight R (2005) Error minimization and

coding triplet/binding site associations are independent features

of the canonical genetic code. J Mol Evol 61(5):597–607

Cornette JL, Cease KB, Margalit H, Spouge JL, Berzofsky JA, DeLisi

C (1987) Hydrophobicity scales and computational techniques

for detecting amphipathic structures in proteins. J Mol Biol

195(3):659–685

Crick FHC (1968) The origin of the genetic code. J Mol Biol

38(3):367–379

Crick FHC, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature

of the genetic code for proteins. Nature 192(4809):1227–1232

Di Giulio M (1989) The extension reached by the minimization of the

polarity distances during the evolution of the genetic code. J Mol

Evol 29(4):288–293

Di Giulio M (2008) An extension of the coevolution theory of the

origin of the genetic code. Biol Direct 3:37

Eigen M, Schuster P (1978) A principle of natural self organization. Part

C: the realistic hypercycle. Naturwissenschaften 65(7):341–369

Eisenberg D, McLachlan AD (1986) Solvation energy in protein

folding and binding. Nature 319(6050):199–203

Ellington AD, Szostak JW (1990) In vitro selection of RNA

molecules that bind specific ligands. Nature 346:818–822

Eppstein D (2003) Setting parameters by example. SIAM J Comput

32(3):643–653

Erives A (2011) A model of proto-anti-codon RNA enzymes

requiring L-amino acid homochirality. J Mol Evol 73:10–22.

doi:10.1007/s00239-011-9453-4

Freeland SJ, Hurst LD (1998a) The genetic code is one in a million.

J Mol Evol 47(3):238–248

Freeland SJ, Hurst LD (1998b) Load minimization of the genetic

code: history does not explain the pattern. Proc R Soc B Biol Sci

265(1410):2111–2119

Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early

fixation of an optimal genetic code. Mol Biol Evol

17(4):511–518

Freeland SJ, Wu T, Keulmann N (2003) The case for an error

minimizing standard genetic code. Orig Life Evol Biosp 33(4-5):

457–477

182 J Mol Evol (2013) 77:170–184

123

http://books.google.nl/books?id=0jwZAQAAIAAJ
http://dx.doi.org/10.1007/s00239-011-9453-4


Gilis D, Massar S, Cerf NJ, Rooman M (2001) Optimality of the

genetic code with respect to protein stability and amino-acid

frequencies. Genome Biol 2(11):R49

Grantham R (1974) Amino acid difference formula to help explain

protein evolution. Science 185(4154):862–864

Grosjean H, de Crecy-Lagard V, Marck C (2010) Deciphering

synonymous codons in the three domains of life: co-evolution

with specific tRNA modification enzymes. FEBS Lett

584(2):252–264

Haig D, Hurst LD (1991) A quantitative measure of error minimi-

zation in the genetic code. J Mol Evol 33(5):412–417

Higgs PG (2009) A four- column theory for the origin of the genetic

code: tracing the evolutionary pathways that gave rise to an

optimized code. Biol Direct 4:16

Higgs PG, Pudritz RE (2009) A thermodynamic basis for prebiotic

amino acid synthesis and the nature of the first genetic code.

Astrobiology 9(5):483–490

Ikehara K (2002) Origins of gene, genetic code, protein and life:

comprehensive view of life systems from a GNC-SNS primitive

genetic code hypothesis. J Biosci 27(2):165–186

Ikehara K, Omori Y, Arai R, Hirose A (2002) A novel theory on the

origin of the genetic code: a GNC-SNS hypothesis. J Mol Evol

54(4):530–538

Illangasekare M, Yarus M (2002) Phenylalanine-binding RNAs and

genetic code evolution. J Mol Evol 54(3):298–311

Janas T, Widmann JJ, Knight R, Yarus M (2010) Simple, recurring

RNA binding sites for L-arginine. RNA 16(4):805–816

Jensen RA (1976) Enzyme recruitment in evolution of new function.

