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Abstract Recombination can negatively impact methods

designed to detect divergent gene function that rely on

explicit knowledge of a gene tree. However, we know little

about how recombination detection methods perform under

evolutionary scenarios encountered in studies of functional

molecular divergence. We use simulation to evaluate false

positive rates for six recombination detection methods

(GENECONV, MaxChi, Chimera, RDP, GARD-SBP,

GARD-MBP) under evolutionary scenarios that might

increase false positives. Broadly, these scenarios address:

(i) asymmetric tree topology and sequence divergence, (ii)

non-stationary codon bias and selection pressure, and (iii)

positive selection. We also evaluate power to detect

recombination under truly recombinant history. As with

previous studies, we find that power increases with

sequence divergence. However, we also find that accuracy

to correctly infer the number of breakpoints is extremely

low. When recombination is absent, increased sequence

divergence leads to increased false positives. Furthermore,

one method (GARD-SBP) is sensitive to tree shape, with

higher false positive rates under an asymmetric tree

topology. Somewhat surprisingly, all methods are robust to

the simulated heterogeneity in codon bias, shifts in selec-

tion pressure and presence of positive selection. Based on

these findings, we recommend that studies of functional

divergence in systems where recombination is plausible

can, and should, include a pre-test for recombination.

Application of all methods to the core genome of Pro-

chlorococcus reveals a substantial lack of concordance

among results. Based on analysis of both real and simulated

datasets we present some guidelines for the investigation of

recombination in genes that may have experienced func-

tional divergence.
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Introduction

Inter-lineage and inter-species recombination can facilitate

the process of functional divergence by allowing organisms

to access an ‘‘extended gene pool.’’ Through the exchange

of genetic material between organisms, or even between

species, recombination increases the genetic diversity in a

population, which can facilitate population evolution.

Examples of recombination-assisted evolution are well

documented in bacteria (e.g., Koonin et al. 2001; Boucher

et al. 2003; Narra and Ochman 2006). One of the more

striking examples concerns the core photosystem genes of

cyanobacteria. Core photosystem genes are encoded in the

genomes of both the photosynthetic Synechococcus and

their phages, with the phages mediating recombination

among the gene sequences and serving as a reservoir for an
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extended pool of sequence diversity. (e.g., Mann et al. 2003;

Zeidner et al. 2005; Sullivan et al. 2006). There is consid-

erable interest in functional divergence within systems such

as these; however, resolving the relative roles of adaptive

substitution and recombination is a challenge, as methods

for detecting the signatures of adaptive substitution typi-

cally assume that gene sequences are non-recombinant.

In addition to providing an understanding of gene

sequence evolution, knowledge of recombination events

also helps avoid error in phylogeny-based analysis.

Recombination events can cause the phylogeny of a gene or

gene fragment to be incongruent with the evolutionary

history of the organism (e.g., Ochman et al. 2000; Ragan

2001). While this phylogenetic disagreement may be useful

for understanding the recombination process, it sometimes

causes errors in analyses that depend on accurate knowl-

edge of the phylogeny. For example, detection of positive

selection using models of codon substitution can yield false

positives when recombinant segments are present within

gene sequences (Anisimova et al. 2003; Shriner et al. 2003;

Scheffler et al. 2006). Although the sensitivity of methods

formulated at the amino acid level (e.g., Gu 1999; Knudsen

and Miyamoto 2001; Susko et al. 2002) has not been sys-

tematically evaluated, their explicit reliance on a phylogeny

is also expected to make their results sensitive to recom-

bination. For this reason, studies of functional divergence

among organisms where recombination is plausible should

be accompanied by an analysis of recombination.

A wide variety of methods are available for the detec-

tion of recombination, and each has unique advantages and

limitations. Here we focus on a subset of methods that we

place into two broad groups. The first group, the ‘‘substi-

tution-distribution methods,’’ (e.g., GENECONV: Sawyer

1989) test for significant clustering of substitutions within

gene sequences. Methods in the second group are referred

to as ‘‘phylogenetic methods’’ because they search for

significant variability in tree topologies among adjacent

sequence fragments. Earlier methods based on this concept

(e.g., RDP: Martin and Rybicki 2000), are not computa-

tionally expensive. However, the trend has been to employ

increasingly complex models and statistical machinery in

an effort to improve power of the phylogenetic methods.

The tradeoff is increased computational cost. Examples

include Bayesian methods (e.g., DualBrothers: Suchard

et al. 2002; BARCE: Husmeier and McGuire 2003), which

use posterior probabilities to identify adjacent regions with

discordant phylogenies, and the Genetic Algorithm for

Recombination Detection (GARD: Kosakovsky Pond et al.

2006), which uses a likelihood-based heuristic algorithm to

find the best-fit number and location of recombination

breakpoints. More detailed descriptions of the recombina-

tion detection methods are presented in the Supplementary

Materials. We focus on commonly used methods from both

groups because the consensus opinion is that researchers

should not be overly reliant on a single approach (e.g.,

Posada 2002).

There have been several large-scale simulation studies

of performance. Posada and Crandall (2001) simulated

varying levels of diversity, recombination, and rate varia-

tion, finding that recombination detection methods are not

generally powerful, although power does increase with

diversity. In addition, few false positives were found in

their simulations. Wiuf and colleagues (2001) found that

certain combinations of branch lengths (e.g., short internal

branches and long tips) might cause detection methods to

have increased power. Chan and colleagues (2006) found

that post-recombination substitutions decrease the ability

of several methods to detect breakpoints. While all these

studies employed a wide variety of evolutionary scenarios

to evaluate recombination detection methods, none inclu-

ded null scenarios (i.e., no recombination) most relevant to

the evolution of functionally divergent molecules.

The purpose of this study is to investigate the perfor-

mance of recombination detection methods under evolu-

tionary scenarios with particular relevance to the process of

functional divergence. Three simulation studies are used to

evaluate false positive rates for recombination under a range

of conditions. In Simulation 1, we investigate the impact of

tree shape, as genes experiencing functional divergence

have varying levels of tree asymmetry and sequence

divergence. In Simulations 2 and 3 we evaluate false posi-

tive rates when the mode of evolution changes across the

phylogeny, as is often the case with functional divergence.

