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Abstract We have investigated the influence of the

plasma membrane environment on the molecular evolution

of G protein-coupled receptors (GPCRs), the largest

receptor family in Metazoa. In particular, we have analyzed

the site-specific rate variation across the two primary

structural partitions, transmembrane (TM) and extramem-

brane (EM), of these membrane proteins. We find that TM

domains evolve more slowly than do EM domains, though

TM domains display increased rate heterogeneity relative

to their EM counterparts. Although the majority of residues

across GPCRs experience strong to weak purifying selec-

tion, many GPCRs experience positive selection at both

TM and EM residues, albeit with a slight bias towards the

EM. Further, a subset of GPCRs, chemosensory receptors

(including olfactory and taste receptors), exhibit increased

rates of evolution relative to other GPCRs, an effect which

is more pronounced in their TM spans. Although it has

been previously suggested that the TM’s low evolutionary

rate is caused by their high percentage of buried residues,

we show that their attenuated rate seems to stem from the

strong biophysical constraints of the membrane itself, or by

functional requirements. In spite of the strong evolutionary

constraints acting on the TM spans of GPCRs, positive

selection and high levels of evolutionary rate variability are

common. Thus, biophysical constraints should not be pre-

sumed to preclude a protein’s ability to evolve.

Keywords Protein evolution � G protein-coupled

receptors � Membrane proteins � Positive selection

Introduction

A protein’s evolution may be constrained by various

functional or biophysical requirements. Membrane pro-

teins, in particular, should be heavily constrained by the

hydrophobic environment inside the membranes where

they reside, specifically with regards to their transmem-

brane (TM) domains. This structural constraint biases

amino acids found in TM domains towards non-polar, or

hydrophobic, residues; polar amino acids comprise roughly

60 % of TM segments, compared to a 30 % frequency in

extramembrane (EM) regions, whereas polar amino acids

make up a mere 5 % of the TM (Tourasse and Li 2000).

Although a protein’s amino acid composition is not a

robust determinant of evolutionary rate, the underlying

biophysical constraints yielding this bias presumably

enforce a lower rate of evolution in TM regions relative to

globular proteins or to EM regions of the same protein

(Tourasse and Li 2000; Julenius and Pedersen 2006). The

high concentration of buried residues in TM domains has

additionally been proposed to be a dominant contributor to

their low evolutionary rate (Stevens and Arkin 2001;

Oberai et al. 2009), as highly buried protein residues are

known to correlate with low evolutionary rates (Franzosa

and Xia 2009; Ramsey et al. 2011)

Although the general patterns associated with membrane

evolution have been loosely characterized, the evolutionary

variability within the TM and EM spans, particularly across

individual residues, is largely unknown. Previous studies

investigating the evolution of membrane proteins have

focused primarily on average evolutionary rates, neither
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addressing rate heterogeneity nor site-based evolutionary

parameters (Tourasse and Li 2000; Gilad et al. 2000; Clark

et al. 2003; Julenius and Pedersen 2006). Additionally,

those studies used either orthologous pairs or trios of

sequences, which hindered statistical robustness and pre-

cluded any analysis of site-rate variation due to a dearth of

data (Tourasse and Li 2000; Gilad et al. 2000; Clark et al.

2003; Julenius and Pedersen 2006).

To obtain a more complete picture of membrane protein

evolution, we have analyzed the evolutionary constraints

acting on one of the most diverse membrane protein gene

families in Metazoa, the G protein-coupled receptor

(GPCR) family. GPCRs are the frequent targets of struc-

tural and biochemical studies; over 40 % of pharmaceuti-

cals target GPCRs, and a multitude of diseases are caused

by mutant GPCRs (Dorsam and Gutkind 2007; Schoneberg

et al. 2004; Kristiansen 2004; Fredriksson et al. 2003).

Phylogenetic analyses have shown that GPCRs form five

main families, with the vast majority of human receptors

belonging to the Rhodopsin-like (family A) clade (Fred-

riksson et al. 2003; Fredriksson and Schioth 2005). Owing

to their enormous diversity of biological functions and the

ongoing expansion of their ligand repertoire, GPCRs have

been described as one of the most evolutionarily successful

gene families (Bockaert and Pin 1999; Lagerstrom and

Schioth 2008). Although protein sequences among, and

indeed within, GPCR families are widely divergent, all

GPCRs share a common structure characterized by a

N-outside C-inside orientation with seven TM alpha heli-

ces spanning the plasma membrane, separated by three

intracellular and three extracellular loops.