Annu Rev Microbiol 30:409–425

Johansson MJO, Esberg A, Huang B, Bjork GR, Bystrom AS (2008)

Eukaryotic wobble uridine modifications promote a functionally

redundant decoding system. Mol Cell Biol 28(10):3301–3312

Johnson DBF, Wang L (2010) Imprints of the genetic code in the

ribosome. Proc Natl Acad Sci USA 107(18):8298–8303

Kawashima S, Ogata H, Kanehisa M (1999) AAindex: amino acid

index database. Nucleic Acids Res 27(1):368–369

Knight RD, Freeland SJ, Landweber LF (1999) Selection, history and

chemistry: the three faces of the genetic code. Trends Biochem

Sci 24(6):241–247

Kyte J, Doolittle RF (1982) A simple method for displaying the

hydropathic character of a protein. J Mol Biol 157(1):105–132

Lehman N, Jukes TH (1988) Genetic code development by stop

codon takeover. J Theor Biol 135(2):203–214

Li Y, Pardalos P, Resende M (1994) A greedy randomized adaptive

search procedure for the quadratic assignment problem. Qua-

dratic Assign Relat Probl 16:237–261

Lozupone C, Changayil S, Majerfeld I, Yarus M (2003) Selection of

the simplest RNA that binds isoleucine. RNA 9(11):1315–1322

Majerfeld I, Chocholousova J, Malaiya V, Widmann J, McDonald D,

Reeder J, Iyer M, Illangasekare M, Yarus M, Knight R (2010)

Nucleotides that are essential but not conserved; a sufficient L-

tryptophan site in RNA. RNA 16(10):1915–1924

Majerfeld I, Puthenvedu D, Yarus M (2005) RNA affinity for

molecular L-histidine; genetic code origins. J Mol Evol

61:226–235

Majerfeld I, Yarus M (1994) An RNA pocket for an aliphatic

hydrophobe. Nat Struct Biol 1(5):287–292

Majerfeld I, Yarus M (2005) A diminutive and specific RNA binding

site for L-tryptophan. Nucleic Acids Res 33(17):5482–5493.

doi:10.1093/nar/gki861

Massey SE (2006) A sequential ‘‘2-1-3’’ model of genetic code

evolution that explains codon constraints. J Mol Evol

62(6):809–810

Massey SE (2008) A neutral origin for error minimization in the

genetic code. J Mol Evol 67(5):510–516

Mathew DC, Luthey-Schulten Z (2008) On the physical basis of the

amino acid polar requirement. J Mol Evol 66(5):519–528

MATLAB: version 7.12.0 (R2011a) The MathWorks Inc., Natick,

Massachusetts (2011)

Meirovitch H, Rackovsky S, Scheraga HA (1980) Empirical studies

of hydrophobicity. 1. Effect of protein size on the hydrophobic

behavior of amino acids. Macromolecules 13(6):1398–1405

Miyazawa S, Jernigan RL (1985) Estimation of effective interresidue

contact energies from protein crystal structures: quasi-chemical

approximation. Macromolecules 18(3):534–552

Miyazawa S, Jernigan RL (1999) Self-consistent estimation of inter-

residue protein contact energies based on an equilibrium mixture

approximation of residues. Proteins 34(1):49–68

Noller HF (2004) The driving force for molecular evolution of

translation. RNA 10(12):1833–1837

Novozhilov AS, Wolf YI, Koonin EV (2007) Evolution of the genetic

code: partial optimization of a random code for robustness to

translation error in a rugged fitness landscape. Biol Direct 2:24

Ohno S (1970) Evolution by gene duplication. Springer, Berlin

Oobatake M, Ooi T (1977) An analysis of non-bonded energy of

proteins. J Theor Biol 67(3):567–584

Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey

A, Lazcano A, Bada JL (2011) Primordial synthesis of amines

and amino acids in a 1958 Miller H2S-rich spark discharge

experiment. Proc Natl Acad Sci USA 108(14):5526–5531

Philip GK, Freeland SJ (2011) Did evolution select a nonrandom

‘‘alphabet’’ of amino acids? Astrobiology 11(3):235–240

Ponnuswamy PK, Prabhakaran M, Manavalan P (1980) Hydrophobic

packing and spatial arrangement of amino acid residues in

globular proteins. Biochim Biophys Acta 623(2):301–316

Rahman S, Bashton M, Holliday G, Schrader R, Thornton J (2009)