Simulation 2 includes shifts in selection pressure and codon

bias characteristic of gene sequences that have experienced

a divergence in gene function whereas Simulation 3 focuses

on sequences experiencing positive selection in a subset of

lineages. In Simulation 4, we use sequences simulated with

recombination to investigate the ability of recombination

detection methods to accurately predict the presence and

amount of recombination under different levels of recom-

bination and divergence (i.e., power analysis). Finally, we

apply the same set of recombination detection methods to a

set of genes from the core genome of the cyanobacteria

Prochlorococcus, which plays a significant role in photo-

synthesis on a global scale and has experienced functional

divergence in a number of genes with respect to exploiting

high and low light environments.

Methods

Methods for Detecting Recombination

We select three substitution-distribution methods (GEN-

ECONV, MaxChi and Chimaera) and three phylogenetic
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methods (RDP, GARD-SPB and GARD-MBP) for evalu-

ation in series of four different simulation studies. We

provide the primary reference for each method in Table 1,

and review the analytical basis of each method in the on-

line Supplementary Materials. GENECONV, MaxChi,

Chimaera and RDP are selected because they are widely

used, and because they were found to be relatively pow-

erful in the simulation study of Posada and Crandall

(2001). We select two GARD-based methods because they

were found to have high accuracy in the simulation study

of Kosakovsky Pond et al. (2006). Furthermore, the com-

putational cost of the GARD-based methods is not so large

as to preclude the analysis of large numbers of sequences

typical of studies directed at functional divergence. Max-

Chi, Chimaera, RDP, and GENECONV are employed as

currently implemented in the RDP3 software package

(Martin 2009). Note that the RDP3 implementation of

Chimaera, MaxChi, and GENECONV differs from the

original implementation of those methods (see Supple-

mentary Materials for additional details). GARD-based

methods are employed as implemented in the HyPhy

software package (Kosakovsky Pond and Muse 2005).

The GARD-based methods differ by focusing on either a

single breakpoint (GARD-SBP) or multiple breakpoints

(GARD-MBP). GARD-SPB employs a maximum likeli-

hood framework to conduct rapid screening for a single

breakpoint with discordant phylogenies on either side. The

SBP method is recommended by Kosakovsky Pond et al.

(2006) as a qualitative test of the presence of recombina-

tion. Note that we refer to the SBP method as a ‘‘GARD’’

method because it is suggested as a supplement for GARD-

MBP, but it does not actually employ a genetic algorithm.

GARD-MBP employs a genetic algorithm to identify

multiple recombination breakpoints. Additional details

about both methods are included in the on-line Supple-

mentary Materials. When recombination is detected under

GARD-MBP, a Kishino–Hasegawa (KH) test (Kishino and

Hasegawa 1989) is employed with a Bonferroni correction

for multiple testing. The purpose of the KH test is to

determine whether phylogenies before and after a putative

breakpoint are significantly different. Although the cor-

rection for multiple tests makes GARD-MBP less powerful

as compared to GARD-SBP, it helps to control the rate of

false positives (Kosakovsky Pond et al. 2006).

Generation and Evaluation of Simulated Codon

Sequences

The program INDELible (Fletcher and Yang 2009) is used

to simulate codon sequences for Simulations 1–3 (descri-

bed in the next section), which represent different

non-recombinant evolutionary scenarios that might be

encountered in a study of functional divergence and could

possibly increase false positives in recombination tests. In

these studies, we are concerned only with the number of

replicates that contain a false signal for recombination

rather than the number of breakpoints detected. A replicate

is considered to contain false signal for recombination if,

for a given method, at least one breakpoint is detected

having a p-value B0.05. In addition, for the phylogenetic

methods (RDP and GARD-based methods), a recombina-

tion event is only considered significant if there is phylo-

genetic incongruence on either side of the breakpoint.

Simulation 4 is employed to make a direct comparison

of each method’s capacity to correctly infer the presence of

recombination and the number of breakpoints in truly

recombinant sequences. GARD-SBP is not evaluated as it

is recommended only as a qualitative test for recombina-

tion. Here, we reuse simulated data previously employed

by Kosakovsky Pond et al. (2006) to evaluate only GARD-

MBP. Power is measured as the percentage of replicates

having a significant signal for recombination. Accuracy

is measured with respect to the number of inferred

breakpoints.

Modeling Selection Pressure in Simulated Codon

Sequences

Selection pressure is simulated at the codon level using the

parameter x, which is equal to the ratio of non-synony-

mous to synonymous substitutions and represents the

strength and direction of selection pressure. A value of

x[ 1 specifies positive selection while x\ 1 specifies

purifying selection. Because selection pressure typically

varies among sites within a given sequence, we use a beta

distribution to model the distribution of x among sites with

no positive selection (0 \ x\1). The beta distribution is

convenient for this purpose because its range from zero to

one is ideal for modeling an x distribution with no positive

selection while employing only two shape parameters

(p, q). When positive selection is simulated, an additional

discrete category of sites in which x [ 1 is added.

Table 1 Recombination detection methods evaluated by simulation

and applied to real data

Method Type Reference

GENECONV Substitution Sawyer (1989)

MaxChi Substitution Maynard Smith (1992)

Chimaera Substitution Posada and Crandall (2001)

RDP Phylogenetic Martin and Rybicki (2000)

GARD-SBP Phylogenetic Kosakovsky Pond et al. (2006)

GARD-MBP Phylogenetic Kosakovsky Pond et al. (2006)
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Real Sequence Data

For the analysis of genomic data, we use a set of 585 genes

from the Prochlorococcus core genome. For the purposes

of this study, the ‘‘core genome’’ contains all genes present

in all 12 Prochlorococcus genomes. These 12 genomes

(GenBank accession numbers BX548174, CP000552,

CP000576, CP000551, CP000825, CP000111, CP000553,

AE017126, CP000878, CP000554, BX548175, CP000435)

were previously clustered into orthologous groups by

Zhaxybayeva et al. (2009). In order to avoid cases of lateral

gene transfer (LGT), which has been well documented in

Prochlorococcus, only those sequences having a gene tree

with the same topology as the organismal tree are analyzed

for within-gene homologous recombination. We apply the

same six recombination detection methods evaluated via

simulation to analyze these real gene sequences (see the

on-line Supplementary Materials for additional details

regarding the filtering and processing of these genomic

data).