GPCRs accept a wide variety of ligands, both endoge-

nous (e.g., hormones, amines, or ions) and exogenous

(e.g., odorants), and facilitate signal transduction through a

G protein-mediated pathway (Kristiansen 2004; Lager-

strom and Schioth 2008; Rosenbaum et al. 2009). Although

some larger ligands do bind the extracellular portion of

GPCRs, nearly all family A GPCRs, as well as many

members of other GPCR families, bind ligands within their

TM (Vaidehi et al. 2002; Kristiansen 2004; Bywater 2005;

Surgand et al. 2006; May et al. 2007; Park et al. 2008).

The notable expections to this trend are family C GPCRs,

of which ligand-binding domains lie primarily in their

extensive and diverse N-termini (May et al. 2007; Park

et al. 2008; Lagerstrom and Schioth 2008). However,

allosteric modulators acting on all GPCR families bind

within the TM. This commonality highlights the key role

that the TM plays in the regulation of protein activity (May

et al. 2007; Lagerstrom and Schioth 2008).

The TM domain is also a critical determinant of a

GPCR’s conformational state. Mutational studies have

shown that altering specific residues in GPCR TM spans

results in structural modifications that induce constitutive

activity, regardless of ligand presence (Spalding et al.

1998; Lu and Hulme 2000). Maintaining the integrity of

TM structure and sequence, then, is necessary for GPCRs

to function properly.

As suggested by the strong biophysical, structural, and

functional constraints imposed on GPCRs, one would

expect that strong purifying selection dominates TM

domain evolution. Alternatively, given the continued

expansion of the GPCR gene family, notably of Rhodopsin

family members such as olfactory receptors (Lagerstrom

and Schioth 2008; Niimura and Nei 2003; Nei and Niimura

2007), and of the array of ligands they receive, some

positive selection should be detectable throughout GPCRs.

As ligands tend to bind the TM, it is possible that positive

selection there could drive the evolution of the GPCRs’

expanding ligand repertoire. Here, we define positive

selection as the ratio of the rate of nonsynonymous sub-

stitutions to synonymous substitutions, dN/dS, also known

as x. When x[ 1, positive selection may be inferred;

alternatively when x\ 1, there is evidence for purifying

selection. Neutral evolution is indicated by x = 1.

Through a large-scale analysis of 359 mammalian

GPCRs, we show that, on average, the TM evolves more

slowly than does the EM, a result which should apply to all

membrane proteins. Analysis of site-rate variation across

all GPCRs reveals that, unexpectedly, the average evolu-

tionary rate heterogeneity of the TM is greater than that of

the EM, in spite of the stronger biophysical and functional

constraints the TM experiences. We additionally find evi-

dence of positive selection in roughly half of the proteins

studied here, in both their EM and TM domains. Chemo-

sensory receptors, which includes all GPCRs (olfactory,

taste, and vomeronasal receptors) that interact with exog-

enous chemical stimuli (Mombaerts 2004), exhibit accel-

erated evolution relative to non-chemosensory GPCRs.

This effect is highly pronounced in chemosensory GPCR

TM spans. Finally, contradictory to previous reports

(Oberai et al. 2009), we show that the lowered evolution-

ary rate of TM domains cannot solely be attributed to

increased residue burial by other protein residues, but

instead seems to stem from the membrane environment

itself.

Results

Extracellular and Intracellular Domains Evolve Under

Similar Selective Pressures

We implemented the Goldman Yang codon evolutionary

model (GY94) to estimate an average evolutionary rate �x
for each protein using the HyPhy batch language (Goldman

and Yang 1994; Kosakovsky Pond et al. 2005). We
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compared fits between three models—one with a single

partition forcing both the TM and EM to evolve at an equal

rate, one with two partitions (EM and TM), and one with

three partitions (extracellular, TM, and intracellular). The

latter two models allowed for each partition to have unique

parameter values for �x; j; t; and equilibrium codon fre-

quency, where j is the ratio of transition to transversion

rates and t is the time, or branch length. For each gene, the

three models were compared using Akaike information

criterion (AIC) scores such that models with lower AIC

scores were preferred (Akaike 1974). AIC scores are

reported here as the difference of AIC scores (DAIC)

between two competing models, averaged across all genes.

A larger DAIC indicates more support for the preferred

model.

The two-partition model, on average across all genes,

performed significantly better than the model which con-

sidered all domains as a single evolutionary unit

(DAIC� 100), and the three-partition model performed

slightly better than the two-partition model (DAIC� 5:)

However, there was no evidence that intracellular and

extracellular regions had different average evolutionary

rates in the three-partition model (paired t test between

extracellular and intracellular �x values, p = 0.589).