Small molecule subgraph detector (SMSD) toolkit. J Cheminform

1(1):12. doi:10.1186/1758-2946-1-12http://www.jcheminf.com/

content/1/1/12

Rode BM, Son HL, Suwannachot Y, Bujdak J (1999) The combina-

tion of salt induced peptide formation reaction and clay catalysis:

a way to higher peptides under primitive earth conditions. Orig

Life Evol Biosph 29(3):273–286

Schwendinger MG, Rode BM (1989) Possible role of copper and

sodium in prebiotic evolution of peptides. Anal Sci 5:411–414

Sweet RM, Eisenberg D (1983) Correlation of sequence hydrophob-

icities measures similarity in three-dimensional protein structure.

J Mol Biol 171(4):479–488

Szostak JW (2012) The eightfold path to non-enzymatic rna

replication. J Syst Chem 3:2

Taylor FJR, Coates D (1989) The code within the codons. BioSystems

22(3):177–187

Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational

products from a five-nucleotide ribozyme. Proc Natl Acad Sci

USA 107(10):4585–4589

van der Gulik P, Massar S, Gilis D, Buhrman H, Rooman M (2009)

The first peptides: the evolutionary transition between prebiotic

amino acids and early proteins. J Theor Biol 261(4):531–539

van der Gulik PTS, Hoff WD (2011) Unassigned codons, nonsense

suppression, and anticodon modifications in the evolution of the

genetic code. J Mol Evol 73(3-4):59–69

Vetsigian K, Woese C, Goldenfeld N (2006) Collective evolution and

the genetic code. Proc Natl Acad Sci USA 103(28):10,696–10,701

Voet D, Voet JG (1995) Biochemistry, 2nd edn, Wiley, New York,

p 773

Woese CR (1965) Order in the genetic code. Proc Natl Acad Sci USA

54(1):71–75

Woese CR (1967) The genetic code. Harper and Row, New York

Woese CR (1973) Evolution of the genetic code. Naturwissenschaften

60(10):447–459

J Mol Evol (2013) 77:170–184 183

123

http://dx.doi.org/10.1093/nar/gki861
http://www.jcheminf.com/content/1/1/12
http://www.jcheminf.com/content/1/1/12


Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC (1966a)

On the fundamental nature and evolution of the genetic code.

Cold Spring Harb Symp Quant Biol 31:723–736

Woese CR, Dugre DH, Saxinger WC, Dugre SA (1966b) The

molecular basis for the genetic code. Proc Natl Acad Sci USA

55(4):966–974

Wolf YI, Koonin EV (2007) On the origin of the translation system

and the genetic code in the RNA world by means of natural

selection, exaptation, and subfunctionalization. Biol Direct 2:14

Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl

Acad Sci USA 72(5):1909–1912

Wong JT (1980) Role of minimization of chemical distances between

amino acids in the evolution of the genetic code. Proc Natl Acad

Sci USA 77(2 II):1083–1086

Wong JT (2007) Question 6: coevolution theory of the genetic code: a

proven theory. Orig Life Evol Biosph 37(4-5):403–408

Wong JTF (2005) Coevolution theory of genetic code at age thirty.

BioEssays 27(4):416–425

Yarus M (2011) The meaning of a minuscule ribozyme. Philos Trans

R Soc B Biol Sci 366(1580):2902–2909

Yarus M, Widmann JJ, Knight R (2009) RNA-amino acid binding: a

stereochemical era for the genetic code. J Mol Evol 69(5):406–429

184 J Mol Evol (2013) 77:170–184

123


	A Realistic Model Under Which the Genetic Code is Optimal
	Abstract
	Introduction
	Polar Requirement
	Aptamers
	Gradual Growth
	Integration of assumptions

	Methods
	Results
	Discussion
	Acknowledgements
	Appendices
	Molecular Structure Matrix
	Inverse Parametric Optimization
	Scan of Other Amino Acid Properties
	Minimal Number of Fixed Assignments

	References