Simulations and Analyses

Simulation 1: Tree Topology and Sequence Divergence

Genes that have experienced functional divergence often

evolved under asymmetric tree topologies. One well-

known example occurs in viral genes, which commonly

exhibit rapid evolution in a single part of the phylogeny,

resulting in asymmetry (e.g., Duffy and Holmes 2008;

Pagán et al. 2010). Previous simulation studies employed

either an artificial tree with a symmetric topology or the

empirical estimate of a tree from a gene of interest (e.g.,

Posada and Crandall 2001; Chan et al. 2006). However,

because the selected methods for detecting recombination

measure parameters from the entire alignment, an asym-

metric tree topology may inflate the number of informative,

or variable sites, which may ultimately skew the parameter

estimates. This issue has not been formally addressed,

although the RDP manual (Martin 2009) warns that having

both closely related and very divergent sequences in an

alignment may result in errors for some methods. Inter-

estingly, some recombination detection methods have been

shown to have different performance when branch lengths

within a tree are varied (Wiuf et al. 2001). Because

divergence is known to impact recombination detection, we

employ Simulation 1 to explore the effects of tree shape on

false positive rates under a range of tree lengths.

Sequences (200 codons) are simulated based on a

16-taxon phylogeny, which is either asymmetric or sym-

metric (Fig. 1). In this simulation study the evolutionary

model is a process of codon substitution that is

homogeneous throughout the phylogeny, with no positive

selection (beta distribution parameters: p = 0.5, q = 2).

All non-stop codons have equal frequencies and the tran-

sition/transversion ratio (j) is set to 2. For both phyloge-

nies, all internal branches are of equal length and tips are

adjusted to be consistent with a molecular clock. Sequences

are generated under 10 levels of sequence divergence, with

the total tree length (the sum of all branch lengths in the

tree) being an integer from 1 and 10 nucleotide substitu-

tions per codon site. To minimize the computational

expense, we simulate n = 50 replicates for each level of

divergence. This level of sampling is sufficient when the

goal is to investigate differences among methods in the

relationship between sequence divergence and false posi-

tive rate. A small scale-simulation study (tree length = 4)

indicates variability due to n = 50 is small (Supplementary

Table S1) relative to the tree length effect (Fig. 2).

We apply each of the recombination detection methods

(Table 1) to the simulated data. Results indicate tree length

affects the false positive rate for some methods. MaxChi

and Chimaera both suffer increasing false positives as tree

length increases (Fig. 2). False positives for MaxChi range

from 6% for the smallest tree length to 56% for the largest.

For Chimaera, false positives increase from 8 to 60%. RDP

also suffers an increase in false positives with tree length,

but to a much lesser extent than MaxChi and Chimaera (the

greatest false positive rate is 20%). False positives for

MaxChi, Chimaera and RDP are not sensitive to tree shape.

Our findings contrast with the study of Posada and Crandall

(2001), which found the MaxChi and Chimaera did not

yield large numbers of false positives, even under their

most divergent datasets. However the total divergence

simulated by Posada and Crandall was substantially lower

than the levels covered by our more divergent datasets. We

Fig. 1 Symmetric and asymmetric tree topologies used in simulation

studies 1, 2 and 3. In Simulations 2 and 3, shifts in selection pressure

and codon bias occur at the point represented with an asterisk (*),

which separates Type A and Type B evolution. Type A evolution

differs from Type B due to a shift in the evolutionary process
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note that the largest branch lengths for codon evolution in

our study (symmetric tree: 0.33; asymmetric tree: 1.11) are

still well below saturation, which is 3 substitutions per

codon site. Interestingly, previous simulation studies found

that power to detect recombination, when it truly exists,

increases with sequence divergence (Posada and Crandall

2001; Kosakovsky Pond et al. 2006). We suggest that those

findings are related to ours; specifically, when recombi-

nation is truly present, the increased variability provides

additional signal for recombination, but when it is absent

(as in this simulation study) the increased variability pro-

vides more opportunities for the detection of false signal.

In addition to divergence, tree topology has a strong

influence on the false positive rate for GARD-SBP (Fig. 2).

False positive rates for GARD-SBP are larger under the

asymmetric topology as compared to the symmetric

topology. This method performs well when tree topology is

symmetric, with the false positive rate no larger than 4% at

any of the simulated tree lengths. However, when topology

is asymmetric, false positives increase with tree length,

reaching a maximum of 26%. When the topology is

asymmetric, the alignment contains a broader range of

pairwise divergences between taxa. GARD-SBP relies on a

complex model of evolution, measuring substitution

parameters from the entire alignment and using them to

compute the likelihood of the data under a tree estimated

via neighbor-joining. AICC is then used to compare the

explanatory power of a single tree and branch lengths to the

case of separately estimated trees and branch lengths for

either side of a breakpoint. It seems that AICC might not be

a good approximation to the Kullback–Leibler divergence

in this setting, perhaps due to non-independence among

branch length estimates.

The remaining methods, GENECONV and GARD-

MBP, yield consistently lower levels of false positives as

compared with the other methods we evaluated (Fig. 2).

GARD-MBP performs exceptionally well under the sym-

metric topology, with no false positives. However, there is

a very small effect due to asymmetry, with an average (but

acceptable) false positive rate of 4% for the asymmetric

trees. The average false positive rate for GENECONV is

2.8% for the asymmetric trees and 4.8% for the symmetric

trees. The average over symmetric trees is affected heavily

by the data simulated under a tree length of 10 (12% false

positives); without this condition the average false positive

rate drops to 2%. These results are comparable to those

from previous work (Posada and Crandall 2001), which

also found GENECONV to have low rates of false

positives.

To determine the robustness of these results to the data

sampling strategy, we conduct additional simulations

varying both sequence length (200–600 codons) and

number of taxa (16 and 32 taxa). Sequence length affects

the number of false positives inferred by GARD-SBP,

RDP, MaxChi, and Chimaera (Supplementary Table S2),

with number of false positives increasing with sequence

length. At all sequence lengths simulated, the negative

impact of tree asymmetry is still observed for GARD-SBP.

Alternatively, the impact of tree length seems to be

diminished by increasing sequence length. However, this is

not due to improved performance when divergence is large;

rather the equalizing effect among tree lengths is due to

false positives increasing with sequence length. Increasing

number of taxa decreases the number false positives

detected by GARD-SBP, MaxChi, and Chimaera (Sup-

plementary Table S3). An important finding is that denser

sampling of taxa from a given level of sequence divergence

helps to diminish the negative impact of increased tree

length. These results indicate that factors related to sam-

pling strategies can also have a very strong effect on

performance.