Therefore, the three-partition model was likely preferred

due the marked difference in j between intracellular and

extracellular regions (paired t test between extracellular

and intracellular j values, p = 4.628 9 10-07). Because

no difference was detected between intracellular and

extracellular �x; the two-partition model was used for all

subsequent evolutionary rate analyses for all proteins. In

terms of selection pressures, therefore, EM domains

should be viewed as a single evolutionary unit. Our

finding contradicts previous studies which claimed that

intracellular regions of membrane proteins evolved more

slowly than the extracellular regions (Julenius and

Pedersen 2006). Our analysis shows no support for that

hypothesis, likely due to our increased data sampling and

more precise methodology; previous results may have

been false positives.

TM Domains Evolve More Slowly than EM Domains

We first broadly assessed rate differences between the

evolution of TM and EM domains for each protein by

estimating a single global �x for each partition. Results

from this analysis supported the hypothesis that, on aver-

age, EM regions evolve faster than their respective TM

regions (Fig. 1a). 94 % of the genes studied here (338 of

359) showed TM �x values less than their gene’s EM �x
(exact binomial test, p \ 10-15). A paired t test comparing

log-transformed EM and TM �x values across each gene

showed that EM rates are on average 0.094 greater than

TM rates (p \ 10-15). We additionally found that the

correlation between log-transformed EM and TM rates was

highly significant (r = 0.75, p \ 10-15), indicating that

each protein likely has its own characteristic rate of

evolution.
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Fig. 1 a TM �x plotted against EM �x; both calculated by the REL

model, shown in a log–log scale for all 359 proteins. The solid line
indicates points where the EM rate equals that of the TM. The vast

majority of proteins lie below this line (exact binomial test

p \ 10-15), showing that TM domains evolve slower than EM

domains. b Average TM x plotted against average EM x, showing

different types of GPCRs, on a log–log scale. Dark gray points
represent chemosensory receptors, and light gray points non-chemo-

sensory receptors. Vertical and horizontal lines lie at the mean of non-

chemosensory TM and EM average rates, respectively. The majority

of chemosensory points lie fall in the top-right quadrant of this plot

(exact binomial test p = 6.85 9 10-4), indicating their elevated

evolutionary rate relative to non-chemosensory receptors. c Regres-

sion of TM against EM coefficients of variation of x values [CV(x)]

on a log–log scale. If the spread of rates between partitions were

equal, all points would lie roughly on the x = y line shown. However,

the majority of points lie on the TM side of the line, demonstrating the

increased rate heterogeneity in TM domains of receptors proteins.

This shift is highly significant at p \ 10-15 by the exact binomial test
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Elevated Evolutionary Rate in Chemosensory

Receptors

Roughly one-third of receptors we analyzed were chemo-

sensory receptors (127 of 359), of which four were taste

receptors and the remainder olfactory receptors. We found

that, relative to non-chemosensory GPCRs, chemosen-

sory receptors exhibit significantly elevated evolutionary

rates in both TM regions (t test between log-transformed

chemosensory TM and non-chemosensory TM �x values,

p \10-15) and EM regions (t test between log-transformed

chemosensory EM and non-chemosensory EM �x values,

p \ 10-11), as shown in Fig. 1b. The �x values for chemo-

sensory receptor TM domains are, on average, *0.092

greater than those of non-chemosensory receptors, and the

�x values for chemosensory receptor EM domains are,

on average, *0.077 greater than in non-chemosensory EM

domains.

To determine whether the TM or EM domains experi-

ence a greater evolutionary rate increase from chemosen-

sory to non-chemosensory receptors, we compared the

mean ratios of TM rate to EM rate between the two

receptor types. We recovered a chemosensory ratio of

0.68 and a non-chemosensory ratio of 0.52 (independent

samples t test p = 2.7 9 10-8). That the chemosensory

TM:EM rate ratio is, on average, significantly greater than

the non-chemosensory TM:EM rate ratio demonstrates that

the TM �x increase from non-chemosensory to chemosen-

sory receptors exceeds the EM �x increase. Additionally,

we performed a regression analysis with a TM �x response

and two predictors: EM �x and receptor type (chemosensory

or non-chemosensory). Both EM rates and receptor types

have highly significant effects (p \ 10-15 and p \ 10-8,

respectively) on TM rates. This result further supports our

conclusion that TM rates increase more dramatically than

do EM rates between non-chemosensory to chemosensory

GPCRs.

We then examined whether it was more likely for TM or

EM domains to exhibit a higher evolutionary rate in

chemosensory receptors compared to non-chemosensory

receptors. From an exact Fisher test, we recovered an odds

ratio of 2.11 (p = 0.02) in favor of the TM. This result

demonstrates that chemosensory receptors are twice as

likely to have elevated �x in TM spans than in EM regions,

compared to non-chemosensory receptors.

We further sought to examine whether the elevated

evolutionary rate of chemosensory receptors could be

attributed to differential tissue expression. Indeed, evolu-

tionary rates tend to be higher for proteins with a lower

expression breadth, as may be the case for chemosensory

receptors (Duret and Mouchiroud 2000; Liao et al. 2007;

Pal et al. 2006). Though it was once presumed that olfac-

tory receptor expression was restricted to olfactory

epithelium (Buck and Axel 1991), recent studies have

revealed that olfactory receptors are expressed in a multi-

tude of diverse tissues in mammals (Vanderhaeghen et al.

1997; Feldmesser et al. 2006; Zhang et al. 2007). How-

ever, whether these receptors function in non-olfactory

capacities is unknown. Thus, their activity may be limited

to sensory tissue, which could cause their elevated evolu-

tionary rates.

To assess the influence of expression breadth on evo-

lutionary rate in GPCRs, we first obtained microarray

expression data for 169 of our GPCRs from the Human

Protein Atlas (http://www.proteinatlas.org) and regressed

each gene’s evolutionary rate on expression breadth and

receptor type. We did not recover a significant relationship

between evolutionary rate and expression breadth for

GPCRs (EM p = 0.684 and TM p = 0.722). However, the

microarray data which we were able to collect was highly

biased towards non-chemosensory receptors—only 12 of

the genes for which we had expression data were chemo-

sensory (1 taste and 11 olfactory). Therefore, that limited

amount of chemosensory expression data relative to non-

chemosensory expression data may have biased our con-

clusions regarding the influence of expression breadth on

�x: Possibly, then, chemosensory receptor expression

breadth may contribute to their higher �x values, but we

lacked the statistical power to detect such an effect here.

TM Domains Display Increased Rate Heterogeneity

To assess evolutionary rate variation among sites, we cal-

culated an x for each residue of our 359 proteins using a

random effects likelihood model (REL). From these rates,

we determined the coefficient of variation for x [CV(x)]

across partitions. We used CV(x) as a proxy for rate heter-

ogeneity. We found that the mean CV(x) for TM domains

was 0.402 greater than for EM domains (paired t test

between each protein’s TM and EM CV(x) values,

p \ 10-15). This increased spread of rates in the TM regions

revealed their more extensive rate heterogeneity relative to

their EM counterparts (Fig. 1c). This effect holds for both

chemosensory and non-chemosensory receptors.

While the majority of sites in GPCRs are under strong

purifying selection, we identified 157 proteins (over two-

fifths of our data set) which show evidence of positive

selection at some sites. Positively selected sites were

identified as those residues with an x[ 1. Of all proteins

analyzed, 31.5 % had EM residues with x[ 1, and 20.9 %

had TM residues with x[ 1. Figure 2 depicts the selective

regimes for several genes.

To assess bias in the location of positively selected

residues, we conducted a Cochran–Mantel–Haenszel test, a

stratified contingency table analysis of association, across

all genes. Our overall contingency table was comprised of
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an array of 2 9 2 contingency tables for each gene,

wherein each 2 9 2 table compared the number of posi-

tively and negatively selected sites in each partition. We

recovered an overall odds ratio of 2.25 (p \ 10-15) in favor

of EM. This result strongly suggested that positively

selected residues were more than twice as likely to occur in

the EM than in the TM. This trend held for both chemo-

sensory and non-chemosensory receptors. Thus, even

though there are more positively selected sites in EM

domains relative to TM domains, we emphasize that pos-

itively selected residues are not uncommon in the TM. A

list of all genes with positively selected residues can be

found in accompanying Supplementary Information.

Slowed TM Evolution Is Not Caused By Structure

Finally, we assessed the extent to which structure influences

the evolutionary rate in GPCR TM domains. For this

analysis, we calculated each residue’s relative solvent

accessibility (RSA) from ten empirical crystal and one the-

oretical GPCR structure. These structures represent all the

currently known GPCR structures from the PDB. This effort

was motivated by previous studies which have suggested

that TM domains evolve slowly due to their relatively high

percentage of buried residues (Stevens and Arkin 2001;

Oberai et al. 2009). In this context, being buried refers to

burial by other protein residues in the polypeptide, not by the

plasma membrane itself. Buried residues are known to cor-

relate strongly with a lower evolutionary rate (Franzosa and

Xia 2009; Ramsey et al. 2011). RSA directly measures how

buried or exposed residues are within a protein structure,

making it an ideal metric for this analysis.