Taken together, our findings indicate that both tree

shape and sequence divergence can negatively affect

recombination detection methods. Three methods, MaxChi,

Chimaera, and RDP, yield increased false positive rates

with increased tree length, possibly because more vari-

ability leads to more opportunity for false signal. GARD-

SBP, on the other hand, can be strongly affected by tree

topology for average-sized genes (200 codons), with much

higher levels of false positives under an asymmetric phy-

logeny. Two methods (GARD-MBP and GENECONV) are

recommended under conditions of asymmetric topology or

Fig. 2 Results from Simulation 1. Solid lines indicate the percentage

of false positives when tree topology is symmetric while dashed lines
indicate results under an asymmetric topology

J Mol Evol (2011) 73:273–286 277

123



high sequence divergence, as they are more robust to dif-

fering tree shapes than GARD-SBP and are more robust to

large divergences than MaxChi and Chimaera.

Simulation 2: Non-Stationary Evolution

Recombination detection methods often assume that every

aspect of the evolutionary process is homogeneous over

time, with average values for parameters such as nucleotide

composition and substitution rates assumed to apply equally

well to all parts of a phylogeny. However, this assumption is

often violated in real data. For example, sequences that have

experienced a divergence in gene function often possess sites

that exhibit a shift in the substitution rate across the phy-

logeny (Gaucher et al. 2002). In some cases, divergence of

function can be associated with a substantial shift in other

aspects of the substitution process such as equilibrium fre-

quencies or amino acid exchangeabilities (e.g., Kettler et al.

2007; Zhang et al. 1998). Simulation 2 is designed to explore

the impact of a shift in the substitution process on recombi-

nation detection methods. Specifically, we simulate a range

of shifts in (i) codon usage bias and (ii) the distribution of

selective effects, and compute false positive rates for the set

of six detection methods.

As in Simulation 1, datasets are 200 codons in length

and generated using a 16-taxon phylogeny that is either

symmetric or asymmetric (Fig. 1). Data are simulated to

yield a total tree length of 4 substitutions per codon site

(average number of substitutions per branch is 0.1333).

When a shift in either codon bias or selection pressure is

simulated, it occurs at the node shown in Fig. 1 indicated

by the asterisk. This node effectively splits the branches of

the tree into two types, ‘‘Type A’’ and ‘‘Type B,’’ having

different evolutionary models.

Codon bias is modeled using the method of Aris-Brosou

and Bielawski (2006). This method employs a single

parameter, ‘‘g,’’ to specify codon frequencies for changing

proportions of G and C at the third codon position, or GC3

content (Supplementary Fig. S2). Codons with a G or C in

the third position are given a frequency of g/R, while

codons with an A or T at the third position have a fre-

quency of (1 - g)/R, where R is a scaling factor. The

values of g range from 0 B g B 1, where a value of

g = 0.5 indicates a GC3 content = 50% and all non-stop

codons have equal frequencies. As g approaches zero, GC3

content decreases. Using this system, we can easily cal-

culate and specify separate codon biases for different parts

of the phylogeny; e.g., gA = gB.

The strength and direction of selection pressure varies

among sites, and is determined by specifying a distribution

for x separately for each part (A and B) of the phylogeny

(e.g., Fig. 3; also see Supplementary Fig. S3). Type A

evolution remains constant throughout all simulations

while Type B evolution changes among six different sce-

narios. For the Type A evolutionary model, most codon

sites are under strong purifying selection (x\\1) and

very few sites are evolving close to neutrality (pA = 0.5,

qA = 2); in general, this beta distribution can be thought of

as having an ‘‘L-shape’’ (e.g., Fig. 3). The codon bias

parameter for Type A evolution is set to gA = 0.5. Type B

evolution (pB, qB and gB) varies for each simulation con-

dition. There are two basic cases concerning selection

pressure for Type B evolution:

Case 1: Most sites under strong purifying selection,

similar to Type A evolution. This is modeled

by an L-shaped beta function (Supplementary

Fig. S3).

Case 2: A larger proportion of sites evolving close to

neutrality. This is modeled with a U-shaped beta

function (Fig. 3).

For each case above, we simulate 3 different x distributions

(designated sub-cases ‘‘a,’’ ‘‘b,’’ and ‘‘c’’). Case 1a is the

‘‘null’’ for selection pressure. Under the null, Type B evo-

lution is simulated under the same conditions as Type A

evolution, so selection pressure is homogeneous across the

phylogeny. In all other cases (Cases 1b, 1c, and 2a–c) there is

a shift in x distribution (parameters p and q of the beta

distribution differ between Type A and B evolution). In

addition, each case for selection pressure is simulated both

with a shift in codon bias (gA = 0.5 and gB = 0.1) and with

no shift in codon bias across the phylogeny (gB = 0.5). The

result is a total of 12 unique evolutionary scenarios: six ‘‘sub-

cases’’ for the shift in selection pressure, each with two

conditions for a shift in codon usage (condition 1:

gA = gB = 0.5; and condition 2: gA = 0.5, gB = 0.1).

Fig. 3 Example distribution of selection pressure employed in

Simulation 2, Case 2. Only the asymmetric tree topology is presented.

Shape parameters for beta distribution (p, q) for sub-cases a, b and c

are given in legends of the beta distribution plot. The distributions for

Simulation 2, Case 1 can be found in the Supplementary Materials
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Under this design, we generate four different scenarios

under the ‘‘null’’ case for selection pressure; i.e., Case 1a is

applied to both topologies (symmetric and asymmetric) and

both codon usage conditions. For each of these four sce-

narios, 250 replicate datasets are simulated. Table 2 shows

the results for all four Case 1a scenarios, and highlights our

finding that, regardless of tree shape, a shift in codon bias

alone does not substantially affect the false positive rates.

While a shift in codon bias alone does not negatively

impact tests for recombination, it could be the case that

those same tests might incorrectly interpret rate shifts at

sites within a gene (i.e., arising as a function of a shift in

the intensity of selection pressure) as signal for recombi-

nation. The tests are surprisingly robust to a shift in

selection pressure, and even the combined effect of shifts

in both selection pressure and codon bias. In Tables 3 and 4

we generalize the false positive rate over the different

scenarios for divergent selection pressure; i.e., we compute

the false positive rate for each recombination method as an

average over Cases 1b, 1c, and 2a–c (for full results see

Supplementary Tables S4 and S5). Table 3 provides results

for just a shift in selection pressure and Table 4 provides

results for the combined effect. Although false positives for

GARD-SBP are again noticeably higher for the asymmetric

tree topology, there is no affect for shifts in either codon

bias or selection pressure. We also conduct additional

simulations to test whether these results are robust at dif-

ferent levels of sequence divergence (see Supplementary

Table 2 Percentage of false positives under homogeneous selection pressure (Case 1a) in Simulation 2 for both symmetric and asymmetric tree

topologies with both stationary and non-stationary codon bias

GARD-MBP GARD-SBP RDP GENECONV MaxChi Chimaera

Symmetric

Stationary 0 3.2 8.8 3.2 28 28.8

Non-stationary 0 2.0 8.8 2.0 33.2 34.4

Asymmetric

Stationary 1.2 13.2 4.8 2.0 30.8 19.6

Non-stationary 2.8 14.4 5.6 1.6 29.6 23.2

Percentages in each cell are computed from 250 alignments. Stationary codon bias is generated under gA = gB = 0.5. Non-stationary codon bias

is generated under gA = 0.5 and gB = 0.1

Table 3 Percentage of false positives under a shift in selection pressure in Simulation 2

GARD-MBP GARD-SBP RDP GENECONV MaxChi Chimaera

Symmetric

Null (Case 1a) 0 3.2 8.8 3.2 28 28.8

Shift in selection pressure 0 4.0 7.0 2.0 35 30

Asymmetric

Null (Case 1a) 1.2 13.2 4.8 2.0 30.8 19.6

Shift in selection pressure 2.0 11 1.0 1.0 32 25

Percentages in each cell are computed from 250 alignments. False positive rates are combined across different models for the shift in selection

pressure (Cases 1b, 1c, 2a–c)

Table 4 Combined effect of a shift in selection pressure and codon bias on false positives for recombination

GARD-MBP GARD-SBP RDP GENECONV MaxChi Chimaera

Symmetric

Null (Case 1a) 0 4 7 2 35 30

Shift in selection pressure 0 2 8.8 2 33.2 34.4

Asymmetric

Null (Case 1a) 2 11 1 1 32 25

Shift in selection pressure 2.8 14.4 5.6 1.6 29.6 23.2

In all cases codon frequencies differ between Type A and Type B evolution (gA = 0.5, gB = 0.1). Percentages in each cell are computed from

250 alignments. False positive rates are combined across different models for the shift in selection pressure (Cases 1b, 1c, 2a–c)
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Tables S6 and S7). The effect is the same as found in

Simulation 1; i.e., false positive rates for some methods

increase with tree length, but are not negatively impacted

by non-stationary selection pressure or codon bias. These

data confirm that the major effects on false positive rate are

due to the method (e.g., MaxChi and Chimera consistently

exhibit the highest false positive rates), sequence diver-

gence, and, to a lesser extent, tree shape.

Simulation 3: Positive Selection

Genetic variability generated by recombination may

resemble patterns of molecular adaptation because

nonsynonymous substitution rates of recombinant gene

fragments appear to differ from the rest of the alignment.

Analysis under the standard models of codon evolution can

lead to artificially elevated rates of nonsynonymous sub-

stitution for the recombinant regions of an alignment,

which will be resolved as a fraction of sites having x[ 1

(Anisimova et al. 2003; Shriner et al. 2003; Scheffler et al.

2006). In this simulation study we investigate if the con-

verse might also be true; that is, if the presence of sites in a

dataset subject to positive selection in part of a phylogeny

might likewise impact statistical tests for recombination.

Simulation 3 differs from Simulation 2 by generating an

alignment with a fraction of sites having x [ 1 whereas all

sites in Simulation 2 had x\ 1.

Simulation 3 is comprised of three ‘‘null’’ scenarios and

three positive selection scenarios. The null scenarios have a

shift in the intensity of purifying selection pressure; i.e., the

shift does not involve positive selection (as in Simulation

2). Sequences are simulated under the same two phyloge-

nies as the previous simulations (symmetric and asym-

metric) and each alignment is 200 codons in length. The

shift in selection pressure occurs at the same node as in

Simulation 2, again splitting the branches of the tree into

two types, ‘‘Type A’’ and ‘‘Type B,’’ having different

evolutionary models. The x distributions are specified for

each part of the phylogeny using the same models used in

Simulation 2. The three positive selection scenarios extend

the null scenarios by adding a single discrete category

(10% of sites) having x = 2 in Type B branches.

As in Simulation 2, Type A evolution remains constant

throughout all simulations and has most codon sites

evolving under strong purifying selection (p = 0.5, q = 2).

Type B evolution, on the other hand, changes for each of

six scenarios (Fig. 4). The shift in evolution is determined

by a change in shape of the beta distribution, and the

presence of sites subject to positive selection in three of the

scenarios. The beta distribution for Type B branches is

U-shaped, with a large proportion of sites evolving nearly

neutrally. We simulate three different sets of shape

parameters (hereafter referred to as a, b, and c) for the x

distribution. Adding 10% of sites to the positive selection

(x = 2) scenarios requires that the amount of sites that

follow the beta distribution is reduced by 10%.

To summarize our findings (Table 5) we combine

results for the different tree shapes (symmetric and asym-

metric) and beta functions (a, b and c) and compare false

positive rates between the positive selection and null sce-

narios (see Supplementary Table S8 for full results). This

comparison reveals that, in general, recombination detec-

tion methods are not sensitive to the presence of positively

selected sites. While all methods except Chimaera yield

some increase in false positives when positive selection is

present, this increase does not exceed 4% for any method.

False positive rates for MaxChi and Chimera are substan-

tially higher than all other methods in Simulation 3. This

finding is consistent with Simulation 1, which shows

increased false positives for these methods at this level of

sequence divergence (Fig. 2).

Additional simulations are presented in Supplementary

Table S9 that cover the same scenarios, but under shal-

lower (tree length: 2 subst./codon site) and deeper diver-

gences (tree length: 10 subst./codon site). Those results

indicate that the recombination detection methods are

robust to positive selection over a wide range of sequence

divergence. Supplementary Table S10 presents a simula-

tion study where 10% of sites are subject to extremely

intense positive selection pressure (x = 10). Here, we also

find that the recombination detection methods are robust to

positive selection in a portion of the tree.