After RSA was calculated for residues of the afore-

mentioned eleven proteins, we regressed each residue’s x
on RSA and partition (TM or EM). Results from this

regression are shown in Table 1. We systematically
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Fig. 2 Distribution of residue x values across four example proteins

that contain positively selected residues. OR5B2 and TAS2R16 are

both chemosensory receptors (olfactory and taste, respectively),

CNR2 is cannabinoid receptor 2, and FSHR is the follicle-stimulating

hormone receptor. Each of these proteins contain positively selected

residues, in particular the chemosensory proteins. Red points repre-

sent TM residues, light blue points represent intracellular residues,

and dark blue points represent extracellular residues, all as predicted

by GPCRHMM (Wistrand et al. 2006). The bar at the bottom of the

plots signifies the overall structure of the protein, with the same color-
coding as the points. White spaces in between regions along the

bottom bar indicate that the residue was not included in analysis,

either due to lack of confidence in structure or alignment. Note that in

each figure the entire structure of a GPCR is clearly visible—an

extracellular N-terminus, intracellular C-terminus, three intracellular

loops, three extracellular loops, and seven TM domains (Color figure

online)
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checked for interaction effects in each regression, and

found that only two of the eleven proteins showed a sig-

nificant RSA 9 partition interaction. Partition had a highly

significant effect in eight of the remaining nine structures.

These results demonstrate that the lowered rate of TM

domains is not caused entirely by the higher percentage of

buried residues they contain (Fig. 3), as had previously

been hypothesized (Stevens and Arkin 2001; Oberai et al.

2009). Rather, it seems that the membrane environment,

rather than protein structure itself, contributes to the low-

ered Upomega values characteristic of TM residues.

Discussion

We have demonstrated that the average evolutionary rate �x
of GPCR TM domains is significantly less than that of EM

domains, mirroring results of previous studies which have

suggested this trend across several types of membrane

proteins (Tourasse and Li 2000; Julenius and Pedersen

2006). Additionally, we have found that rate heterogeneity

in TM spans exceeds that in EM regions and that many

GPCRs experience positive selection across both structural

domains. The average evolutionary rate of chemosensory

receptors is also significantly greater than that of non-

chemosensory receptors, specifically in the TM domains.

Finally, we find no evidence, contrary to previous

hypotheses, that increased residue burial influences the

attenuated evolutionary rate of TM residues. Many of these

results are summarized with a representative protein, the

nociceptin receptor OPRL1, in Fig. 4.

Although we found that the TM does evolve more

slowly than does the EM, we emphasize that residues under

positive selection were not uncommon across TM regions.

Indeed, we identified 157 proteins, 55 of which are

olfactory receptors, out of the 359 proteins we studied

whose TMs contained residues with x[ 1. Thus, while

biophysical constraints may have limited amino acid

diversity in the TM, they did not preclude high rates of

evolution at certain sites. Knowledge of positively selected

sites within GPCRs may be useful for future biomedical

research endeavors, as positive selection may be an indi-

cator of a residue’s functionality and potential use in drug

development. A list of all GPCRs in this study with posi-

tive selected residues can be found in the Supplementary

Information.

That TM rate heterogeneity exceeded EM rate hetero-

geneity was an unexpected result. Given the aforemen-

tioned structural and functional constraints, one might

instead expect less variation across x values of individual

TM residues. Alternatively, while some key TM residues

may experience strong selective constraints, other residues

will be much less important to protein structure and/or

function. The former residues should be under exceedingly

strong purifying selection, while the latter residues should

be under weak purifying selection. In this dichotomy, there

will be a strong difference in x values between the highly

constrained residues and the weakly constrained residues.

In the EM, however, even the most constrained residues

are, on average, under weaker negative selection than are

the most constrained TM residues. Thus, the difference

between strongly and weakly negatively selected EM res-

idues should be less than the difference between TM

strongly and weakly negatively selected residues. There-

fore, although somewhat unintuitive, the spread of evolu-

tionary rates in the EM is smaller than in the TM.

Although other studies have previously investigated the

evolutionary regimes in membrane proteins and olfactory

receptors, our approach represents a dramatic methodo-

logical improvement. First, while previous studies of

Table 1 Results from the regression of log(x) on RSA and partition (TM and EM) for each residue in 11 GPCR structures from the PDB