Lastly, we investigate the impact of positive selection

when it is acting throughout the entire phylogeny. Although

this mode of evolution is not necessarily connected with the

process of functional divergence, it does represent a very

strong signal that could be mistaken for recombination.

Fig. 4 Omega distributions for Simulation 3. Parameters used for

beta distributions (p, q) are shown in legends. Each sub-case is

simulated with both stationary and non-stationary codon bias
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To test this hypothesis, we perform a small simulation study

in which 10% of sites are subject to positive selection in each

branch of the phylogeny and compare results to a ‘‘null’’

scenario having 0% of such sites (see Supplementary

Materials for detailed methods and results). Again, we find

that none of the recombination detection methods tested here

are sensitive to mode of evolution; i.e., false positive rates are

similar for data generated under the null and positive selec-

tion scenarios. Note that our simulation scenarios with 10%

of sites having x[ 1, although realistic, represents the

upper range of empirically derived estimates (e.g., Yang

et al. 2005). Evolution by positive selection in many to all the

branches in the tree is most consistent with diversifying

selection, which leaves the strongest signal within real

datasets (Bielawski and Yang 2005). Collectively, these

results suggest that recombination detection methods are

largely robust to the presence of sites subject to this type of

positive selection.

Although previous studies have shown that recombina-

tion events can lead to false inferences in positive selection

analysis (Anisimova et al. 2003; Shriner et al. 2003; Scheffler

et al. 2006), our results show that the converse is not true.

One possible explanation is that positively selected sites,

while often localized in 3D space of the folded protein

product of the gene, are typically dispersed along the primary

gene sequence. Recall that recombination detection methods

search for local variability in adjacent gene fragments; i.e.,

they search for spatial organization along the gene sequence.

However, this pattern is unlikely to result from selection

acting on the mature and folded protein product. We expect

that sequences generated in an unrealistic way, with con-

tinuous blocks of sites subject to positive selection, would

have impacted the false positive rates for recombination. As

the purpose of the tested recombination detection methods is

to identify heterogeneity associated with phylogenetic var-

iability among sites, they appear to be performing as inten-

ded in so far as they are not yielding false positives for

recombination when evolution by positive selection is dis-

tributed in a realistic way.

Simulation 4: Power to Detect Recombination Under

Different Levels of Diversity

Because recombination analysis is a key step in phylogeny-

based inference, detection methods must also be reliable

when recombination has truly impacted the evolution of a

set of gene sequences. Methods should be able to both

(i) detect whether or not recombination is present, and (ii)

estimate the number and location of breakpoints. Several

simulation studies have investigated the power of detection

methods under different levels of recombination and

divergence (Posada and Crandall 2001; Wiuf et al. 2001;

Chan et al. 2006; Kosakovsky Pond et al. 2006). However,

except for GARD-MBP (Kosakovsky Pond et al. 2006),

none of the methods have been evaluated for their ability to

determine the correct number of breakpoints when multiple

events have occurred. In Simulation 4, we analyze both

their power to qualitatively detect the presence of recom-

bination and their accuracy to correctly infer number of

breakpoints.

For this simulation, we use datasets from a previous

study that, to date, have been analyzed only with GARD-

MBP (Kosakovsky Pond et al. 2006). These simulated

datasets consist of 8-taxon alignments with different levels

of recombination and diversity. Each alignment is 3,000 bp

long and has 0, 1, 2, 4, or 8 recombination breakpoints. In

addition, for each number of breakpoints, there are datasets

with both low (5%) and high (25%) genetic diversity for a

total of 10 simulation conditions, each with 100 replicate

datasets.

Consistent with previous simulation studies (e.g.,

Posada and Crandall 2001), our analysis shows that

recombination detection methods are not powerful. Power

for detecting a single recombination event is low for all

methods (Table 6). When just one recombination event is

simulated and diversity is low, RDP, GENECONV, Max-

Chi, and Chimaera have similar performance, detecting just

12–19% of replicates as having been subject to recombi-

nation. GARD-MBP has substantially lower power, only

detecting recombination in 8% of replicates. This is much

lower than previously reported for the same set of simu-

lations (Kosakovsky Pond et al. 2006: 56%) because we

chose to apply the KH test for phylogenetic incongruence,

which has the desirable effect of controlling the number of

false positives (see Simulations 1–3).

For all methods, increasing diversity increases power to

detect recombination (Table 6). For example, in sequences

with one simulated breakpoint, RDP detects recombination

in 38% of alignments with high diversity, compared to just

16% of low diversity replicates. This general pattern of

Table 5 Effect of positive selection on the percentage of false positives for recombination in Simulation 3

GARD-MBP GARD-SBP RDP GENECONV MaxChi Chimaera

No positive selection 0.7 6.7 7.3 1.0 33.3 28.3

Positive selection 1.0 8.7 8.0 3.0 37.0 24.3

Percentages in each cell are computed from 300 alignments. Results are combined across symmetric and asymmetric tree topologies and across

sub-cases for selection pressure (beta functions denoted as a, b and c)
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increasing recombination detection at high diversity is

present throughout all levels of recombination. In addition,

when multiple breakpoints are present, a larger number of

replicates have a signal for more than one breakpoint when

diversity is high. These results are consistent with previous

findings, which suggest the increased information available

Table 6 Capacity of five recombination detection methods to correctly infer 0–8 breakpoints

Low diversity (5%) High diversity (25%)

0 1 2 4 8 0 1 2 4 8

RDP

0 99 83 73 49 32 98 62 53 19 11

1 1 16 26 39 35 2 37 38 44 30

2 1 1 11 25 1 8 25 30

3 1 3 1 6 16

4 5 4 7

5? 2 6

T 1 17 27 51 68 2 38 47 81 89

GENECONV

0 99 88 75 59 33 98 76 68 41 29

1 1 12 25 32 47 2 23 27 43 43

2 8 15 1 5 14 17

3 1 2 2 8

4 2 3

5?