Gene name PDB ID r2 Partition p value RSA p value RSA 9 partition p value

ADBR2 2rh1 0.16 -0.28 0.0295 1.47 1.62 9 10-6

CHRM2 3uon 0.82 -1.58 \2 9 10-16 0.12 0.34

CHRM3 4daj 0.093 -0.19 3.61 9 10-5 0.68 1.02 9 10-9

CXCR4 3oe6 0.26 -0.77 4.78 9 10-8 0.76 0.0069

DRD3 3pbl 0.14 -0.58 5.11 9 10-8 0.70 0.0024

H1R1 3rze 0.33 -0.81 1.99 9 10-7 1.77 8.51 9 10-8

OPN1SW 1kpn 0.055 0.46 4.98 9 10-4 0.49 0.11

OPRD1 4eje 0.009 0.22 0.048 0.16 0.53

OPRL1 4ea3 0.046 -0.044 0.647 0.91 5.91 9 10-5

RHO 1f88 0.017 -0.084 0.51 0.30 0.75 1.33 0.00467

S1PR1 3v2w 0.818 2.93 \2 9 10-16 1.02 1.66 9 10-5 -1.45 9.59 9 10-5

Significant values for partition and RSA are shown in bold. Empty values in the RSA 9 partition area of the table indicate that no significant

interaction effect was detected
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Fig. 3 Regression of the log (x) against RSA and residue partition.

Red points represent TM residues and blue points represent EM

residues. The gene name with its PDB ID in parentheses is shown

above each graph. Linear regressions show that partition has a highly

significant effect for each protein shown here (see Table 1 for more

details). Further, the TM points display a noticeable shift towards

higher RSA values, reflecting the increased burial by neighboring

residues experienced in that domain (Color figure online)

 0                                            1 
RSA                                                  

0.01  0.47   Outer    Trans   Inner    N/A 

A B C

Fig. 4 Structure of nociceptin receptor OPRL1 (PDB ID 4ea3),

where gray planes represent borders of the plasma membrane.

a Predicted extracellular, TM, and intracellular regions by

GPCRHMM, which match the true structure nearly perfectly.

Average TM x for this protein is 0.0686, and average EM x is

0.0837. Cyan residues marked ‘‘N/A’’ were excluded from analysis as

GPCRHMM could not assign these residues with high confidence to a

structural partition. These residues are not shown in b and c. b relative

solvent accessibility (RSA) for each residue of OPRL1 analyzed.

RSA values ranged from completed buried (0) to completed exposed

(1). The vast majority of residues in the TM domain is buried whereas

nearly all residues of the EM portions are highly exposed. c x value at

each residue of OPRL1 analyzed. Although each residue of this

protein experiences purifying selection (x\ 1), rate heterogeneity is

still pervasive throughout the protein (Color figure online)
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membrane proteins, including GPCR olfactory receptors,

have focused either on ortholog duos or trios (Tourasse and

Li 2000; Clark et al. 2003; Julenius and Pedersen 2006;

Gimelbrant et al. 2004; Nielsen et al. 2005), we have

included up to 27 mammalian species per phylogenetic

analysis (one phylogeny was created per gene). This

increased breadth of species sampling should yield more

robust conclusions. Specifically, we were able to infer the

selective pressures at each residue rather than a single

average x for the whole protein. Had we not included that

many species in our analyses, it would not have been

possible to infer site-based evolutionary rates, the extent of

rate heterogeneity, or positive selection at the residue level.

Furthermore, previous studies of membrane proteins did

not conduct paired analyses, but rather compared average

rates among all TM domains to average rates among all

EM domains (Tourasse and Li 2000; Julenius and Pedersen

2006). As we have demonstrated, there is a strong and

highly significant correlation (r = 0.75, p \ 10-15)

between the TM and EM evolutionary rates within a single

protein. Therefore, EM and TM �x values within a single

protein are not statistically independent, and a paired

analysis as we have conducted is necessary to obtain sta-

tistically valid results.

Previous work has shown that TM domains generally

contain an increased proportion of buried residues relative

to globular proteins or EM domains. This phenomenon is

likely due to the highly packed arrangement of the TM

span’s constituent a-helices (Stevens and Arkin 2001;

Oberai et al. 2009). Typically, residue burial has been

determined using the metric RSA, which measures the

extent to which a residue in a protein structure is buried or

exposed by other residues in the protein (not by the plasma

membrane). Thus, RSA characterizes the local environ-

ment of a residue based on the extent of inter-residue

contact, such that lower RSA values indicate increased

burial by nearby protein residues. RSA is also a robust

constraint on protein evolution, with buried residues

evolving more slowly than exposed residues (Franzosa and

Xia 2009; Ramsey et al. 2011). It has thus been hypothe-

sized that the lowered evolutionary rate of TM domains

could be attributed to their high percentage of buried res-

idues (Oberai et al. 2009). Our evolutionary analysis of ten

empirical and one theoretical GPCR structures, however,

largely refutes this claim. We instead demonstrate that,

while TM residues do display lower RSAs than do EM

residues, this factor alone cannot explain the TM’s lower

evolutionary rate. Instead, we presume that the extreme

biophysical constraints of the membrane environment as

well as functional constraints are the leading factors which

impose a lowered evolutionary rate on TM domains. As

more empirical GPCR structures become available, this

effect should be confirmed with larger data sets.