T 1 12 25 41 67 2 24 32 59 71

MaxChi

0 97 81 60 37 25 94 69 48 18 10

1 3 19 36 42 38 6 28 40 40 28

2 4 19 27 3 11 25 29

3 2 6 1 14 20

4 4 2 7

5? 2 6

T 3 19 40 63 75 6 31 52 83 90

Chimaera

0 97 84 61 41 26 94 69 48 18 11

1 3 16 36 43 37 6 29 39 44 25

2 3 14 26 2 12 25 31

3 2 6 1 10 19

4 5 3 9

5? 5

T 3 16 39 59 74 6 31 52 82 89

GARD-MBP

0 99 92 72 74 51 94 70 70 57 47

1 1 8 28 24 43 6 30 25 38 34

2 2 6 5 4 16

3 1 3

4

5?

T 1 8 28 26 49 6 30 30 43 53

For each method evaluated, column labels indicate the number of simulated breakpoints while row labels indicate the number of breakpoints

inferred by a given method. Values within the table indicate the number of replicates (from n = 100) for which the number of breakpoints

specified by the row label are inferred. Blank cells indicate that no break points are inferred in any of the replicates. The rows marked ‘‘T’’

indicate the total number of replicates with a signal for recombination
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when genetic diversity is high leads to increased power for

detection (Posada and Crandall 2001; Kosakovsky Pond

et al. 2006).

For both high and low diversity, as the number of simu-

lated recombination events increases, so does the number of

replicates in which recombination can be detected (Table 6).

When eight breakpoints are simulated at low diversity,

MaxChi and Chimaera detect recombination in 74–75% of

replicates. RDP and GENECONV have slightly lower

power, detecting recombination in 67–68% of replicates.

These results are consistent with previous studies (Posada

and Crandall 2001; Kosakovsky Pond et al. 2006), which

show that recombination detection methods have higher

power when levels of recombination are higher.

Taken over all levels of recombination, GARD-MBP

has much lower power, detecting recombination in less

than half of replicates even when multiple breakpoints are

simulated. Kosakovsky Pond and colleagues (2006)

endorse using GARD-MBP without requiring phylogenetic

incongruence on either side of a breakpoint, as this yields

very good power (recombination is detected in as many as

98% of replicates when both recombination and diversity

levels are high). However, it also increases the number of

false positives. Without the KH test, Kosokovsky Pond and

colleagues (2006) observed a false positive rate of 10%,

whereas it falls to 1% (Table 6) in our simulations when

the KH test is applied.

Although most methods have increased ability to qual-

itatively assess recombination with increasing number of

breakpoints, accuracy in inferring the correct number of

breakpoints when multiple are present is extremely low

(\4% for low diversity and \12% for high diversity). In

fact, even when eight breakpoints are simulated, no method

infers greater than five breakpoints when diversity is low.

As we apply it, GARD-MBP is particularly conservative,

never inferring more than two breakpoints at low diversity.

In general, all methods underestimate the number of

recombination events. This decreasing ability to correctly

identify multiple breakpoints may be due to decreased

amount of information from which to make inferences.

Small fragments simply do not provide enough information

for accurate estimation of some parameters, including

substitution parameters and phylogenies. Because recom-

bination detection methods require parameter estimates to

be compared with those in adjacent fragments, users of

these methods should be aware that more false negatives

may result with decreasing fragment sizes in real data.

Real Data Analysis: Testing the Prochlorococcus

Core-Genome for Recombination

The cyanobacteria Prochlorococcus marinus are responsi-

ble for a significant fraction of primary productivity in the

world’s open oceans (e.g., Suzuki et al. 1995; Liu et al.

1997). Specific lineages have adapted to high-light and

low-light conditions, and functional divergence among the

genes of those lineages is the subject of considerable

research interest (e.g., Ting et al. 2001; Zhao and Qin

2007). As methods for measuring the strength and direction

of natural selection pressure in such sequences (e.g., codon

models) can be negatively impacted by recombination

(Anisimova et al. 2003; Shriner et al. 2003; Scheffler et al.

2006), the capacity to reliably detect recombination is

critical to such a research program. Indeed, homologous

recombination is well known to have impacted the evolu-

tion some of their photosystem genes (e.g., Zeidner et al.

2005; Sullivan et al. 2006). While several studies have

explored the role of LGT in the genomic evolution of

Prochlorococcus (e.g., Zhaxybayeva et al. 2006, 2009),

none have attempted to quantify within-gene recombina-

tion. Here, we use the knowledge acquired from our sim-

ulation studies to test and interpret a set of 585 genes from

the core genome of Prochlorococcus for recombination.

Each gene is analyzed for within-gene recombination by

using all six recombination detection methods evaluated in

our simulation studies. The number of genes in which

recombination is detected is extremely variable, from just

nine genes (1.5% of those analyzed) using GARD-MBP to

534 genes (91.3%) using Chimaera. Interestingly, GARD-

based methods infer among the highest and lowest numbers

of genes having a history of recombination. The extremely

conservative performance of GARD-MBP (nine genes) is

consistent with results from our simulation studies, where

this method had low power even when multiple break-

points were present. However, the GARD-SBP method

detects recombination in 83.2% of genes, with only Chi-

maera detecting higher levels. The high rates detected by

MaxChi (476 genes: 81.4%) and Chimaera may be due, in

part to the level of divergence observed in Prochlorococ-

cus genes; the genome tree is *10 subst./codon site

(average branch length *0.46 subst./codon site), corre-

sponding to the upper end of sequence divergence covered

in Simulation 1. In addition, the real gene sequences have

an asymmetric tree topology, and given the high false

positive rate of GARD-SBP observed under such a tree in

Simulation 1, those real-data results are best interpreted as

negatively impacted by false positives.

RDP and GENECONV fall between these two extremes

and, based on our simulations, they are expected to more

reliably identify actual cases of recombination in Pro-

chlorococcus. In our simulations, these two methods show

reasonable power without yielding a large number of false

positives when branch length is increased. In addition, RDP

and GENECONV perform well under an asymmetric

topology and non-stationary evolution, which are charac-

teristic of these real Prochlorococcus gene sequences.
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However, the difference between levels of recombination

detected with these two methods is still quite large; RDP

detects recombination in 209 genes while GENECONV

detects recombination in only 50. With such vastly dif-

ferent estimates, it is difficult to determine the actual level

of recombination present in the Prochlorococcus core

genome, but the range (8.5% under GENECONV to and

37.5% under RDP), suggests an important role for within-

gene recombination in the evolution of the Prochlorococ-

cus core genome.