We have further demonstrated that chemosensory

receptors exhibit increased rates of molecular evolution

relative to other GPCRs. Although there are three main

groups of chemosensory receptors (olfactory, taste, and

vomeronasal receptors), we were only able to obtain

mammalian orthologs for olfactory and taste receptors. As

vomeronasal receptors specialize in detecting pheromones

(Mombaerts 2004), they should have highly species-spe-

cific sequences, thus making ortholog inference difficult.

Previous studies on chemosensory receptor evolution

have specifically investigated olfactory receptor evolution,

the most common and diverse chemosensory receptors. In

general, olfactory receptors are one of most rapidly

evolving gene families in human and other mammalian

lineages (Gilad et al. 2000; Clark et al. 2003; Nielsen et al.

2005). Indeed, mammals contain at least 1,000 olfactory

receptors, and lineage-specific evolution of olfactory

receptor families has been documented in primate splits

(Mombaerts 2004; Gimelbrant et al. 2004; Gilad et al.

2005). Although the olfactory receptor families are rapidly

evolving, it has been suggested that the receptors them-

selves evolve primarily under weak purifying selection,

and that there is no robust evidence for positive selection

stronger than would be expected for any gene family

(Gimelbrant et al. 2004). Our results indicate that, while

weak purifying selection does dominate mammalian

chemosensory receptor evolution, as noted by Gimelbrant

et al. (2004) with regards to olfactory receptors, their

average evolutionary rate is still significantly greater than

the mean rate for their GPCR parent gene family. However,

we also found that chemosensory receptors are not enri-

ched for positively selected sites relative to other GPCRs,

despite their increased �x:
Given the rampant evolution of the number of olfactory

receptors across species (Niimura and Nei 2003; Nei and

Niimura 2007), their elevated �x was not unexpected. From

an ecological standpoint, a mammal’s ability to sense a

diverse array of odorant and taste compounds is key for

survival and species recognition. Such selection pressures

are widely presumed to cause the high rate of olfactory

gene turnover in animals, and we further this argument to

include these genes’ elevated rate of molecular evolution.

The environmental selective pressures which cause frequent

changes in the number of olfactory receptors likely also

lead to the increased evolutionary rates of chemosensory

receptors. Although both the TM and the EM domains

evolve more quickly than do other GPCRs, we emphasize

that the TM domains exhibit a more dramatic rate increase.

This difference in protein domains could be explained by

the ligand-binding pockets in chemosensory receptors. As

both odorants and taste molecules bind chemosensory

receptors within the TM region (Mombaerts 2004; May

et al. 2007; Park et al. 2008; Lagerstrom and Schioth 2008),
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positively selected residues in the TM span should broaden the

diversity of odorants and tastes which mammals can sense.

This widened diversity could contribute to key evolutionary

processes, such as species recognition and speciation.

Based on our analysis of receptor protein evolution, we

conclude that structural constraints do not always translate

to constraints in evolutionary rate. Although biophysical

considerations are important when assessing evolutionary

parameters of different proteins, it should not be assumed

that strong biophysical requirements limit a protein’s

ability to evolve, as reflected by the presence of positively

selected residues in both the EM and TM. Our findings also

shed light on the significant role that membranes play in

constraining protein evolution, such that the hydrophobic

environment imposes strong purifying selection on mem-

brane proteins.

Materials

Data Collection and Processing

Human genes associated with the Gene Ontology annota-

tion ‘‘G protein-coupled receptor activity’’ (accession GO:

0004930) were collected from Ensembl Biomart. Using

Ensembl’s gene orthology prediction method (Vilella et al.

2008), we obtained orthologs from 27 other mammalian

species with available genomes in the Ensembl database,

and retained those sequences which contained no ambig-

uous residues. Subsequent analyses included all genes with

at least 10 orthologs. Protein alignments were performed

using Mafft within the Guidance package, to ensure high

alignment quality (Katoh et al. 2002; Penn et al. 2010). As

recommended by Privman et al. (2012), we masked any

residues in the resulting alignment with a guidance confi-

dence score \0.9 by changing their codons to ‘‘NNN’’.

Phylogenies for each alignment were built using RAxML

(Stamatakis 2006) with 100 tree inferences, and the

resulting best tree was kept.

Each human protein sequence was partitioned into three

structural partitions—intracellular, TM, and extracellular

domains—using the software package GPCRHMM, which

gave individual posterior probabilities for each site

belonging to one of those three partitions (Wistrand et al.

2006). Each site was categorized as either extracellular,

intracellular, or TM if its associated posterior probability

was [0.95. All sites with posterior probabilities below 0.95

were discarded. Each protein’s partitions, as derived from

the human sequence, were applied to all of its respective

orthologs. Only genes with at least 50 amino acids per

partition and whose TM comprised at least 15 % of their

total length were kept. Additionally, any sequences with

less than 40 % sequence identity to their orthologous

human sequence were removed from alignments to ensure

that all orthologs shared a common structure with the

human protein. Positions corresponding to gaps in the

human aligned sequence were removed. Sites belonging to

each partition were concatenated such that each protein had

a separate alignment for each region. Ultimately, 359

GPCR genes, averaging 18 sequences per alignment, were

included in our analysis. Of these, 127 were chemosensory

receptors (4 taste and 123 olfactory).

Evolutionary Modeling to Determine x Values

We calculated the site-based evolutionary rate �x for each

protein with the HyPhy batch language, using the Goldman

Yang codon evolutionary model (GY94) (Goldman and

Yang 1994; Yang et al. 2000; Kosakovsky Pond et al.

2005). This Markov process model for codon substitution

of i to j (for i = j) is given by the instantaneous rate matrix

Qij ¼

0 more than one nucleotide changes

pj synonymous transversion

jpj synonymous transition

xpj nonsynonymous transversion

jxpj nonsynonymous transition

8
>>>>>><

>>>>>>:

; ð1Þ

where pj is the frequency of codon j, j is the ratio of

transition to tranversion substitutions, and x is the ratio of

nonsynonymous to synonymous substitution rates. The

indices i and j include all 61 sense codons. The transition

probability matrix additionally considered time, or branch

length t, as measured by the expected number of substi-

tutions for each codon across all residues (Goldman and

Yang 1994; Yang et al. 2000).

To begin, we calculated an average evolutionary rate �x
for each protein to infer the optimal partitioning strategy

for analyzing TM versus EM evolution. In this case, the x
in our GY94 matrix corresponded to an average x (�x) over

all sites. Three models of protein evolution were examined;

the first considered the entire protein a single evolutionary

unit (single partition model), the second partitioned the

protein into two distinct regions of TM and EM residues

(two-partition model), and the third model partitioned the

protein into three regions of TM, intracellular, and extra-

cellular regions (three-partition model). Models allowed

each partition its own �x; j; and t parameters. To identify

the optimal number of partitions for GPCRs, we compared

model fits with the Akaike information criterion (Akaike

1974). AIC scores were calculated for each model of each

gene and compared. The preferred model was the three-

partition model. However, as there was no statistical dif-

ference between intracellular and extracellular �x values in

this model, the two-partition framework was used for all

subsequent analyses.
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We then implemented a REL model (Yang et al. 2000;

Kosakovsky Pond and Frost 2005), again using the GY94

rate matrix, to discern an x value for each residue across all

proteins. In particular, we followed the RSA-independent

model described in Meyer and Wilke (2012). To determine

the optimal number of rate categories for each protein’s

partition, we ran the model 25 times, allowing the number

of rate categories in each of the two partitions to vary from

one to five in all possible combinations. AIC scores were

calculated for each model, and the model with the lowest

resulting AIC score was selected as the best-fitting model

for that protein.

To assign each site to a rate class, we employed an

empirical Bayes approach (Nielsen and Yang 1998) to

calculate the posterior probability for each site belong to

each rate class. Each site’s rate was a weighted average

over all rate classes by the associated posterior probability.

To calculate an average evolutionary rate �x for each pro-

tein’s partition, we took the weighted average, by the

model’s prior probabilities, of the x values from each rate

class. The standard deviation of x values per partition was

calculated using all residue x values and the average x
value in a partition. Subsequently, we calculated the

coefficient of variation for each protein’s partition by

dividing each partition’s standard deviation of x by its

respective mean rate, �x:

Structural Analysis

RSA was calculated for residues of ten empirical and one

theoretical GPCR structures obtained from the protein data

bank (PBD). These PDB IDs, along with their respective

gene names in parentheses, are 2rh1 (ADBR2); 3uon

(CHRM2); 4daj (CHRM3); 3oe6 (CXCR4); 3pbl (DRD3);

3rze (HRH1); 4ej4 (OPRD1); 4ea3 (OPRL1); 1f88 (RHO);

3v2w (S1PR1); and theoretical structure 1kpn (OPN1SW).

For each structure, we calculated the surface area for each

residue using DSSP (Kabsch and Sander 1983) and nor-

malized each value by its respective amino acid’s maxi-

mum surface area value, as determined by Tien et al.

(2012).
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