Prochlorococcus genes exhibit all of the complex evo-

lutionary scenarios simulated in this paper: the topology is

largely asymmetric, a shift in codon frequencies occurs

within the phylogeny, and genes have undergone a diver-

gence in function. Although our simulations show that false

positive rates for many methods tested should be robust to

some or all of these conditions, the number of genes pre-

dicted to have undergone recombination in this complex

setting is still highly variable among detection methods. It

may be the case that these evolutionary scenarios impact

other aspects of test performance, such as power. This lack

of concordance among tests leads to a high amount of

uncertainty, not only in measuring the amount of recom-

bination present in the genome, but also in analyzing

specific genes for the presence of recombination.

Conclusions

Of the scenarios examined, we find tree length, tree shape,

and data sampling strategy to have the most substantial

impact on false positive rate. In particular, we find that

GARD-SBP can yield an increased number of false posi-

tives under an asymmetric topology. For other methods

(RDP, MaxChi, and Chimaera), the false positive rate

depends more on tree length. The magnitude of these

effects depends on the sample of data (number of

sequences and their length). Based on these findings we

suggest that RDP, MaxChi, and Chimaera should not be

used when sequence divergence is too large, and we cannot

endorse GARD-SBP due to its sensitivity to tree topology.

Somewhat surprisingly, most methods are robust to shifts

in codon bias and the distribution of selection pressure. In

addition, none of the methods yield a major increase in

number of false positives when sites are evolving under

positive selection in some, or even all, of the branches of

the tree. Two methods (GENECONV and GARD-MBP)

stand out for being highly robust to false positives over all

of the evolutionary scenarios that we tested.

The power of all methods tested is sensitive to the level

of divergence and the amount of recombination. Although

power is typically low for all recombination detection

methods, the ability to qualitatively detect recombination

increases with both diversity and number of breakpoints.

However, even when diversity is high, accuracy to deter-

mine the number of recombination breakpoints in an

alignment is low. It seems that for all methods, there is a

tradeoff between power to detect recombination and false

positive rate. While the more powerful methods (MaxChi,

Chimaera) are more likely to detect the presence of

recombination when it truly exists, they are also more

likely to detect a false signal for recombination when it is

absent. On the other hand, the more conservative methods

(GARD-MBP, GENECONV, RDP) have low false positive

rates, but are also likely to miss recombination when it is

present. Future studies may examine different scenarios

related to recombination (e.g., stronger signal or location of

breakpoints) in order to further investigate factors that

might impact the power of these methods to determine both

number and location of recombination breakpoints.

Robustness to shifts in the distribution of selective

constraints, and to the presence of positively selected sites,

is particularly important because model-based methods that

test for such features of molecular evolution are not robust

to the presence of recombination; they assume that all sites

share a common phylogeny and some have been shown

to yield false results in the presence of recombination

(Anisimova et al. 2003; Shriner et al. 2003; Scheffler et al.

2006). Therefore, studies of functional divergence in sys-

tems where recombination is plausible can, and should,

include a pre-analysis for recombination. In this setting, the

user might be less concerned with recombination as a

process and more concerned with knowledge that will be

used to guide subsequent analysis of functional divergence.

When recombination is detected preceding analysis of

functional divergence, downstream analysis can proceed

either by (i) excluding genes having recombinant sequen-

ces from further analysis (e.g., Sullivan et al. 2006) or (ii)

using breakpoints to separately analyze sequence frag-

ments (e.g., Scheffler et al. 2006). If recombinant sequen-

ces are to be excluded, it is important to choose methods

with low false negative rates so that actual recombinant

sequences will not cause further error in downstream

analysis. In this setting power might be valued as much as,

or more than, controlling the false positive rate. However

we find that some methods, under some conditions, can

have false positive rates that are too high (e.g., [60%),

which would unnecessarily deplete the data selected for

downstream analyses. Methods should not be selected

based solely on the false negative rate. The alternative is to

identify breakpoints and run analyses on each fragment. In

this case, the user would be most concerned with accurate

identification of the number and location of breakpoints.

While we did not investigate location accuracy, we did find

that inferences about the number of breakpoints are typi-

cally very low. The impact of these types of errors on the
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downstream analysis of separate fragments is not well

known and warrants further investigation. In either setting,

a small-scale simulation under evolutionary scenarios

derived from the data in hand (e.g., branch lengths, tree

shape, sample size, rate distribution, etc.) could prove

extremely informative about the best tradeoff between

power and accuracy for the data set ‘‘in hand’’.

Although using a combination of methods may be the

best way to obtain a better understanding of recombination

present in a multi-gene dataset, one must be careful to

choose methods that are not prone to especially large false

positive rates under the evolutionary processes character-

istic of the genomes from which the genes were sampled.

For example, the fraction of genes for which recombination

is detected in the Prochlorococcus genome ranges from 1.5

to 91.3%: fundamentally different conclusions would be

derived from each extreme if taken alone. Moreover, the

average does not seem to be a biologically defendable

estimate and a consensus that includes a method with very

low power could yield a substantial underestimate of the

recombination rate.

For the time being, users of these methods are encour-

aged to apply the following guidelines:

• When characteristics of a given dataset may violate

model assumptions, simulations should be carried out

under conditions that are relevant to the data at hand.

These simulations should evaluate both power and false

positive rates of candidate methods.

• Even if simulations do not show that a given evolu-

tionary scenario impacts false positive rates, users of

these methods should be aware that unexamined factors

may impact performance and inflate discordance (e.g.,

the Prochlorococcus data).

• Pay particular attention to tree shape, sequence diver-

gence, and sample size, as these characteristics could

have a large and negative impact on the performance of

recombination detection methods.

• A consensus of several different methods may provide

a robust way of detecting recombination within a gene,

but methods for use in a consensus should be chosen

carefully. For instance, taking into account a strict

consensus across a set of methods that includes an

extremely conservative one (i.e., very low power) will

be unlikely to detect recombination in most cases where

it truly exists.

• Overall, this simulation study finds GENECONV to be

both reasonably powerful and robust. Therefore, it may

be desirable to include GENECONV when evaluating a

set of potential methods under other sets of conditions.

When power is valued as much as, or more than,

controlling the false positive rate, it may be desirable to

employ GARD-MBP without the KH correction.

The problem of recombination detection is obviously a

complex one and there is much room for improvement in

developing these methods before we have a clear under-

standing of recombination as an evolutionary process.
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